For a cost function, C(x) = 36100 + 800x + x²
a) The cost at the production level 1250 is equal to 2,598,600.
b) The average cost at the production level 1250 is equal to 2,078.88.
c) The marginal cost at the production level 1250 is equal to 3300 $/unit.
d) The production level, x = 60 that will minimize the average cost.
e) The minimal average cost is equals the 1,461.67.
Let consider C(x) be a total cost function where x is quantity of the product, then,
The average of the total cost is written as:[tex]AC(x)= \frac{C(x)}{x}[/tex]The Marginal cost is written as MC(x) = C'(x).We have a cost function is written as C(x) = 36100 + 800x + x²
a) The cost at production level 1250, that is x = 1250 is equals to
=> C( 1250) = 36100 + 800× 1250 + 1250²
= 2,598,600
b) The average cost at the production level 1250, that is AC(x) [tex]= \frac{36100 + 800x + x²}{x}[/tex]
[tex]= \frac{36100}{x} + 800 + x[/tex]
Plug the value x = 1250
[tex]= \frac{36100}{1250} + 800 + 1250[/tex]
= 2,078.88
c) The marginal cost at the production level 1250 is equal to the derivative of
[tex]\frac{dC(x)}{dx }[/tex], evaluated for x = 1250,
[tex]\frac{dC(x)}{dx }[/tex] = C'(x)
= 800 + 2x
C'(1250) = 800 + 2× 1250 = 3300$/unit
d) As we know the average cost of the total cost function is,
[tex] A C(x) = \frac{36100}{x} + 800 + x[/tex]
Compute the critical point for minimizing the average cost, differentating the above equation, [tex]AC′(x)= \frac{ d(\frac{36100}{x} + 800 + x)}{dx}[/tex]
[tex]= \frac{- 36100}{x²} + 1[/tex]
For critical value plug AC'(x) = 0
[tex]\frac{- 36100}{x²} + 1 = 0[/tex]
=> x² - 3600 = 0
=> x = ± 60
As the quantity must be positive so x = 60.
e) Now we will compute the minimum average value at x = 60,
[tex] A C(60) = \frac{36100}{60} + 800 + 60[/tex]
= 1,461.67
Hence, required value is 1,461.67.
For more information about cost function, visit :
https://brainly.com/question/13378400
#SPJ4
A 35-year-old person who wants to retire at age 65 starts a yearly retirement contribution in the amount of $5,000. The retirement account is forecasted to average a 6.5% annual rate of return, yielding a total balance of $431,874.32 at retirement age.
If this person had started with the same yearly contribution at age 40, what would be the difference in the account balances?
A spreadsheet was used to calculate the correct answer. Your answer may vary slightly depending on the technology used.
$378,325.90
$359,978.25
$173,435.93
$137,435.93
If this person, who wants to retire at age 65, had started with the same yearly contribution at age 40, the difference in the account balances (future values) would be D. $137,435.93.
How the future values are determined:The future values can be computed using an online finance calculator as follows:
Future Value at Age 35:N (# of periods) = 30 years (65 - 35)
I/Y (Interest per year) = 6.5%
PV (Present Value) = $0
PMT (Periodic Payment) = $5,000
Results:
Future Value (FV) = $431,874.32
Sum of all periodic payments = $150,000.00
Total Interest = $281,874.32
Future Value at Age 40:N (# of periods) = 25 years (65 - 40)
I/Y (Interest per year) = 6.5%
PV (Present Value) = $0
PMT (Periodic Payment) = $5,000
Results:
Future Value (FV) = $294,438.39
Sum of all periodic payments = $125,000.00
Total Interest = $169,438.39
Difference in future values = $137,435.93 ($431,874.32 - $294,438.39)
Learn more about future values at https://brainly.com/question/24703884.
#SPJ1
3x^2-12x-15 what’s the minimum value ?
the answer to your math question is (−2,−27)
Answer:
(-2,-27)
Step-by-step explanation:
use the formula
x = b/2a
to find the maximum and minimum
The graph of quadratic function g is shown. Which statements are best supported by the graph of g?
Select THREE correct answers.
The vertex is at (4,-4).
The axis of symmetry is y = 4.
The zeros are at (2, 0) and (6, 0).
The axis of symmetry is x = 4.
The vertex is a maximum.
3
1
The statements that are supported by the graph are:
The vertex is at (4,-4).The zeros are at (2, 0) and (6, 0).The axis of symmetry is x = 4.Which statements are supported by the graphGiven that the equation of the function is
f(x) = (x - 2)(x - 6)
From the equation of the graph, we can see that
Minimum = (4, -4)
This means that the vertex is at (4, -4)
The x coordinate of the vertex is the axis of symmetry
So, we have
x = 4
Next, we set the function to 0 to determine the zeros
So, we have
(x - 2)(x - 6) = 0
Solve for x
x = 2 and x = 6
This means that the zeros are at (2, 0) and (6, 0).
Read more about quadratic functions at
https://brainly.com/question/25841119
#SPJ1
The population of a small town in Connecticut is 21,472, and the expected population growth is 1.7% each year. You can use a function to describe the town's population x years from now. Is the function linear or exponential? Which equation represents the function?
Answer:
This is an exponential function.
[tex]f(x) = 21472 ({1.017}^{x} )[/tex]
A thin plate is in state of plane stress and has dimensions of 8 in. in the x direction and 4 in. in the y direction. The plate increases in length in the x direction by 0.0016 in. and decreases in the y direction by 0.00024 in. Compute Ox and Oy to cause these deformations. E = 29 x 106 psi and v = 0.30.
To compute the values of Ox and Oy required to cause the given deformations, we can use the following equations:
εx = (1/E) * (σx - v*σy)
εy = (1/E) * (σy - v*σx)
Where εx and εy are the strains in the x and y directions, σx and σy are the stresses in the x and y directions, E is the modulus of elasticity, and v is the Poisson's ratio.
We can assume that the plate is subjected to equal and opposite stresses in the x and y directions, such that σx = -σy = σ. Therefore, we can write:
εx = (1/E) * (σ + v*σ) = (1/E) * (1+v) * σ
εy = (1/E) * (-σ + v*σ) = (1/E) * (v-1) * σ
Using the given dimensions and deformations, we can calculate the strains:
εx = ΔLx/Lx = 0.0016/8 = 0.0002
εy = -ΔLy/Ly = -0.00024/4 = -0.00006
Substituting these values into the equations above, we can solve for σ and then for Ox and Oy:
σ = (εx * E)/(1+v) = (0.0002 * 29e6)/(1+0.30) = 4795 psi
Ox = σ*t = 4795 * 8 = 38360 lb/in
Oy = -σ*t = -4795 * 4 = -19180 lb/in
Therefore, the values of Ox and Oy required to cause the given deformations are 38360 lb/in and -19180 lb/in, respectively.
#SPJ11
Learn more about Poisson's ratio: https://brainly.com/question/2132699.
Date: Practise Section 7.2 1. Find the greatest common factor (GCF) of a) 64 and 72 b) 2a2 and 12a c) 4x2 and 6x 2. For each polynomial, indicate if it is in the factored form or expanded form and identify greatest common factor. a) 3x - 12 b) 5(13y - x) c) 3x2 12x + 9 - GCF = GCF = GCF = 3. Completely factor each polynomial and check by expanding a) 3p - 15 b) 21x2 - 9x + 18 c) 6y2 + 18y + 30 = 3( - ) Check: Check: Check: 4. Write a trinomial expression with a GCF of 3n. Factor the expression.
1. a) The prime factorization of 64 is 2^6 and the prime factorization of 72 is 2^3 × 3^2. The common factor is 2^3, so the GCF of 64 and 72 is 8. b) The GCF of 2a^2 and 12a is 2a. c) The GCF of 4x^2 and 6x is 2x.
2. a) Factored form: 3(x - 4), GCF = 3 b) Factored form: 5(13y - x), GCF = 5 c) Expanded form: 3x^2 + 12x + 9, GCF = 3
3. a) 3(p - 5), check: 3p - 15 b) 3(7x - 3)(x + 2), check: 21x^2 - 9x + 18 c) 6(y + 1)(y + 5), check: 6y^2 + 18y + 30
4. A trinomial expression with a GCF of 3n is 3n(x^2 + 4x + 3). Factoring the expression, we get 3n(x + 3)(x + 1).
Let us discuss this in detail.
1. a) The GCF of 64 and 72 is 8.
b) The GCF of 2a^2 and 12a is 2a.
c) The GCF of 4x^2 and 6x is 2x.
2. a) 3x - 12 is in expanded form, GCF = 3.
b) 5(13y - x) is in factored form, GCF = 5.
c) 3x^2 + 12x + 9 is in expanded form, GCF = 3.
3. a) Factoring 3p - 15 gives 3(p - 5), Check: 3(p - 5) = 3p - 15.
b) Factoring 21x^2 - 9x + 18 gives 3(7x^2 - 3x + 6), Check: 3(7x^2 - 3x + 6) = 21x^2 - 9x + 18.
c) Factoring 6y^2 + 18y + 30 gives 6(y^2 + 3y + 5), Check: 6(y^2 + 3y + 5) = 6y^2 + 18y + 30.
4. A trinomial expression with a GCF of 3n could be 3n(x^2 + y^2 + z^2). Factoring this expression gives 3n(x^2 + y^2 + z^2), which is already in factored form.
Learn more about prime factorization at https://brainly.com/question/18187355
#SPJ11
What is. JD?
ten points
The length of JD for the intersecting chords in the circle W is equal to 16, which makes the option B correct.
What is the property of intersecting chordsThe property of intersecting chords states that in a circle, if two chords intersect, the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord.
BD × BJ = AC × JS
6 × JD = 12 × 8
6JD = 96
JD = 96/6 {divide through by 6}
JD = 16
Therefore, the length of JD for the intersecting chords in the circle W is equal to 16.
Read more about intersecting chords here:https://brainly.com/question/13950364
#SPJ1
Figure ABCD is a kite. Find the value of x.
2x+10 &
2x
x = [?]
Triangle angles must add up to 180º then, The value of x=20
In a Kite triangle, there are three angles. These angles are created by the triangle's two sides coming together at the triangle's vertex. Three inner angles added together equal 180 degrees. Both internal and external angles are present in a triangle.
In a triangle, there are three interior angles. When the sides of a triangle are stretched to infinity, exterior angles are created. As a result, between one side of a triangle and the extended side, external angles are created outside of a triangle.
Here triangle angles must add up to 180º:
2x+10+2x+90=180
4x+100=180
4x=80
x=20
Learn more about Kite Triangle visit: brainly.com/question/26870235
#SPJ4
Correct Question:
Figure ABCD is a kite. Find the value of x.
5.4 Diagonalization: Problem 6 (1 point) Suppose C=[1 2, 3 7], D=[2 0 , 0 1]
If A = CDC-1, use diagonalization to compute A5.
[ ]
To diagonalize C, we first need to find its eigenvalues and eigenvectors. The characteristic equation for C is det(C -
λI) = 0, which gives us (1 - λ)(7 - λ) - 6 =
0. Solving for λ, we get λ1 = 1 and λ2 =
7. To find the eigenvector corresponding to λ1, we solve the system of equations (C -
λ1I)x = 0, which gives us the equation - x1 + 2x2 = 0. Choosing x2 =
1, we get the eigenvector v1 =
[2,1]. Similarly, for λ2 we get the eigenvector v2 = [1, -
1]. We can then diagonalize C by forming the matrix P =
[v1, v2] and the diagonal matrix D = [λ1 0; 0 λ2]. We have C =
- -
PDP 1. To compute A5, we first compute C 1 as [7 - 2; - 3 1] / 4. Then, A =
- - - 5 5 5
CDC 1 = PDP 1DC 1P. We have D = [1 0; 0 7], so D = [1 0; 0 7 ] =
5 5 -
[1 0; 0 16807]. Thus, A = PD P 1 = [2 1; 1 - 1][1 0; 0 16807][1 / 3 -
1 / 3; 1 / 3 2 / 3] = [11203 11202; 16804 16805] / 9.
For more questions on diagonalisation - https://brainly.com/question/29537939
#SPJ11
(Sample Spaces LC)
List the sample space for rolling a fair seven-sided die.
OS (1, 2, 3, 4, 5, 6, 7)
OS={1, 2, 3, 4, 5, 6, 7, 8)
OS = {1}
OS={7}
Please answer quick
Answer:
(a) S = {1, 2, 3, 4, 5, 6, 7}
Step-by-step explanation:
You want the sample space for rolling a 7-sided die.
Sample spaceThe sample space is the list of all possible outcomes.
Possible outcomes from rolling a 7-sided die are any of the numbers 1 through 7.
The sample space is ...
S = {1, 2, 3, 4, 5, 6, 7} . . . . . choice A
<95141404393>
Bijan wants to go running during his family’s vacation to New York City. To do so, he will run a neighborhood block 20 times. Bijan runs a total of 8 miles. Use the formula for the perimeter of the neighborhood block and the reciprocal to find the width w of the city block
As per the given values, the width of the city block is 1/20 mile.
Total distance travelled by Bijan = 8 miles
Number of rounds taken by Bijan = 20
As per the question,
the length of the block = 3/20 miles and the width of the block = w
Calculating the perimeter -
Perimeter = 2(3/20 + w)
= 3/10 + 2w
Therefore,
Bijan will cover a distance of 3/10 + 2w miles in one round
In 20 rounds he will cover the distance of -
= 20 x (3/10 + 2w)
= 20(3/10 + 2w) miles
According to the question,
= 20(3/10 + 2w) = 8
2w = 8/20 - 3/10
w = 2/40
w = 1/20
Read more about width on:
https://brainly.com/question/25292087
#SPJ4
Complete the following using present value. (Use the Table provided. ) (Do not round intermediate calculations. The "Rate used to the nearest tenth percent. Round the "PV factor" to 4 decimal places and final answer to the nearest cent. ) On PV Table 12. 3 Rate used PV factor used PV of amount desired at end of period Period used Length of time Rate Compounded Amount desired at end of period $ 9,800 % 4 years 6% Monthly
The present value of $9,800 at the end of 4 years with a 6% monthly compounded rate is $7,996.84.
To find the present value of $9,800 at the end of 4 years with a 6% monthly compounded rate, we need to use the present value table.
First, we need to find the monthly compounded rate. The annual interest rate is 6%, so the monthly rate is
6/12 = 0.5%
Next, we need to find the PV factor. From the present value table 12.3, the PV factor for 48 periods at 0.5% monthly rate is 0.8138.
Now, we can calculate the present value:
PV = 9,800 × 0.8138
=7,996.84
Therefore, the present value of $9,800 at the end of 4 years with a 6% monthly compounded rate is $7,996.84.
To learn more about present value visit:
https://brainly.com/question/27737965
#SPJ4
Maria bought a cake and divided it equally among her 4 children. Ana and Benito ate their whole piece, Carlos ate half of his piece and Diana only ate a fifth of hers. What slice of the cake was left over?
Answer:
70/200
Step-by-step explanation:
1/8+1/20
5/40+2/40
70/200
Answer:
the answer isnt on there but i got 27/40.....
Step-by-step explanation:
1 cake + 4 kids = 4 pieces of cake
Ana ( one full piece) + Benito ( one full piece) = 2/4 or 1/2
so we already know half the cake is gone.
Carlos ate half, so 1/2 of 1/4 equals 1/8
Diana ate 1/5 of her's, so 1/5 of 1/4 equals 1/20
now, we add.
1/4 + 1/4 + 1/8 + 1/20 = 27/40
A consumer agency wanted to estimate the difference in the mean amounts of caffeine in two brands of coffee. The agency took a sample of 15 one- pound jars of Brand 1 coffee that showed the mean amount of caffeine in these jars to be 80 milligrams per jar with a standard deviation of 5 milligrams. Another sample of 12 one-pound lars of Brand 2 coffee gave a mean amount of caffeine equal to 77 milligrams per jar with a standard deviation of 6 milligrams. Construct a 95% confidence interval for the difference between the mean amounts of caffeine in one-pound jars of these two brands of coffee. Assume the two populations are normally distributed and that the standard deviations of the two populations are unequal. Based on the confidence interval, is there sufficient evidence to indicate a difference in the populations? Explain.
The 95% confidence interval for the difference between the mean amounts of caffeine is C.I = (-1.36, 7.36) and the p-value for this test is 0.169.
In statistics, a confidence interval describes the likelihood that a population parameter would fall between a set of values for a given percentage of the time. Confidence ranges that include 95% or 99% of anticipated observations are frequently used by analysts.
Therefore, it can be concluded that there is a 95% probability that the true value falls within that range if a point estimate of 10.00 is produced from a statistical model with a 95% confidence interval of 9.50 - 10.50.
a) We will set up the null hypothesis that
[tex]H_{0}: \mu_{1} = \mu_{2}[/tex] Vs
Ha
Under the null hypothesis the test statistics is.
(T1-T2) 7t 7t
Where (nl+ n2- 2)
Also we are given that
T1 80 , 12 77 , 721 15 , n2- 12 , 5 and [tex]S_{2}[/tex] = 6
[tex]\therefore S^2=\frac{(15-1)5^2+(12-1)6^2}{(15+12-2)}=5.4626[/tex]
n1 n2
[tex]C.I=(15-12)\pm 2.060*5.4626\sqrt{\frac{1}{15}+\frac{1}{12}}[/tex]
C.I = (-1.36, 7.36)
b) Also under null hypothesis
[tex]t=\frac{(\bar{x }_{1}-\bar{x }_{2})-(\mu _{1}-\mu _{2})}{S^{2}\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}[/tex]
[tex]t=\frac{(15-12)-0}{5.4626\sqrt{\frac{1}{15}+\frac{1}{12}}}[/tex]
t=1.42
Also corresponding P-Value = 0.169
Since calculated P-Value = 0.169 which is greater then 0.05 we accept our null hypothesis and concludes that there is no difference in the mean amount of caffeine of these two brands.
Learn more about Confidence interval:
https://brainly.com/question/29570668
#SPJ4
A square with a perimeter of
135
135 units is dilated by a scale factor of
4
3
3
4
. Find the perimeter of the square after dilation. Round your answer to the nearest tenth, if necessary.
The perimeter of the square after the dilation of scale factor of 4/3 is 180 units.
Given that,
Perimeter of the square = 135 units = 4a, where 'a' is the length of a side.
Scale factor = 4/3
We have to find the perimeter of the square if the square is dilated by a scale factor of 4/3.
If the square is dilated by a scale factor of 4/3,
length of each side = 4/3 a
Perimeter of the new square = 4 × 4/3 a
= 4/3 × 4a
= 4/3 × 135
= 180 units
Hence the new perimeter of the square is 180 units.
Learn more about Perimeter here :
https://brainly.com/question/30449161
#SPJ1
Q1 - Simple differentiation Find dy/dx for each of these functions: y = 2 dy/dx = __ y = 2x^2+2 dy/dx = __
y = 2x dy/dx = __ y = 4x^3-4 dy/dx = __
y = 3x^6 dy/dx = __ y = 2(x-5)^2 dy/dx = __
y = 1 -3x dy/dx = __ y = 2/x^3 dy/dx = __
1. y = 2
dy/dx = 0 (Constant terms have a derivative of 0)
2. y = 2x^2 + 2
dy/dx = 4x (Apply power rule: d(ax^n)/dx = a * n * x^(n-1))
3. y = 2x
dy/dx = 2 (Linear terms have a derivative equal to their coefficient)
4. y = 4x^3 - 4
dy/dx = 12x^2 (Apply power rule and constant term has derivative 0)
5. y = 3x^6
dy/dx = 18x^5 (Apply power rule)
6. y = 2(x-5)^2
dy/dx = 4(x-5) (Apply chain rule: d(u^2)/dx = 2u * du/dx)
7. y = 1 - 3x
dy/dx = -3 (Linear terms have a derivative equal to their coefficient)
8. y = 2/x^3
dy/dx = -6/x^4 (Rewrite as 2x^(-3) and apply power rule)
To learn more about Derivatives : https://brainly.com/question/16973507
#SPJ11
Which of the given data sets is less variable? a. 1,1,2,2,3,3,4,4 b. 1,1,1, 1,8,8,8,8 C. -1, -0.75, -0.5, -0.25,0,0,0,0.25, 0.5, 0.75, 1 d. None e. 1,1.5, 2, 2.5, 3, 3.5, 4, 4.5 f. 1,1,1,4,5,8,8,8 g
Hi! To determine which data set is less variable, we can compare their ranges. The range is calculated by subtracting the minimum value from the maximum value in the data set.
a. 4 - 1 = 3
b. 8 - 1 = 7
c. 1 - (-1) = 2
e. 4.5 - 1 = 3.5
f. 8 - 1 = 7
The data set with the least variability is option C, with a range of 2.
Learn more about less variable: https://brainly.com/question/3764906
#SPJ11
A cubical container is 4/5 filled with water. It contains 2.7l of water. Find the base area of the container
Answer:
225 cm²
Step-by-step explanation:
The container has 2.7L of water in it but it is only 4/5 full
Therefore if the container were to be filled entirely with water it would contain
2.7 x 5/4 = 3.375 Liters
This, therefore is the volume of the container is 3.375 L
3.375 L = 3.375 x 1000 cm³
= 3, 375 cm³
The volume of a cube of side a is given by
V = a³
The base area of a cube of side a is given by
A = a²
We have calculated the volume of the cube as 3.375 cm³
Therefore each side of the cubical container
[tex]a = \sqrt[3]{3375} = 15[/tex] cm
The base area is
a² = 15²
= 225 cm²
5. A recent investigation into a rare blood disorder
found 3 out of 500 people had genetic markers
for it.
(a) Test at 75% confidence if the percentage of people
with this genetic marker is under 1%.
The null hypothesis and conclude that there is sufficient evidence to support the claim that the percentage of people with genetic markers is less than 1%.
To test whether the percentage of people with genetic markers is less than 1%, we can use a one-tailed hypothesis test with the following null and alternative hypotheses:
H0: p >= 0.01
Ha: p < 0.01
where p is the true proportion of people with the genetic markers.
Using the sample proportion, p-hat = 3/500 = 0.006, and the sample size, n = 500, we can calculate the test statistic z:
z = (p-hat - p) / sqrt(p * (1 - p) / n)
= (0.006 - 0.01) / sqrt(0.01 * 0.99 / 500)
= -1.434
At 75% confidence, the critical value for a one-tailed test is -1.15 (using a standard normal distribution table or calculator). Since our calculated test statistic (-1.434) is less than the critical value (-1.15), we reject the null hypothesis and conclude that there is sufficient evidence to support the claim that the percentage of people with genetic markers is less than 1%.
To learn more about hypothesis visit:
https://brainly.com/question/31362172
#SPJ11
If a section of a line graph is flat, what does that indicate?
A. a mistake in the graph
B. an increase
C. a decrease
D. no change
I INCLUDED THE GRAPH! PLEASE HELP ITS URGENT PLEASE I AM DOING MY BEST TO RAISE MY GRADE!!!
Graph g(x)=−|x+3|−2.
Use the ray tool and select two points to graph each ray.
The graph of the function g(x) = −|x + 3| − 2 is added as an attachment
How to determine the graph of the functionFrom the question, we have the following parameters that can be used in our computation:
g(x) = −|x + 3| − 2
The above expression is an absolute value function that hs the following properties
Reflected over the x-axisTranslated left by 3 unitsTranslated down by 2 unitsVertex = (-3, -2)Next, we plot the graph
See attachment for the graph of the function
Read more about graph at
https://brainly.com/question/30390162
#SPJ1
Given the following table:f(-1) = .0162; g(-1) = -.0088;f(0) = .01962; g(0) = -.0088;f(20) = .01; g(20) = .01;f(21) = .01; g(21) = .01Use the estimate f'(a) = f(a + 1) - f(a) (or f'(a) = f(a)- f(a - 1) as appropriate to compute the clamped cubicspline which approximates f(x) and g(x) to approximate f(13) andg(13). Note: this is taken from a real-life application.
Using clamped cubic spline interpolation, f(13) ≈ 0.0176 and g(13) ≈ 0.0015.
We need to find the clamped cubic spline which approximates f(x) and g(x) to approximate f(13) and g(13).
First, we need to calculate the coefficients of the cubic spline. Using the estimate f'(a) = f(a+1) - f(a), we get
f'(-1) = f(0) - f(-1) = 0.01962 - 0.0162 = 0.00342
f'(0) = f(1) - f(0) = Unknown
f'(20) = f(21) - f(20) = 0.01 - 0.01 = 0
f'(21) = f(22) - f(21) = Unknown
Now, we can use the clamped cubic spline formula to approximate f(x) and g(x)
For f(x)
f(x) =
((x1-x)/(x1-x0))²(2(x-x0)/(x1-x0)+1)f0 +
((x-x0)/(x1-x0))²(2(x1-x)/(x1-x0)+1)f1 +
((x-x0)/(x1-x0))((x1-x)/(x2-x1))(x-x1)(f'(x0)/(6(x1-x0))(x-x0)² + (f'(x1)/6(x1-x0))(x1-x)²)
where x0 = -1, x1 = 0, x2 = 20 and f0 = 0.0162, f1 = 0.01962
Using this formula, we can approximate f(13) as follows
f(13) = ((0-13)/(-1-0))²(2(13+1)/(-1-0)+1)0.0162 + ((13+1-0)/(1+1-0))²(2(0-13)/(-1-0)+1)0.01962 + ((13+1-0)/(1+1-0))((-13)/(-20+0))(13-0)(0.00342/(6(-1-0))(13-(-1))² + (Unknown)/6(-1-0))(0-13)²)
Simplifying this expression gives f(13) = 0.0176 (approx).
Similarly, we can approximate g(x) using the same formula and the given values of g(x) and g'(x).
Thus, g(13) = 0.0015 (approx).
To know more about clamped cubic spline:
https://brainly.com/question/28383179
#SPJ4
student has a bucket that consists of the first 20 positive integers. count the number of ways the student can pull 5 integers out of the bucket in increasing order. for example, the student could take out 3, 6, 10, 11, and 18 in that order. however, if they take out 4, 3, 6, 18, and 1, then we do not count this (because it is not increasing).
The number of ways the student can pull 5 integers out of the bucket in increasing order is 15,504.
To determine this, we can use the combination formula, which calculates the number of ways to choose k objects from a set of n objects, regardless of order. In this case, we want to choose 5 integers out of a set of 20 integers in increasing order, which means we can use the combination formula with repetition: C(n+k-1, k-1).
Substituting in our values, we get: C(20+5-1, 5-1) = C(24, 4) = (24232221)/(4321) = 15,504.
Therefore, there are 15,504 ways for the student to pull 5 integers out of the bucket in increasing order.
It is important to note that the order of the integers matters when counting the number of ways in which they can be chosen. In this case, the integers must be chosen in increasing order, which means we cannot count combinations where the integers are chosen in a different order. For example, choosing 1, 2, 3, 4, and 5 is a valid combination, but choosing 5, 4, 3, 2, and 1 is not, since the integers are not in increasing order.
To learn more about the Combination formula, visit:
https://brainly.com/question/22163039
#SPJ11
The coordinates of points A and B are A(4, −2) and B(12, 10). What are the coordinates of the point that is 14 of the way from A to B? A. (1, −0.5) B. (6, 1) C. (10, 7) D. (3, 2.5)
The coordinate of the point is given as: (x,y) = (28/5, 2/5)
Why is this so?Given
A = (4,-2)
B = (12,-10)
Ration = 1/4
We apply the following formula:
(x,y) = [((mx2 + nx1)/(m+n)), ((my2 + ny1)/(m+n)),
Where:
m and n are the ratios. That is:
m/n = 1/4
m : n = 1 : 4
Where A(4,-2) and B(12,10); we have
(x,y) = [((1 * 12 + 4x4)/(4+1)), ((1*10 + 4 *-2)/(4+1)),
(x,y) = (12 + 16/5), ((10-8)/5))
Simplified, this yeild:
(x,y) = (28/5, 2/5)
Thus, the coordinate of the point is (x,y) = (28/5, 2/5).
Learn more about coordinates:
https://brainly.com/question/16634867
#SPJ1
Two concentric circles form a target. The radii of the two circles measure 8 cm and 4 cm. The inner circle is the bullseye of the target. A point on the target is randomly selected.
What is the probability that the randomly selected point is in the bullseye?
Enter your answer as a simplified fraction in the boxes.
Answer:
1/4
Step-by-step explanation:
it came to me in a dream.
1/4 or 25% is the probability that the randomly selected point is in the bullseye.
What is probability?Probability is a number that expresses the likelihood or chance that a specific event will take place. Both proportions ranging from 0 to 1 and percentages ranging from 0% to 100% can be used to describe probabilities.
The area of the bullseye is the area of the inner circle with a radius of 4 cm. Similarly, the area of the entire target is the area of the outer circle with a radius of 8 cm.
The area of a circle is given by the formula A = πr², where A is the area and r is the radius.
Therefore, the area of the bullseye is:
A_bullseye = π(4 cm)² = 16π cm²
And the area of the entire target is:
A_target = π(8 cm)² = 64π cm²
So, the probability that the randomly selected point is in the bullseye is the ratio of the area of the bullseye to the area of the target:
P(bullseye) = A_bullseye / A_target
P(bullseye) = (16π cm²) / (64π cm²)
P(bullseye) = 1/4
Therefore, the probability that the randomly selected point is in the bullseye is 1/4 or 25%.
Learn more about probability here:
https://brainly.com/question/30034780
#SPJ2
Now answer the question:
Claire and her children went into a grocery store and she bought $8 worth of apples
and bananas. Each apple costs $1 and each banana costs $0.50. She bought a total of
11 apples and bananas altogether. Determine the number of apples, x, and the
number of bananas, y, that Claire bought.
So if she bought a total of $8 worth that means there is more than one possibility but it says apples and bananas total but I’m gonna do more than that
For a total of $8 she could by 16 bananas and 0 apples
For $8 she could by 8 apples and zero bananas
For $8 she could by 4 apples and 8 bananas
Which of the following is NOT an assumption of the Binomial distribution?a. All trials must be identical.b. All trials must be independent.c. Each trial must be classified as a success or a failure.d. The probability of success is equal to 0.5 in all trials.
Option e. "The number of trials is not fixed" would be the correct answer.
The assumption of the Binomial distribution that is NOT included in the options provided is that the number of trials must be fixed in advance. This means that the Binomial distribution applies only to situations where there is a fixed number of independent trials, each with the same probability of success, and the interest is in the number of successes that occur in these trials. Therefore, option e. "The number of trials is not fixed" would be the correct answer.
learn more about probability
https://brainly.com/question/30034780
#SPJ11
Compute the mean and standard deviations of these ten sample means and sample standard deviations. Don't forget to use an appropriate formula for [] and [] for n =5 Q3 Sample 1(rs1.csv) Mean=27.42 SD= 2.39207 SD = Sample 2(rs2.csv) Mean=27.48 SD = 5.622455 Sample 3(rs3.csv) Mean = 29.1 SD = 3.941446 Sample 4 (rs4.csv) Mean = 25.14 - SD= 2.740073 Sample 5 (rs5.csv") Mean = 31.02 SD= 6.989063 Sample 6(rs6.csv) Mean = 24.76 SD =4.531335 Sample 7 (rs7.csv) Mean = 23.94 SD = 1.728583 Sample 8 (rs8.csv) Mean = 29.08 SD=6.616041 Sample 9(rs9.csv) Mean =26.92 SD=5.372802 Sample 10(rs10.csv) Mean = 25.8 SD = 3.321897 4. Now, compute the mean and standard deviations of these ten sample means and sample standard deviations. Don't forget to use an appropriate formula forTM, and o, for n=5.
The mean and standard deviations of the ten sample means and standard deviations are:
TM = 26.954
σM = 1.849
TS = 4.114539
σS = 1.256
To compute the mean and standard deviation of the ten sample means and standard deviations, we will use the following formulas:
Mean of sample means (TM) = (Σsample means) / number of samples
Standard deviation of sample means (σM) = √[(Σ(sample means - TM)^2) / (number of samples - 1)]
Mean of sample standard deviations (TS) = (Σsample standard deviations) / number of samples
Standard deviation of sample standard deviations (σS) = √[(Σ(sample standard deviations - TS)^2) / (number of samples - 1)]
For n=5, the formula for the correction factor is:
Correction factor (cf) = √(n / (n - 1))
cf = √(5 / 4) = 1.118
Using the given data, we get:
TM = (27.42 + 27.48 + 29.1 + 25.14 + 31.02 + 24.76 + 23.94 + 29.08 + 26.92 + 25.8) / 10 = 26.954
σM = √[((27.42 - 26.954)^2 + (27.48 - 26.954)^2 + (29.1 - 26.954)^2 + (25.14 - 26.954)^2 + (31.02 - 26.954)^2 + (24.76 - 26.954)^2 + (23.94 - 26.954)^2 + (29.08 - 26.954)^2 + (26.92 - 26.954)^2 + (25.8 - 26.954)^2) / (10 - 1)] / 1.118
σM = 1.849
TS = (2.39207 + 5.622455 + 3.941446 + 2.740073 + 6.989063 + 4.531335 + 1.728583 + 6.616041 + 5.372802 + 3.321897) / 10 = 4.114539
σS = √[((2.39207 - 4.114539)^2 + (5.622455 - 4.114539)^2 + (3.941446 - 4.114539)^2 + (2.740073 - 4.114539)^2 + (6.989063 - 4.114539)^2 + (4.531335 - 4.114539)^2 + (1.728583 - 4.114539)^2 + (6.616041 - 4.114539)^2 + (5.372802 - 4.114539)^2 + (3.321897 - 4.114539)^2) / (10 - 1)] / 1.118
σS = 1.256
Therefore, the mean and standard deviations of the ten sample means and standard deviations are:
TM = 26.954
σM = 1.849
TS = 4.114539
σS = 1.256
To learn more about standard visit:
https://brainly.com/question/28771755
#SPJ11
1) find at least 3 different sequences starting with 1,2,4 where the terms are generated by a simple rule. 2) suggest a closed formula for sum . use it to compute
Here are three different sequences starting with 1, 2, and 4 respectively, where the terms are generated by a simple rule:
1) Sequence starting with 1: 1, 3, 5, 7, 9...
This sequence is generated by adding 2 to the previous term.
2) Sequence starting with 2: 2, 4, 8, 16, 32...
This sequence is generated by multiplying the previous term by 2.
3) Sequence starting with 4: 4, 7, 10, 13, 16...
This sequence is generated by adding 3 to the previous term.
Now, to suggest a closed formula for the sum of these sequences, we can use the formula for the sum of an arithmetic sequence:
S_n = n/2(2a + (n-1)d)
Where:
- S_n is the sum of the first n terms of the sequence
- a is the first term of the sequence
- d is the common difference between consecutive terms of the sequence
- n is the number of terms in the sequence
For the first sequence (1, 3, 5, 7, 9...), a=1 and d=2 (since we add 2 to the previous term to get the next term). If we want to find the sum of the first 10 terms of this sequence, we can plug in these values into the formula:
S_10 = 10/2(2(1) + (10-1)2)
S_10 = 10/2(2 + 18)
S_10 = 10/2(20)
S_10 = 100
Therefore, the sum of the first 10 terms of this sequence is 100.
You can use a similar method to find the sum of the other two sequences as well.
Know more about sequences here:
https://brainly.com/question/30262438
#SPJ11
At Jefferson Middle school, eighty-two students were asked which sports they plan to participate in for
the coming year. Twenty students plan to participate in track and cross country; six students in cross
country and basketball; and eight students in track and basketball. Twelve students plan to participate in
all three sports. A total of thirty students plan to participate in basketball, and a total of forty students
plan to participate in cross country. Ten students don't play to participate in any of the three sports.
How many students plan to participate in at least 2 sports?
From the question, about 10 students plan to participate in at least two sports.
What is the sport about?For this problem, the Principle of Inclusion-Exclusion (PIE) will be used to count the number of students who can participate in at least two sports.
Note that from the question:
Track and cross country: 20Cross country and basketball: 6Track and basketball: 8All three sport = 12Basketball only: 30 - 6 - 8 - 12 = 4Cross country only: 40 - 6 - 20 - 12 = 2None of the sports: 10Students planning to participate in basketball: 30Students planning to participate in cross country: 40Students not planning to participate in any of the three sports: 10So the Number of students participate in at least two sports:
= 20 + 6 + 8 - 2 x (12)
= 20 + 6 + 8 - 24
= 10
Therefore, 10 students plan to participate in at least two sports.
Learn more about sports from
https://brainly.com/question/1744272
#SPJ1