for the inverse variation equation xy = k, what is the constant of variation, k, when x = 7 and y = 3?three-seventhsseven-thirds1021

Answers

Answer 1

when x = 7 and y = 3, the constant of variation, k, is equal to 21.

In an inverse variation equation, the product of x and y is constant. The equation can be written as xy = k, where k represents the constant of variation.

To find the constant of variation, we can substitute the given values of x = 7 and y = 3 into the equation and solve for k.

7 * 3 = k

21 = k

what is equation?

An equation is a mathematical statement that states the equality of two expressions. It consists of two sides, known as the left-hand side (LHS) and the right-hand side (RHS), connected by an equals sign (=). The equals sign indicates that the LHS and RHS are equivalent or have the same value.

To know more about equation visit:

brainly.com/question/10724260

#SPJ11


Related Questions

Phillip Witt, president of Witt Input Devices, wishes to create a portfolio of local suppliers for his new line of key- boards. As the suppliers all reside in a location prone to hurri- canes, tornadoes, flooding, and earthquakes, Phillip believes that the probability in any year of a "super-event" that might shut down all suppliers at the same time for at least 2 weeks is 3%. Such a total shutdown would cost the company approximately $400,000. He estimates the "unique-event" risk for any of the suppliers to be 5%. Assuming that the marginal cost of managing an additional supplier is $15,000 per year, how many suppliers should Witt Input Devices use? Assume that up to three nearly identical local suppliers are available.

Answers

To determine the number of suppliers Witt Input Devices should use, we need to consider the probability of a "super-event" and the marginal cost of managing additional suppliers.

With a 3% probability of a total shutdown and an estimated cost of $400,000, along with a 5% "unique-event" risk per supplier, the company should aim to balance the costs and risks to make an informed decision on the number of suppliers.

Phillip Witt wants to create a portfolio of local suppliers for his keyboards. He faces the risk of "super-events" that could shut down all suppliers simultaneously for at least two weeks. The probability of such an event occurring is 3% per year, which would result in an estimated cost of $400,000 for the company.

Additionally, each individual supplier carries a "unique-event" risk of 5%. To mitigate the risks, Witt Input Devices needs to determine the optimal number of suppliers to use. However, it is stated that up to three nearly identical local suppliers are available.

To make a decision, the company needs to balance the costs and risks. Each additional supplier incurs a marginal cost of $15,000 per year. The company should evaluate the trade-off between the cost of managing additional suppliers and the risk reduction achieved by having multiple suppliers.

Considering these factors, Witt Input Devices should analyze the costs and benefits of each additional supplier and select the number of suppliers that provides an optimal balance between risk mitigation and cost management.

Learn more about probability here:

https://brainly.com/question/32117953

#SPJ11

Find all minors and cofactors of the matrix. [ -2 3 1 ]
[ 6 4 5 ]
[ 1 2 3 ]
(a) Find all minors of the matrix.
M11 =
M12 =
M13 =
M21 =
M22 =
M23 =
M31 =
M32 =
M33 =
(b) Find all cofactors of the matrix.
C11 =
C12 =

Answers

To find the minors and cofactors of a matrix, we need to determine the determinant of each submatrix.

Given matrix:

[-2 3 1]

[6 4 5]

[1 2 3]

(a) Find all minors of the matrix:

M11 = Determinant of submatrix formed by excluding row 1 and column 1 = 4 * 3 - 2 * 2 = 8 - 4 = 4

M12 = Determinant of submatrix formed by excluding row 1 and column 2 = 6 * 3 - 1 * 2 = 18 - 2 = 16

M13 = Determinant of submatrix formed by excluding row 1 and column 3 = 6 * 2 - 1 * 4 = 12 - 4 = 8

M21 = Determinant of submatrix formed by excluding row 2 and column 1 = 3 * 3 - 1 * 2 = 9 - 2 = 7

M22 = Determinant of submatrix formed by excluding row 2 and column 2 = -2 * 3 - 1 * 1 = -6 - 1 = -7

M23 = Determinant of submatrix formed by excluding row 2 and column 3 = -2 * 2 - 1 * 4 = -4 - 4 = -8

M31 = Determinant of submatrix formed by excluding row 3 and column 1 = 3 * 5 - 2 * 4 = 15 - 8 = 7

M32 = Determinant of submatrix formed by excluding row 3 and column 2 = -2 * 5 - 1 * 1 = -10 - 1 = -11

M33 = Determinant of submatrix formed by excluding row 3 and column 3 = -2 * 4 - 1 * 3 = -8 - 3 = -11

(b) Find all cofactors of the matrix:

C11 = (-1)^(1+1) * M11 = 1 * 4 = 4

C12 = (-1)^(1+2) * M12 = -1 * 16 = -16

Therefore, the minors and cofactors of the given matrix are:

M11 = 4

M12 = 16

M13 = 8

M21 = 7

M22 = -7

M23 = -8

M31 = 7

M32 = -11

M33 = -11

C11 = 4

C12 = -16

To know more about Matrix visit-

brainly.com/question/28180105

#SPJ11

17) Refer to the above figure. The figure represents the market demand supply curves for widgets. What statement can be made about the demand curve for an individual firm in this market? A) An individual firm's demand curve will be a smaller version of the market demand curve An individual firm's demand curve will be horizontal at $5. below $5. graph above. B) C) An individual firm's demand curve will be horizontal at a price D) An individual firm's demand curve cannot be determined

Answers

Based on the information provided, the statement that can be made about the demand curve for an individual firm in this market is: An individual firm's demand curve will be a smaller version of the market demand curve.

The demand curve for an individual firm is derived from the overall market demand curve but represents the quantity of widgets that the individual firm can sell at different prices. It will generally be a smaller version of the market demand curve because an individual firm has a limited market share compared to the entire market.

Know more about demand curve here:

https://brainly.com/question/13131242

#SPJ11

QUESTION 19 A sample of eight aerospace companies demonstrated the following retums on investment last year 10.6, 126, 14.8, 182, 120, 148, 122, and 15.6 Compute the sample mean and standard deviation

Answers

The sample mean and sample standard deviation are 97.47 and 47.50, respectively.

Given data points are 10.6, 126, 14.8, 182, 120, 148, 122, and 15.6.

To compute the sample mean and standard deviation, we use the following formula;

Sample Mean = Sum of all observations/Total number of observations

Sample Standard Deviation = sqrt

(Sum of squared deviation from the mean/Total number of observations - 1)

Sample Mean

For the given data points, the sum of all observations is:

10.6 + 126 + 14.8 + 182 + 120 + 148 + 122 + 15.6 = 779.8

Therefore, the sample mean is:

Mean = Sum of all observations/Total number of observations = 779.8/8 = 97.47

Sample Standard Deviation

For the given data points, the deviation of each observation from the mean is given as:

∣10.6 - 97.47∣,

∣126 - 97.47∣,

14.8 - 97.47∣,

∣182 - 97.47∣,

∣120 - 97.47∣,

∣148 - 97.47∣,

∣122 - 97.47∣,

∣15.6 - 97.47∣

=  86.87, 28.53, 82.67, 84.53, 22.53, 50.53, 24.53, 81.87

The sum of squares of deviation is:

86.87² + 28.53² + 82.67² + 84.53² + 22.53² + 50.53² + 24.53² + 81.87²= 41896.64

The sample standard deviation is:

Sample Standard Deviation = sqrt (Sum of squared deviation from the mean/Total number of observations - 1)

= sqrt(41896.64/7)≈ 47.50

Therefore, the sample mean and sample standard deviation are 97.47 and 47.50, respectively.

To know more about standard deviation visit:

https://brainly.com/question/29115611

#SPJ11

Using the data file provided, what are the coefficients of
variation for each of the nutrients?
Nutrient
Mean
Standard Deviation
CV%
Fat (g)
44.8
26.3
59.6%
Vitamin C (mg)
1

Answers

Coefficient of variation (CV) is a measure of variability or dispersion of a sample or population expressed as a percentage of the mean.

The formula for CV is given as: CV = (Standard Deviation/Mean) * 100CV measures the ratio of the standard deviation to the mean and is usually expressed as a percentage.

Given below is the table for the data provided in the

Summary: CV is a measure of variability or dispersion of a sample or population expressed as a percentage of the mean. It is the ratio of the standard deviation to the mean and is usually expressed as a percentage. For the given data, the coefficients of variation for Fat (g) and Vitamin C (mg) are 59.6% and 100%, respectively.

Learn more about Standard Deviation click here:

https://brainly.com/question/475676

#SPJ11

Is there nontrivial solutions for the following homogeneous system? Find them if the answer is positive. { X₁ - X₂ - X₃ + x₄ = 0 { x₁ - x₂ + x₃ + 3x₄ = 0 { X₁ - X₂ - 2x₃ = 0

Answers

The given homogeneous system has nontrivial solutions. The solutions are expressed as X₁ = X₃ + X₄ - 1 and X₂ = X₃ + X₄ - 2, where X₃ and X₄ can take any real values.

The given homogeneous system is:

{ X₁ - X₂ - X₃ + X₄ = 0

{ X₁ - X₂ + X₃ + 3X₄ = 0

{ X₁ - X₂ - 2X₃ = 0

To determine if there are nontrivial solutions, we can rewrite the system in matrix form as AX = 0, where A is the coefficient matrix and X is the vector of variables:

A = [[1, -1, -1, 1],

    [1, -1, 1, 3],

    [1, -1, -2, 0]]

To find nontrivial solutions, we need the matrix A to have a nontrivial null space, meaning the matrix A must be singular, i.e., its determinant must be zero.

Calculating the determinant of A, we have:

det(A) = 0

Since the determinant is zero, the matrix A is singular, indicating that there are nontrivial solutions to the homogeneous system.

To find the nontrivial solutions, we can row reduce the augmented matrix [A|0]:

[RREF(A|0)] = [[1, 0, -1, -1],

               [0, 1, -1, -2],

               [0, 0, 0, 0]]

The resulting row-reduced form shows that X₃ and X₄ are free variables, meaning they can take any value. Therefore, the nontrivial solutions can be expressed as:

X₁ = X₃ + X₄ - 1

X₂ = X₃ + X₄ - 2

In summary, the given homogeneous system has nontrivial solutions given by X₁ = X₃ + X₄ - 1 and X₂ = X₃ + X₄ - 2, where X₃ and X₄ can take any real values.


To learn more about homogeneous system click here: brainly.com/question/30790157

#SPJ11

a park has a 3 33 meter ( m ) (m)(, start text, m, end text, )tall tether ball pole and a 6.8 m 6.8m6, point, 8, start text, m, end text tall flagpole. the lengths of their shadows are proportional to their heights. which of the following could be the lengths of the shadows?

Answers

The lengths of the shadows are:

B.  x = 1.8 m,  y = 4.08 m

D. x= 0.6 m, y= 1.36 m

Which could be the lengths of the shadows?

The relationship between the height and shadow length is a direct proportion. That is, the higher the height, the longer the shadow and vice versa. The ratio of height to shadow length is a constant.

Thus, if x and y are are the length of shadow of tether ball pole and flagpole receptively.

6.8/y = 3/x

y = 6.8x/3

A. When x = 1.35 m

y =(6.8*1.35)/3 =3.06 m

B. When x = 1.8 m

y= (6.8*1.8)/3 = 4.08 m

C. When x= 3.75 m

y=(6.8*3.75))/3 = 8.5 m

D. When x= 0.6

y= (6.8*0.6)/3 = 1.36 m

E. When x=2

y= (6.8*2)/3 = 4.533 m

Therefore, B and D are the true answers.

Learn more about proportional relationship on:

brainly.com/question/12242745

#SPJ1

Complete Question

See attached image

In A, B and C above the sequences start with 4; 8; ... Is that information enough for one to generalise on the follow sequence? Why? What is your observation about all four given sequences? Sequence A: 4; 7; 10; 13; 16; ......... Sequence B: 5; 10; 20; 40; 80; Sequence C: 2; 5; 10; 17; 26; ....... Write down the next three numbers in each of given sequences. Sequence A: Sequence B: Sequence C:_​

Answers

The information is not enough  because there can be different number-patterns or rules that start with those initial terms. We need to use the pattern rule and the initial terms of each sequence to correctly predict the next few terms of each sequence.(The sequences are given below)

Therefore, we need to look at more terms or patterns to establish a rule.

Observing the given sequences, we can see that sequence A adds 3 to the previous term to make the next term. Similarly, sequence C uses the rule that each term is 3 more than the square of the position of the term. However, sequence B does not follow a simple pattern, since each term in sequence B is double the previous term. Therefore, we need to use the initial terms and the pattern rule to predict future terms of the sequences.

In summary, having more terms and looking for a pattern is essential in predicting the trends in a sequence.

The next three terms of sequence A are 19, 22, and 25.

The next three terms of sequence B are 160, 320, and 640.

The next three terms of sequence C are 37, 50, and 65.

For such more questions on number-patterns

https://brainly.com/question/28580633

#SPJ8

Let f(x) = 4x-3 and g(x)= -x²-5. Find the given compositions.
f(g(x)) = g(f(-1))=

Answers



f(g(x)) = -4x² - 23 and g(f(-1)) = -54.To find the composition of the given functions, let's first calculate f(g(x)):

g(x) = -x^2 - 5

Substituting g(x) into f(x), we have:

f(g(x)) = f(-x^2 - 5)

Now, substituting the expression for g(x) into f(x), we get:

f(g(x)) = 4(-x^2 - 5) - 3
        = -4x^2 - 20 - 3
        = -4x^2 - 23

Therefore, f(g(x)) = -4x^2 - 23.

Now, let's calculate g(f(-1)):

f(-1) = 4(-1) - 3
     = -4 - 3
     = -7

Substituting f(-1) into g(x), we have:

g(f(-1)) = g(-7)

Now, substituting -7 into g(x), we get:

g(f(-1)) = -(-7)^2 - 5
        = -49 - 5
        = -54

Therefore, g(f(-1)) = -54.

In summary, f(g(x)) = -4x^2 - 23 and g(f(-1)) = -54.

 To  learn  more about composition click here:brainly.com/question/13808296

#SPJ11








7. y + z = 2 x² + y² = 4 Find a vector value function that represents the curve of intersection of Cylinder and the plane

Answers

Therefore Equation of curve of intersection: x² + z² - 4z + 4 = 0Vector value function: r(t) = ⟨√4 - z(t)², z(t) , t⟩ , where z(t) = 2 + 2cos(t)

To find a vector value function that represents the curve of the intersection of the cylinder and plane, we need to first determine the equation of the cylinder and the equation of the plane. The given equations:y + z = 2 and x² + y² = 4 are the equations of the plane and cylinder, respectively.To find the vector value function that represents the curve of intersection, we can solve the system of equations:y + z = 2  ...(i)x² + y² = 4 ...(ii)We can substitute the value of y from equation (i) to equation (ii) and get:x² + (2 - z)² = 4On simplifying this, we get: x² + z² - 4z + 4 = 0This equation represents the curve of intersection of the cylinder and the plane.

Therefore Equation of curve of intersection: x² + z² - 4z + 4 = 0Vector value function: r(t) = ⟨√4 - z(t)², z(t) , t⟩ , where z(t) = 2 + 2cos(t)

To know more about function visit :

https://brainly.com/question/11624077

#SPJ11

IQ scores are normally distributed with a
mean of 100 and a standard deviation of
15. What percentage of people have an IQ
score less than 117, to the nearest tenth?

Answers

Answer: To find the percentage of people with an IQ score less than 117, we need to calculate the z-score first. The z-score measures how many standard deviations an individual score is from the mean in a normal distribution.

The z-score formula is given by:

z = (x - μ) / σ

Where:

x = IQ score (117 in this case)μ = mean IQ score (100)σ = standard deviation (15)

Let's calculate the z-score:

z = (117 - 100) / 15z = 17 / 15z ≈ 1.1333

Now, we need to find the percentage of people with a z-score less than 1.1333. We can look up this value in the standard normal distribution table (also known as the Z-table) or use statistical software/tools.

Using the Z-table, we find that the percentage of people with a z-score less than 1.1333 is approximately 0.8708, or 87.08% (rounded to the nearest hundredth).

Therefore, approximately 87.1% of people have an IQ score less than 117.

dans unn parc zoologique les enfants paient 3euros de moins que les adultes on appel p le prix d entree d un enfants aujourd hui 130 adultes et 140 enfants sont venu au zoo exprimer le fontion de p le recette realisee par le zoo aujourd hui

Answers

Bonjour !

enfants = p

donc adultes = p + 3

140 enfants = 140p

130 adultes = 130(p + 3)

140p + 130(p + 3)

The expression sin x-cos¹ x is equivalent to: O 1+2 cos² x, with no domain restrictions. 2 cos2x-1, with no domain restrictions. 2 sin² x-1, with no domain restrictions. 1-2 sin² x, with no domain

Answers

The expression sin x - cos¹ x is equivalent to (2 sin² x - 1), with no domain restrictions.

To simplify the expression sin x - cos¹ x, we can use the trigonometric identity sin² x + cos² x = 1.

Step 1: Rewrite cos¹ x as √(1 - sin² x).

Step 2: Substitute the value of cos¹ x into the expression sin x - cos¹ x.

sin x - cos¹ x = sin x - √(1 - sin² x).

Step 3: Rearrange the terms to get a common denominator.

sin x - √(1 - sin² x) = sin x - √(1 - sin² x) * (sin x + √(1 - sin² x))/(sin x + √(1 - sin² x)).

Step 4: Simplify the expression by using the identity sin² x + cos² x = 1.

sin x - √(1 - sin² x) * (sin x + √(1 - sin² x))/(sin x + √(1 - sin² x)) = (sin x * (sin x + √(1 - sin² x)) - √(1 - sin² x) * (sin x + √(1 - sin² x)))/(sin x + √(1 - sin² x))

= (sin² x + sin x * √(1 - sin² x) - sin x * √(1 - sin² x) - (1 - sin² x))/(sin x + √(1 - sin² x))

= (2 sin² x - 1)/(sin x + √(1 - sin² x)).

Therefore, The expression sin x - cos¹ x is equivalent to (2 sin² x - 1) divided by (sin x + √(1 - sin² x)), with no domain restrictions.

To know more about trigonometry, visit:

https://brainly.com/question/8480018

#SPJ11

it is true or false?
For an exponentially distributed population Exp(0), 0>0, the mle for is given by max{X₂}

Answers

"For an exponentially distributed population Exp(0), 0>0, the mle for is given by max{X₂}" The statement is false.

The density function for an exponential distribution is given by:

f(x) = λe^(-λx) , x ≥ 0 where λ > 0 is the parameter of the distribution.

It is incorrect to say that an exponentially distributed population Exp(0) has a parameter of zero because λ must be greater than zero. When λ = 0, the density function above reduces to:

f(x) = 0, x ≥ 0

which is not a valid probability density function since the total area under the curve must be equal to one.

To estimate the parameter λ for an exponential distribution, we use the method of maximum likelihood. The likelihood function for a sample of n observations {X₁, X₂, ..., Xₙ} from an exponential distribution is given by:

L(λ) = ∏(λe^(-λxi)) = λⁿe^(-λ∑xi), i=1 to n

where ∑xi is the sum of the n observations.The log-likelihood function is given by:l(λ) = ln(L(λ)) = nln(λ) - λ∑xi

The derivative of the log-likelihood function with respect to λ is:

d/dλ l(λ) = n/λ - ∑xi

The maximum likelihood estimate (MLE) of λ is the value that maximizes the likelihood function, or equivalently, the log-likelihood function. Setting the derivative above to zero and solving for λ gives:λ = n/∑xi

which is the MLE of λ for an exponential distribution. Thus, the statement is false.

Read more about population here: https://brainly.com/question/29885712

#SPJ11








Find the critical points and indicate the maximums and minimums y = √cos(2x) between - T≤ x ≤ T

Answers

This value could be a potential maximum or minimum, depending on the values of T. For example, if T = π/4, then x = π/4 is a global minimum.

To find the critical points and indicate the maximums and minimums y = √cos(2x) between - T ≤ x ≤ T, we need to apply the following steps:

Step 1: Find the derivative of the function

Step 2: Solve for the critical points by setting the derivative equal to zero.

Step 3: Classify each critical point as a maximum, minimum, or neither.

Step 4: Check the endpoints of the interval for potential maximum or minimum values.

Step 1: Differentiate y = √cos(2x) using the chain rule as follows:

y = √cos(2x) ⇒ y' = -(1/2)cos(2x)^(-1/2) * (-sin(2x)*2)⇒ y' = sin(2x) / √cos(2x)

Step 2: To find the critical points, set y' = 0 and solve for xsin(2x) / √cos(2x) = 0⇒ sin(2x) = 0

This means 2x = nπ, where n is an integer⇒ x = nπ/2

Step 3: Classify each critical point by analyzing the sign of y' around each critical point. To do this, we need to test the sign of y' at values slightly to the left and right of each critical point.x < 0: Test x = -π/4sin(-π/2) / √cos(-π/2) = -1 < 0, so there is a local maximum at x = -π/4.x = -π/2sin(-π) / √cos(-π) = 0, so there is neither a maximum nor a minimum at x = -π/2.x > 0: Test x = π/4sin(π/2) / √cos(π/2) = 1 > 0, so there is a local minimum at x = π/4.x = πsin(2π) / √cos(2π) = 0, so there is neither a maximum nor a minimum at x = π.

Step 4: Check the endpoints of the interval for potential maximum or minimum values.The endpoints of the interval are x = -T and x = T. We need to test these points to see if they could be potential maximum or minimum values.x = -Tsin(-2T) / √cos(-2T) = sin(2T) / √cos(2T)This value could be a potential maximum or minimum, depending on the values of T. For example, if T = π/4, then x = -π/4 is a global maximum.x = Tsin(2T) / √cos(2T) This value could be a potential maximum or minimum, depending on the values of T. For example, if T = π/4, then x = π/4 is a global minimum.

To know more about cos(2x) visit :

https://brainly.com/question/32616187

#SPJ11

4x/x+3 + 3/x-4 = 5
Choose the possible extraneous roots. Select one or more:
a. 4 b. 0
c. -3 d. -13.21
e. 9.22

Answers

a.  4 is an extraneous root. , b. 0 is an extraneous root. , c. -3 is an extraneous root. , d. -13.21 is an extraneous root. , e. 9.22 is an extraneous root.

To solve the equation, we can begin by finding a common denominator for the fractions on the left-hand side. The common denominator is (x + 3)(x - 4). We can then rewrite the equation as follows:

[4x(x - 4) + 3(x + 3)] / [(x + 3)(x - 4)] = 5

Expanding and simplifying the numerator, we have:

[4x^2 - 16x + 3x + 9] / [(x + 3)(x - 4)] = 5

Combining like terms, we obtain:

(4x^2 - 13x + 9) / [(x + 3)(x - 4)] = 5

To eliminate the fraction, we can cross-multiply:

4x^2 - 13x + 9 = 5[(x + 3)(x - 4)]

Expanding the right-hand side, we get:

4x^2 - 13x + 9 = 5(x^2 - x - 12)

Simplifying further:

4x^2 - 13x + 9 = 5x^2 - 5x - 60

Rearranging the equation and setting it equal to zero, we have:

x^2 - 8x - 69 = 0

To solve this quadratic equation, we can factor or use the quadratic formula. Factoring the equation may not yield rational roots, so we can use the quadratic formula:

x = (-b ± √(b^2 - 4ac)) / (2a)

For the equation x^2 - 8x - 69 = 0, we have a = 1, b = -8, and c = -69. Substituting these values into the quadratic formula, we get:

x = (-(-8) ± √((-8)^2 - 4(1)(-69))) / (2(1))

= (8 ± √(64 + 276)) / 2

= (8 ± √340) / 2

= (8 ± 2√85) / 2

= 4 ± √85

So, the possible solutions for x are x = 4 + √85 and x = 4 - √85.

Now, let's check which of the given options (a, b, c, d, e) are extraneous roots by substituting them into the original equation:

a. 4: Substitute x = 4 into the equation: 4(4)/(4 + 3) + 3/(4 - 4) = 5. This results in a division by zero, which is undefined. Therefore, 4 is an extraneous root.

b. 0: Substitute x = 0 into the equation: 4(0)/(0 + 3) + 3/(0 - 4) = 5. This also results in a division by zero, which is undefined. Therefore, 0 is an extraneous root.

c. -3: Substitute x = -3 into the equation: 4(-3)/(-3 + 3) + 3/(-3 - 4) = 5. Again, we have a division by zero, which is undefined. Therefore, -3 is an extraneous root.

d. -13.21: Substitute x = -13.21 into the equation and evaluate both sides. If the equation does not hold true, -13.21 is an extraneous root.

e. 9.22: Substitute x = 9.22 into the equation and evaluate both sides. If the equation does not hold true, 9.22 is an extraneous root.

Learn more about roots here : brainly.com/question/30284912

#SPJ11

Consider the supply and demand equations: St = 0.4Pt-1 12 Dt = -0.8Pt +78, where St and D denote the market supply and market demand at time t. Assume Po = 70 and the equilibrium conditions prevail. Find the long-run price, that is, the price P₁ as ʼn grows to infinity. Round your answer off to two decimal places.

Answers


The long-run price, denoted as P₁, can be found by determining the equilibrium point where the market supply and market demand intersect. In this case, the supply equation is St = 0.4Pt-1 and the demand equation is Dt = -0.8Pt + 78. By setting St equal to Dt, we can solve for P₁. Considering the given initial price Po = 70, the long-run price P₁ is found to be 91.43.


To find the long-run price P₁, we need to determine the equilibrium point where the market supply and market demand are equal. Setting the supply equation St = 0.4Pt-1 equal to the demand equation Dt = -0.8Pt + 78, we have 0.4Pt-1 = -0.8Pt + 78.

Next, we can solve this equation for Pt. First, let's simplify it by multiplying both sides by 10 to get rid of the decimals: 4Pt-1 = -8Pt + 780.

Next, let's isolate Pt on one side of the equation. We can start by adding 8Pt to both sides: 4Pt-1 + 8Pt = 780. This simplifies to 12Pt-1 = 780.

Now, we can solve for Pt by dividing both sides by 12: Pt-1 = 780 / 12, which is equal to 65.

Since we are looking for the long-run price as t grows to infinity, we need to find Pt when t = 1. Substituting Pt-1 = 65 into the supply equation St = 0.4Pt-1, we have St = 0.4 * 65, which simplifies to St = 26.

Finally, substituting St = 26 into the demand equation Dt = -0.8Pt + 78, we can solve for Pt: 26 = -0.8Pt + 78. Subtracting 78 from both sides gives -52 = -0.8Pt. Dividing both sides by -0.8 yields Pt = 65.

Therefore, the long-run price P₁ is equal to Pt = 65. Rounded to two decimal places, P₁ is approximately 91.43.

Learn more about equation here : brainly.com/question/29657983

#SPJ11

Patients arrive at the emergency room of Costa Valley Hosipital at an average of 5 per day. The demand for emergency room treatment at Costa Valley follows a Poisson distribution.

(a) Using a Poisson appendix, compute the probability of exactly 0,1,2,3,4 and 5 arrivals per day.

(b) What is the sum of these probabilities, and why is the number less than 1?

Answers

(a) The probabilities of 0, 1, 2, 3, 4, and 5 arrivals per day are approximately 0.0067, 0.0337, 0.0842, 0.1404, 0.1755, and 0.1755, respectively.

(b) The sum of these probabilities is 0.6160, which is less than 1 because it represents a subset of possible outcomes and does not account for all potential arrivals per day.

(a) Using the Poisson distribution with an average of 5 arrivals per day, we can calculate the probabilities of exactly 0, 1, 2, 3, 4, and 5 arrivals per day using the Poisson probability formula.

The probabilities are as follows:

P(X = 0) = 0.0067 (approximately)

P(X = 1) = 0.0337 (approximately)

P(X = 2) = 0.0842 (approximately)

P(X = 3) = 0.1404 (approximately)

P(X = 4) = 0.1755 (approximately)

P(X = 5) = 0.1755 (approximately)

(b) The sum of these probabilities is less than 1 because the Poisson distribution is a discrete probability distribution that accounts for all possible outcomes. The probabilities calculated represent the likelihood of a specific number of arrivals per day. However, there are infinitely many possible outcomes beyond 5 arrivals per day that are not included in the calculation. Therefore, the sum of the probabilities only accounts for a portion of the total probability space, leaving room for additional outcomes. As a result, the sum of the probabilities is less than 1.

Learn more about Poisson distribution here:

https://brainly.com/question/30388228

#SPJ11

Consider a simple linear regression model: Y = Bo + B₁X₁ + u If we estimate the model using OLS then the sum of residuals equals zero only if the zero conditional mean assumption holds. True False

Answers

If we estimate the model using OLS then the sum of residuals equals zero only if the zero conditional mean assumption holds. This is true.

How to explain the information

In ordinary least squares (OLS) regression, the sum of residuals (also known as the sum of errors) is indeed equal to zero if and only if the zero conditional mean assumption holds. The zero conditional mean assumption, also known as the exogeneity assumption, states that the error term (u) has an expected value of zero given any value of the independent variable(s) (X₁ in this case).

Therefore, to ensure the sum of residuals equals zero, it is essential to check and satisfy the zero conditional mean assumption when estimating a simple linear regression model using OLS.

Learn more about OLS on

https://brainly.com/question/30973318

#SPJ4

Find an equation of a plane through the point (-5, -5, -2) which is parallel to the plane 4x - 5y + 3z -6 in which the coefficient of x is 4.

Answers

An equation of the plane through the point (-5, -5, -2) that is parallel to the plane 4x - 5y + 3z - 6 = 0 and has a coefficient of x as 4 is 4x - 5y + 3z + 1 = 0.

To find an equation of a plane through the point (-5, -5, -2) that is parallel to the plane 4x - 5y + 3z - 6 = 0 and has a coefficient of x as 4, we can use the concept that parallel planes have the same normal vectors.

The given plane has a normal vector (4, -5, 3) since the coefficients of x, y, and z represent the components of the normal vector. To find an equation of a parallel plane, we can use the same normal vector.

Using the point-normal form of the equation of a plane, the equation can be written as:

4(x - x₁) - 5(y - y₁) + 3(z - z₁) = 0

Substituting the coordinates of the given point (-5, -5, -2) as (x₁, y₁, z₁):

4(x + 5) - 5(y + 5) + 3(z + 2) = 0

Expanding and simplifying the equation:

4x + 20 - 5y - 25 + 3z + 6 = 0

4x - 5y + 3z + 1 = 0

Therefore, an equation of the plane through the point (-5, -5, -2) that is parallel to the plane 4x - 5y + 3z - 6 = 0 and has a coefficient of x as 4 is 4x - 5y + 3z + 1 = 0.

Learn more about coefficient here:-

https://brainly.com/question/30524977

#SPJ11

Given that T(X) = AX where A = [314]
[269]
answer the following and justify Your answers, is T a Linear transformation ? is T a one-to-one transformation?
is T an onto transformation? is T an isomor Phism?

Answers

The transformation T defined as T(X) = AX, where A is a given matrix, can be analyzed based on its linearity, one-to-one nature, onto nature, and whether it is an isomorphism.

To determine if T is a linear transformation, we need to check two conditions: additivity and homogeneity. For additivity, we check if T(u + v) = T(u) + T(v) holds for any vectors u and v. For homogeneity, we check if T(cu) = cT(u) holds for any scalar c and vector u. If both conditions are satisfied, T is a linear transformation.

To determine if T is a one-to-one transformation, we need to check if T(u) = T(v) implies u = v for any vectors u and v. If this condition is satisfied, T is one-to-one.

To determine if T is an onto transformation, we need to check if for every vector v, there exists a vector u such that T(u) = v. If this condition is satisfied, T is onto.

To determine if T is an isomorphism, it needs to satisfy the criteria of being a linear transformation, one-to-one, and onto.

By analyzing the given transformation T(X) = AX, we cannot conclusively determine if it is a linear transformation, one-to-one, onto, or an isomorphism without additional information about the matrix A and its properties. Further information about the matrix A is required to answer these questions definitively.

Learn more about isomorphism here:

https://brainly.com/question/31963964

#SPJ11

10.19
a. From the information given here determine
the 95% confidence interval estimate of the popula-tion mean.x =
100 σ = 20 n = 25b. Repeat part (a) with x =
200.c. Repeat part (a) with x =
50

Answers

a. The 95% confidence interval estimate of the population mean is (92.16, 107.84).

b. The 95% confidence interval estimate of the population mean when x = 200 is (192.16, 207.84).

c.  The 95% confidence interval estimate of the population mean when x = 50 is (42.16, 57.84)

a. To determine the 95% confidence interval estimate of the population mean when x = 100, σ = 20, and n = 25, we can use the formula:

Confidence Interval = x ± (Z * σ / √n),

where x is the sample mean, σ is the population standard deviation, n is the sample size, and Z is the Z-score corresponding to the desired confidence level.

For a 95% confidence level, the Z-score is approximately 1.96 (obtained from the standard normal distribution table).

Plugging in the values, we have:

Confidence Interval = 100 ± (1.96 * 20 / √25).

Calculating the confidence interval:

Confidence Interval = 100 ± (1.96 * 20 / 5) = 100 ± 7.84.

Therefore, the 95% confidence interval estimate of the population mean is (92.16, 107.84).

b. If x = 200, we can repeat the same process to calculate the 95% confidence interval estimate. Plugging in the new value of x:

Confidence Interval = 200 ± (1.96 * 20 / 5) = 200 ± 7.84.

Therefore, the 95% confidence interval estimate of the population mean when x = 200 is (192.16, 207.84).

c. Similarly, when x = 50:

Confidence Interval = 50 ± (1.96 * 20 / 5) = 50 ± 7.84.

Therefore, the 95% confidence interval estimate of the population mean when x = 50 is (42.16, 57.84)

Learn more about population here: https://brainly.com/question/29885712

#SPJ11

Use the binomial formula to find the coefficient of the z⁴q¹² term in the expansion of (2z+q)¹⁶

Answers

To find the coefficient of the z⁴q¹² term in the expansion of (2z+q)¹⁶, we can use the binomial formula. The coefficient can be determined by applying the formula and identifying the appropriate combination of terms.

The binomial formula, also known as the binomial theorem, allows us to expand the expression (2z+q)¹⁶. The formula states that for any positive integer n, the expansion of (a+b)ⁿ can be represented as the sum of terms with coefficients determined by the combination formula.

In this case, we are interested in the term with z⁴q¹². The binomial formula is given by: (a+b)ⁿ = C(n, k) * a^(n-k) * b^k, where C(n, k) represents the combination of choosing k terms from a set of n terms.

For the term with z⁴q¹², we need to find the coefficient C(16, k) where k represents the power of q. Since we want q¹², we set k = 12. Plugging these values into the binomial formula, we can calculate the coefficient of the desired term.

To learn more about binomial formula click here:

brainly.com/question/30100288

#SPJ11

Use Newton's method ONCE with an initial guess of xo = to find an approxi- mation to the solution of the equation x = 2 + sinx. f(In) (Newton's method for solving f(3) = 0: Xn+1 = In - $) = = for n = 0,1,2, ...) f'(In)

Answers

Using Newton's method with an initial guess of xo, we can approximate the solution of the equation x = 2 + sin(x) to be approximately 1.954.

To find an approximation to the solution of the equation x = 2 + sin(x), we will apply Newton's method. First, we need to calculate the derivative of the function f(x) = x - 2 - sin(x), which is f'(x) = 1 - cos(x). With an initial guess of xo, we can use the formula xn+1 = xn - f(xn)/f'(xn) to iterate and refine our approximation.

In this case, let's assume xo = 1. Using this initial guess, we can calculate f(x0) = 1 - 2 - sin(1) = -0.1585 and f'(x0) = 1 - cos(1) = 0.4597. Plugging these values into the Newton's method formula, we get x1 = x0 - f(x0)/f'(x0) = 1 - (-0.1585)/0.4597 ≈ 1.954.

Therefore, by applying Newton's method once with an initial guess of xo = 1, we approximate the solution to be x ≈ 1.954.

Learn more about Newton's method here:

https://brainly.com/question/31040340

#SPJ11




6. Solve each of the following recurrence relations. a. an = : -3an-1 with a₁ = -1 b. an = an-1 + an-2 with ao = 0 and a₁ = 1 = c. an = -6an-1-9an-2 with a -1 and a₁ = -3

Answers

a) The recurrence relation an = -3an-1 with a₁ = -1 can be solved as an = (-3)ⁿ⁻¹.

b) The recurrence relation an = an-1 + an-2 with a₀ = 0 and a₁ = 1 can be solved using the Fibonacci sequence formula, an = Fₙ₊₁, where Fₙ is the nth Fibonacci number.

c) The recurrence relation an = -6an-1 - 9an-2 with a₀ = -1 and a₁ = -3 can be solved as an = 3ⁿ - 2ⁿ.

a) For the recurrence relation an = -3an-1 with a₁ = -1, we notice that the ratio between consecutive terms is a constant (-3). This means that each term can be expressed as a power of -3 raised to a certain exponent. In this case, we have an = (-3)ⁿ⁻¹.

b) The recurrence relation an = an-1 + an-2 with a₀ = 0 and a₁ = 1 is a well-known relation that corresponds to the Fibonacci sequence. The Fibonacci sequence is defined by the recurrence relation Fn = Fn-1 + Fn-2 with F₀ = 0 and F₁ = 1. By comparing the given relation with the Fibonacci relation, we can conclude that an = Fₙ₊₁, where Fₙ is the nth Fibonacci number.

c) For the recurrence relation an = -6an-1 - 9an-2 with a₀ = -1 and a₁ = -3, we can rewrite it as a quadratic equation in terms of aₙ. By solving the quadratic equation, we find that the characteristic equation is x² + 6x + 9 = 0, which factors as (x + 3)² = 0. This means that the roots of the characteristic equation are both -3. Consequently, the solution to the recurrence relation is an = A(-3)ⁿ + Bn(-3)ⁿ, where A and B are constants determined by the initial conditions a₀ and a₁. By substituting the given initial conditions, we can solve for the values of A and B, leading to the final solution an = 3ⁿ - 2ⁿ.

Learn more about recurrence relation here:

https://brainly.com/question/30895268

#SPJ11

9. Solve for x in the interval [-1,2π] All answers must be expressed in exact form √√2 sin x + tan x = 0
4. Solve the equation. Give final answers in EXACT VALUES where possible. If not for some

Answers

The solutions are x = (3π)/4 + 2πn and x = (7π)/4 + 2πn, where n is an integer.

Given equation is √√2 sin x + tan x = 0

.Now, we have to solve for x in the interval [-1,2π].

Let us try to solve the given equation:√√2 sin x + tan x = 0

Multiplying by cos x on both sides,

we get,√√2 sin x cos x + sin x = 0√√2 sin x cos

x = - sin x

Dividing by sin x on both sides, we get,√√2 cos x = - 1On

further solving the above equation, we get,cos x = - 1/√√2√√2 cos x = - 1/2

So, the solutions are x = (3π)/4 + 2πn and x = (7π)/4 + 2πn, where n is an integer.

Finally, the conclusion is,We have solved the given trigonometric equation √√2 sin x + tan x = 0.

The solutions are x = (3π)/4 + 2πn and x = (7π)/4 + 2πn, where n is an integer.

To know more about trigonometric equation visit:

brainly.com/question/31167557

#SPJ11

given the table for the function, h(x) , what is the domain for h−1(x) ?

Answers

The domain of h−1(x) is the range of h(x) i.e., the set of all y such that y = h(x). Hence, the domain of h−1(x) is D.

Let h(x)

be a function with domain D.

Let y

= h(x).

Then the domain of h(x) is the set of all x for which h(x) is defined, i.e.,

D

= {x | h(x) exists}.

If a function has an inverse, the inverse function's domain and range are inverse of the original function's range and domain. That is, the inverse of the function

h(x) is given by h−1(x),

where the domain of h−1(x) is equal to the range of h(x)

The given table for the function h(x) is not provided in the question. Hence, we cannot determine the domain of h−1(x) unless the function h(x) is known.

However, if we consider a general function h(x), then we can determine the domain for h−1(x) as follows.Let,

y

= h(x)

be a one-to-one function defined on the domain D.Then the inverse of the function h(x) is given by h−1(x) such that

h−1(y)

= x.

Now, let

z

= h−1(x).

Then x

= h(z).

The domain of h(z) is the set of all z for which h(z) is defined and the range of h(x) is the set of all y such that

y

= h(x).

Therefore, the domain of h−1(x) is the range of h(x) i.e., the set of all y such that y

= h(x).

Hence, the domain of h−1(x) is D.

To know more about range visit:

https://brainly.com/question/29204101

#SPJ11

Barbara makes a sequence of 22 semiannual deposits of the form X, 2X, X, 2X,... into an account paying a rate of 7 percent compounded annually. If the account balance 6 years after the last deposit is $11800, what is X?

Answers

To determine the value of X, the initial deposit amount, we need to solve the equation:

[tex]11,800 = (X)(1 + 0.07/1)^{(1*6)} + (2X)(1 + 0.07/1)^{(1*5)} + (X)(1 + 0.07/1)^{(1*4)} + ... + (2X)(1 + 0.07/1)^{(1*1)} + (X)(1 + 0.07/1)^{(1*0)}.[/tex]

Simplifying this equation will give us the value of X.

Barbara makes 22 semiannual deposits into an account with a compounded annual interest rate of 7 percent. The account balance 6 years after the last deposit is $11,800. We need to determine the value of X, which represents the initial deposit amount.

Let's break down the problem step by step. The sequence of deposits follows the pattern: X, 2X, X, 2X, and so on. Since there are 22 deposits in total, the last deposit will be 2X.

To solve this problem, we need to consider the compound interest formula:

[tex]A = P(1 + r/n)^{(nt)[/tex],

where A is the final amount, P is the principal (initial deposit), r is the interest rate, n is the number of times the interest is compounded per year, and t is the number of years.

Given that the interest is compounded annually, we can substitute the values into the formula:

[tex]11,800 = (X)(1 + 0.07/1)^{(1*6)} + (2X)(1 + 0.07/1)^{(1*5)} + (X)(1 + 0.07/1)^{(1*4)} + ... + (2X)(1 + 0.07/1)^{(1*1)} + (X)(1 + 0.07/1)^{(1*0)}.[/tex]

Simplifying this equation will allow us to solve for X, which represents the initial deposit amount.

Learn more about compounded here: https://brainly.com/question/28792777

#SPJ11

Amy plants to buy watermelon in a supermarket she found that the average weight of the watermelon is 20 pounds with a standard deviation of 5 pounds what is the mean and standard deviation of the sampling distribution of the sample mean a sample of 5 watermelon

Answers

Answer:

The mean (μ) of the sampling distribution of the sample mean is equal to the population mean, which is 20 pounds.

Step-by-step explanation:

The standard deviation (σ) of the sampling distribution of the sample mean is equal to the population standard deviation divided by the square root of the sample size:

σ = 5 / sqrt(5) ≈ 2.24 pounds (rounded to two decimal places)

Therefore, the mean of the sampling distribution of the sample mean is 20 pounds and the standard deviation is approximately 2.24 pounds when samples of size 5 are taken from the population of watermelons with a mean of 20 pounds and a standard deviation of 5 pounds.

This exercise uses the population growth model. A certain species of bird was introduced in a certain county 25 years ago. Biologists observe that the population doubles every 10 years, and now the population is 27,000. (a) What was the initial size of the bird population? (Round your answer to the nearest whole number.)
(b) Estimate the bird population 6 years from now. (Round your answer to the nearest whole number.)

Answers

(a) The initial size of the bird population can be determined by applying the population growth model.

Given that the population doubles every 10 years, we can calculate the number of doubling periods that have occurred since the bird species was introduced 25 years ago. In this case, there have been 2.5 doubling periods (25 years / 10 years per doubling period). Starting with the current population of 27,000, we can divide it by 2 raised to the power of 2.5 to estimate the initial population size. The calculation yields an approximate initial population of 6,096 birds.

(b) To estimate the bird population 6 years from now, we need to determine the number of doubling periods that will occur in that time frame. Since the population doubles every 10 years, in 6 years there will be 0.6 doubling periods (6 years / 10 years per doubling period). Starting with the current population of 27,000, we can multiply it by 2 raised to the power of 0.6 to estimate the future population. Performing the calculation gives an approximate population of 32,277 birds six years from now.

To learn more about population click here: brainly.com/question/15889243

#SPJ11

Other Questions
a) Give 3 limitations of VaR.b) Portfolio ABZ has a daily expected return of 0.0634% and a daily standard deviation of 1.1213%. Assuming that the daily 5 percent parametric VaR is R 6 million, calculate the annual 5 percent parametric VaR for a portfolio with a market value of R 120 million. (Assume 250 trading days in a year and give your answer in Rands) Solve the system using the Elimination (Addition) method. {x-3y=-6 {3x-9y=9 Robert invested a total of $11,000 in two accounts: Account A paying 5% annual interest and Account B paying 8% annual interest. If the total interest earned for the year was $730, how much was invested in each account?Robert can row 24 miles in 3 hours with the current. Against the current, he can row 2/3 of this distance in 4 hours. Find Robert's rowing rate in still water and the rate of the current. Solve the system by hand: {2x + y - 2z = -1{3x - 3y - z = 5 {x - 2y + 3z = 6 Looking forward to next year, if Baldwin's current cash balance is $27,128,980 and Cash Flows From Operations next period are unchanged from this period, which of the following activities will expose Baldwin to the most risk of needing an emergency loan? a) Sells $10,000,000 of their Long-Term Assets b) Purchases assets at a cost of $25,000,000 c) Issues 10,000 shares of stock at the current stock price d) Retires $10,000,000 in Long-Term Debt A UFO is floating above the university, estimated to be about 4000ft high up. To estimate its height above the ground, some physics students measure the angle of elevation from two points on opposite sides of the building. The angles of elevation are found to be 42 and 23. How far apart are the students? Whatare the types of transactions that dominate BOP? Which statement about evidence for evolution is FALSE? many species share a lot of the same genes, with only slight differences in DNA sequences fossils provide evidence of species that once lived on earth but are now extinct some organisms have organs that they inherited from their ancestors but do not use humans have never observed evolution happening because it takes too long Fey Fashions expects the following dividend pattern over the next seven years: The company will then have a constant dividend of $2.20 forever. What is the stock's price today if an investor wants to earn a. 17%? b. 20%? a. What is the stock's price today if an investor wants to earn 17%? $ (Round to the nearest cent.) Fill in each blank with the best word or phrase selected from the list below. Not all words or phrases will be used; each word or phrase can be used only once. charged pause site lytic mismatch promoter RBS clear origin - strand tRNA phosphorylation + strand lysogenic ppGpp uncharged sigma factor Rho factor methylation pause site cloudy Before transcription can begin, RNA polymerase must find the location and direction of a gene on the chromosome based on its sequence. RNA polymerase ends transcription at a located at the end of a gene. It is common for amino acid biosynthetic genes to be transcriptionally activated in the presence of tRNAs as a result of the Stringent response, which requires to bind RNA polymerase. An sRNA can inhibit mRNA translation by the ribosome through complementary base-pairing to the sequence in its target mRNA. During DNA replication, the sequence of the daughter strand being synthesized is determined by complementary base-pairing with the parent template strand, however DNA polymerase can incorporate a base-pair that can result in a point mutation if it is not repaired. a Bacteria can repair these mistakes and distinguish the original parent strand of DNA from the new daughter strand of DNA through of certain nucleotides. In order to replicate their genomes, all SSRNA viruses must package an RNA-dependent RNA polymerase within their capsid. Find the population variance and standard deviation. 8, 11, 15, 17, 19 Choose the correct answer below. Fill in the answer box to complete your choice (Type an integer or a decimal. Do not round.) A. 02 = 16 B. s2- Choose the correct answer below. Fill in the answer box to complete your choice Type an integer or a decimal. Do not round.) a) if Xi and X2 are continuous random variables with joint probability density function f(x1,x2) and that Y1 and Y2 are functions of Xi and X2 such that Y1 = 41 (X1, X2), Y2 = 42(X1, X2), write down all the steps that must followed when determining the probability density function of Y using the change of variable technique. (8 marks) b) Consider the following joint density function of the random variables X and Y. f(x, y) = e-x-y, x>0; y>0 = 0, otherwise If W = X + Y and Z = X(X + Y)-2, check if W and Z are independent. Hence or otherwise determine E(W4). (12 marks) QUESTION 5 (20 marks) Two sets of observations X and Y with 20 observations were collected. (i) State the two normal equations of the regression line of Y on X and explain what they are used for. (5 marks) (ii) Analysis of the data showed that there was strong negative correlation between X and Y. Draw a sketch scatter diagram which supports this finding. (5 marks) (iii) Calculations on the data yielded the following results: byx = -0.6, Sx=30, Sy = 20, */202X = 45, 1/20EY = 28. Determine the best estimate of Y corresponding to x = 62. (5 marks) (iv) Check if these results support a strong negative correlation between the two sets of observations. Which set of steps would help track accounts payable at a business?a) ignoring invoices, paying bills on timeb) filing invoices, paying bills on timec) ignoring invoices, delaying bill paymentsd) filing invoices, delaying bill payments Suppose an organization has a strong capability to improve quality and you wish to employ that capability to help develop sustainable practices. Identify the actions below that might work well with quality improvement approaches.Group of answer choicesChoose what to improve based on customer feelings of qualities related to sustainability issues.Choose what to improve based on customer value (benefits/cost) of attributes related to sustainability issues.Choose what to improve based entirely on cost savings from addressing sustainability issues.Use sustainability issues to build brand value.Use sustainability to build retention and loyalty.Use sustainability to promote the organizations image.Build standards, regulations and accounting systems to ensure compliance, and to provide managerial information to support better decision-making related to sustainability issues that can improve stakeholder feelings of satisfaction and dissatisfaction.Use sustainability concepts to identify new qualities to improve.Use sustainability concepts to identify new customer groups.Use sustainability to develop extremely lean products.of satisfaction and dissatisfaction. Use sustainability concepts to identify new qualities to improve. Use sustainability concepts to identify new customer groups. Use sustainability to develop extremely lean products. Question 2.1 [2, 1, 1, 1, 1, 4, 1, 4, 1, 4] Given the probability function P(Y= y)= y-1 15 for y=2,3,4,5,6 a) Find the probability distribution. b) Is this a valid probability distribution? Motivate c Which of the following would be considered the most reliable source of nutrition information from the list provided (i.e. would have studied nutrition and passed an exam to demonstrate knowledge of nutrition)? a registered dietitian nutritionist (RDN) a nutritionist a pharmacist a medical doctor (MD) a news reporter A block of mass 2.80 kg is placed against a horizontal spring of constant k = 785 N/m and pushed so the spring compresses by 0.0750 m. Calculate the price of a dividend paying stock using the following information: last dividend 3,00 EUR, expected growth rate 2,00%, WACC at 6,00% (hint: treat the stock as a growing perpetuity) R (4 Points) 67,55 O 52,85 65,00 76,50 Wilbur, Inc. has the following income statement as of 12/31/X1: Income from Operations $500,000 Income from Non-Operating Items $55,000 Income from Continuing Operations (before tax) $300,000Income from Continuing Operations (after tax) $225,000Loss from Discontinued Operations (before tax) ($200,Loss from Discontinued Operations (after tax) ($150, Net Income $75,000Wilbur, Inc has 50,000 common shares outstanding for the year. Identify the correct earnings per share disclosures for the 12/31/X1 income statement. a) Income from Continuing Operations $4.50, Discontinued Operations ($3.00), Net Income $1.50 b) Income from Operations $10.00, Discontinued Operations ($3.00), Net Income $1.50 c) Income from Continuing Operations $6.00, Discontinued Operations ($3.00), Net Income $1.50 d) Income from Operations $10.00, Income from Non-Operating Items $1.10, Discontinued Operations ($3.00), Net Income $1.50 One important dimension of resource fit concerns the potential to generate internal cash flows sufficient to fund capital requirements of its business lineup, termed the firms?A. INTERNAL CAPITAL MARKET?B. DEBT POLICY MANAGEMENT?C. LIQUIDITY MANAGEMENT?D. ECONOMIC VALUE ADDED?E. MANAGERIAL COST CONTROL? Which of the following types of information is NOT available from printed publications? A. price quotations for stocks of major companies B. real time price quotes for widely held stocks and exchange traded funds C. interest rates offered by local and national banks OD. stories concerning business leaders SILE discuss the role of information systems in globalization of businesses