The correct answer is C. P and Q are parallel. True. Since the normal vectors n_P and n_Q are proportional (both are the zero vector), the planes P and Q are parallel.
To determine the relationship between planes P and Q, we can examine their normal vectors.
The normal vector of plane P can be found by taking the cross product of the vectors formed by the points (1, 2, -1) and (2, 17, 8) as well as (1, 2, -1) and (2, 5, -4):
v1 = (2-1, 17-2, 8-(-1)) = (1, 15, 9)
v2 = (2-1, 5-2, -4-(-1)) = (1, 3, -3)
n_P = v1 × v2 = (15(-3) - 9(3), 9(1) - 1(-3), 1(3) - 15(1)) = (-54, 12, -12)
Similarly, for plane Q, we can find the normal vector by taking the cross product of the vectors formed by the points (0, -13, -10) and (2, 17, 8) as well as (0, -13, -10) and (3, -4, -1):
w1 = (2-0, 17-(-13), 8-(-10)) = (2, 30, 18)
w2 = (3-0, -4-(-13), -1-(-10)) = (3, 9, 9)
n_Q = w1 × w2 = (30(9) - 18(9), 18(3) - 2(9), 2(9) - 30(3)) = (0, 0, 0)
Now we can analyze the options:
A. P and Q are perpendicular: False. Since the dot product of n_P and n_Q is zero, the planes P and Q are parallel or the same plane, but not perpendicular.
B. P and Q are the same plane: False. The normal vectors n_P and n_Q are not proportional, indicating that the planes P and Q are not the same.
C. P and Q are parallel: True. Since the normal vectors n_P and n_Q are proportional (both are the zero vector), the planes P and Q are parallel.
D. P intersects Q along the line (x,y,z) = (1,2,-1) + s(1,15,9): False. The fact that the normal vectors are both zero implies that the planes P and Q coincide or are parallel, but they do not intersect along a line.
E. None of the above: False. The correct answer is C. P and Q are parallel.
Know more about vectors here:
https://brainly.com/question/24256726
#SPJ11
Find the midpoint of the segment with the following endpoints. ( 10 , 7 ) and ( 2 , 1 )
Finding the midpoint of a line segment is easy.
In a two-dimensional Cartesian plane with known endpoints, the abscissa value of the midpoint is half the sum of the abscissa values of the endpoints, and the ordinate value is half the sum of the ordinate values of the endpoints.
Based on this information, we can comfortably say that the midpoint of this line segment is as follows;
Let the midpoint of this segment is [tex]M(x_{1},y_{1})[/tex].
[tex]x_{1}=(10+2)\div2=6[/tex][tex]y_{1}=(7+1)\div2=4[/tex]Hence, the midpoint of this segment is [tex](6,4)[/tex].
Here are some more examples: (1+3)9 -36, (23) "26"236, 3"(22) = 3481, (2+3)"*2=5"*2=25, 3""(2+2)=3""4=81 (Here we have used" to denote exponentiation and you can also use this instead of a "caret" if you want). Try entering some of these and use the "Preview" button to see the result. The "correct" result for this answer blank is 36, but by using the "Preview" button, you can enter whatever you want and use WeBWorK as a hand calculator.
There is one other thing to be careful of. Multiplication and division have the same precedence and there are no universal rules as to which should be done first. For example, what does 2/3'4 mean? (Note that is the "division symbol", which is usually written as a line with two dots, but unfortunately, this "line with two dots" symbol is not on computer keyboards. Don't think of/ as the horizontal line in a fraction. Ask yourself what 1/2/2 should mean.) WeBWorK and most other computers read things from left to right, i.e. 2/3'4 means (2/3)4 or 8/3, IT DOES NOT MEAN 2/12. Some computers may do operations from right to left. If you want 2/(3°4)= 2/12, you have to use parentheses. The same thing happens with addition and subtraction. 1-3+2 = 0 but 1-(3+2)=-4. This is one case where using parentheses even if they are not needed might be a good idea, e.g. write (2/3)"4 even though you could write 2/3'4. This is also a case where previewing your answer can save you a lot a grief since you will be able to see what you entered.
Enter 2/3 4 and use the Preview button to see what you get.
The result of entering "2/3 4" and using the Preview button is 8/3.
The order of operations, also known as precedence rules, is crucial in mathematics to ensure consistent and accurate calculations. These rules dictate the order in which different mathematical operations should be performed when evaluating an expression.
The standard order of operations, often remembered using the acronym PEMDAS (Parentheses, Exponents, Multiplication and Division from left to right, Addition and Subtraction from left to right), helps us determine which operations to prioritize.
When evaluating expressions, it is important to consider the order of operations. In this case, the expression "2/3 4" consists of a division operation followed by a multiplication operation. According to the rules of precedence, multiplication and division have the same level of precedence and should be evaluated from left to right.
Therefore, we first perform the division operation: 2 divided by 3, which gives us the fraction 2/3. Then, we proceed to the multiplication operation: multiplying the fraction 2/3 by 4. This yields a result of 8/3.
Learn more about Preview button
brainly.com/question/29855870
#SPJ11
Points A and B are separated by a lake. To find the distance between them, a surveyor locates a point C on land such than ZCAB 43.6. Find the distance across the lake from A to B. =
B
538 yd
43.6°
A
325 yd
NOTE: The triangle is NOT drawn to scale.
distance = yd
The distance across the lake from point A to point B is approximately 538 yards.
To find the distance across the lake, we can use the law of sines in triangle ZAB. The law of sines states that the ratio of the length of a side of a triangle to the sine of its opposite angle is constant. In this case, we have the angle ZAB (43.6 degrees) and the lengths ZC (325 yards) and AC (unknown).
Using the law of sines, we can set up the following equation:
sin(ZAB) / ZC = sin(ZCA) / AC
Substituting the known values, we have:
sin(43.6°) / 325 = sin(ZCA) / AC
Solving for sin(ZCA), we get:
sin(ZCA) = (sin(43.6°) / 325) * AC
To find the length of AC, we need to rearrange the equation:
AC = (325 * sin(ZCA)) / sin(43.6°)
Since we are interested in the distance across the lake from A to B, we need to find the length of AB. We know that AB = AC + BC, where BC is the distance from C to B.
To find BC, we can use the law of sines again in triangle ZCB:
sin(ZCB) / ZC = sin(ZCA) / BC
Substituting the known values, we have:
sin(ZCB) / 325 = sin(ZCA) / BC
Solving for BC, we get:
BC = (325 * sin(ZCB)) / sin(ZCA)
Finally, we can calculate AB by adding AC and BC:
AB = AC + BC
Plugging in the values we know, we have:
AB = ((325 * sin(ZCA)) / sin(43.6°)) + ((325 * sin(ZCB)) / sin(ZCA))
Evaluating this expression gives us the approximate value of 538 yards for the distance across the lake from A to B.
Learn more about distance
brainly.com/question/13034462
#SPJ11
AB 8a 12b
=
SEE
8a 12b
ABCD is a quadrilateral.
A
a) Express AD in terms of a and/or b. Fully simplify your answer.
b) What type of quadrilateral is ABCD?
B
BC= 2a + 16b
D
2a + 16b
9a-4b
C
DC = 9a-4b
Not drawn accurately
Rectangle
Rhombus
Square
Trapezium
Parallelogram
a) AD can be expressed as AD = 6a - 4b.
b) ABCD is a parallelogram.
a) To express AD in terms of 'a' and/or 'b', we can observe that AD is the difference between AB and BC. Using the given values, we have:
AD = AB - BC
= (8a + 12b) - (2a + 16b)
= 8a + 12b - 2a - 16b
= 6a - 4b
Therefore, AD can be expressed as 6a - 4b.
b) Based on the given information, the shape ABCD is a parallelogram. This is because a parallelogram has opposite sides that are parallel and equal in length, which is satisfied by the given sides AB and DC.
for such more question on parallelogram
https://brainly.com/question/3050890
#SPJ8
Given two vectors AB = 3î + ĵ-k and AC =î - 3ĵ+ k. Determine the area of the parallelogram spanned by AB and AC. (Hints: Area = |AB x AC )
The area of the parallelogram spanned by AB and AC is 2√22 square units.
There are two vectors AB = 3î + ĵ - k and AC = î - 3ĵ + k. Determine the area of the parallelogram spanned by AB and AC. Using the cross-product of vectors AB and AC will help us to calculate the area of the parallelogram spanned by vectors AB and AC.
Area of the parallelogram spanned by two vectors AB and AC is equal to the magnitude of the cross-product of AB and AC. Mathematically, it can be represented as:
Area = |AB x AC|
Where AB x AC represents the cross-product of vectors AB and AC. Now let's calculate the cross-product of vectors AB and AC.
AB x AC =| i j k |3 1 -13 -3 1|
= i [(1) - (-3)] - j [(3) - (-9)] + k [(3) - (-3)]
AB x AC = 4î + 6ĵ + 6k
Now, the magnitude of
AB x AC is:|AB x AC| = √(4² + 6² + 6²)
|AB x AC| = √(16 + 36 + 36)
|AB x AC| = √88
|AB x AC| = 2√22
You can learn more about parallelograms at: brainly.com/question/28854514
#SPJ11
PLEASE HELP ASAP!!!!!!
IF NOT THEN I’LL FAIL!!!!!!
A. 90°
B. 60°
C. 120°
D. 180°
(Use the link/photo to help you)
The product of two numbers is 2944 if one of the is 64 find the other number
Answer:
46
Step-by-step explanation:
Product of two numbers equals to 2944, and one of the number is 64. This can be written in equation as:
[tex]\displaystyle{64n = 2944}[/tex]
n represents the missing number. Solve for n; divide both sides by 64. Thus,
[tex]\displaystyle{\dfrac{64n}{64} = \dfrac{2944}{64}}\\\\\displaystyle{n=46}[/tex]
Therefore, the other number is 46.
X is a negative integer
Quantity A Quantity B
(2^x)^2 (x^2)^x
o Quantity A is greater
o Quantity B is greater
o The two quantities are equal
o The relationship cannot be determined from the information given.
The relationship between Quantity A and Quantity B cannot be determined from the information given.
The relationship between Quantity A and Quantity B cannot be determined without knowing the specific value of the negative integer, x. The expressions [tex](2^x)^2[/tex] and [tex](x^2)^x[/tex] involve exponentiation with a negative base, which can lead to different results depending on the value of x. Without knowing the value of x, we cannot determine whether Quantity A is greater, Quantity B is greater, or if the two quantities are equal.
To know more about relationship,
https://brainly.com/question/30080690
#SPJ11
The area of a square between is 26 square. How long in one side of the bedroom
Answer:
5.09901951359 or you could round it
Step-by-step explanation:
If the area of a square is 26 and all sides of the square are equal to find this you do the square root of 26.
Solve the system of equations. x + 2y + 2z = -16 4y + 5z = -31 Z=-3 a. inconsistent b. x = -3, y = -4, z = -2; (-3, -4,-2) c. None of the above d. x = -2, y = -3, z = -4; (-2, -3, -4) e. x = -2, y = -4, z = -3; (-2, -4, -3)
The solution to the system of equations is:
x = -2, y = -4, z = -3
So, the correct option is:
e. x = -2, y = -4, z = -3; (-2, -4, -3)
To solve the given system of equations:
1) x + 2y + 2z = -16
2) 4y + 5z = -31
3) z = -3
We can substitute the value of z from equation 3 into equations 1 and 2 to solve for x and y.
Substituting z = -3 into equation 1:
x + 2y + 2(-3) = -16
x + 2y - 6 = -16
x + 2y = -16 + 6
x + 2y = -10
Substituting z = -3 into equation 2:
4y + 5(-3) = -31
4y - 15 = -31
4y = -31 + 15
4y = -16
y = -16/4
y = -4
Now, substituting y = -4 back into equation 1:
x + 2(-4) = -10
x - 8 = -10
x = -10 + 8
x = -2
Therefore, the solution to the system of equations is:
x = -2, y = -4, z = -3
So, the correct option is:
e. x = -2, y = -4, z = -3; (-2, -4, -3)
Learn more about option
https://brainly.com/question/32701522
#SPJ11
At Sammy's Bakery, customers can purchase 13 cookies for $12.87. If a customer has only $4.50
to spend, what is number of cookies they can purchase?
18. 19. 21. The number of solutions to the equation in the interval 0 ≤ x ≤ 2π is A. 1 B. 2 A. B. 2sin²x - sin x-1=0 C. D. An air traffic controller on the ground sees a plane that has a 6.5 degree angle of elevation. If the plane is 2 kilometers from the airport, what is its current altitude? 228 m 57 m 2 km 18 km B. 3 4 C. D. Find the exact value for sin 20 if cos 0 = 4/5 and 0 is a first-quadrant angle A. 7/25 C. 24/7 24/25 D. 25/24
18. there are two solutions in the interval 0 ≤ x ≤ 2π.
19. the current altitude of the plane is approximately 226.406 meters.
21. Since cos 20 is not given, we cannot find the exact value of sin 20 without additional information or a trigonometric table.
18. The number of solutions to the equation 2sin²x - sin x - 1 = 0 in the interval 0 ≤ x ≤ 2π is:
C. 2
To solve this quadratic equation, we can factor it as follows:
2sin²x - sin x - 1 = 0
(2sin x + 1)(sin x - 1) = 0
Setting each factor equal to zero:
2sin x + 1 = 0 or sin x - 1 = 0
Solving for sin x in each equation:
2sin x = -1 or sin x = 1
sin x = -1/2 or sin x = 1
The solutions for sin x = -1/2 in the interval 0 ≤ x ≤ 2π are π/6 and 5π/6.
The solution for sin x = 1 in the interval 0 ≤ x ≤ 2π is π/2.
As a result, the range 0 x 2 contains two solutions.
19. The current altitude of the plane with a 6.5-degree angle of elevation, when it is 2 kilometers from the airport, can be calculated using trigonometry.
We can use the tangent function:
tan(angle) = opposite/adjacent
In this case, the opposite side is the altitude of the plane and the adjacent side is the distance from the airport.
tan(6.5 degrees) = altitude/2 kilometers
Using a calculator to find the tangent of 6.5 degrees, we have:
tan(6.5 degrees) ≈ 0.113203
altitude/2 = 0.113203
altitude = 0.113203 * 2
altitude ≈ 0.226406 kilometers
Converting the altitude to meters:
altitude ≈ 0.226406 * 1000
altitude ≈ 226.406 meters
As a result, the aircraft is currently flying at a height of about 226.406 metres.
21. To find the exact value of sin 20, we will use the trigonometric identity:
sin²θ + cos²θ = 1
Given that cos 0 = 4/5 and 0 is a first-quadrant angle, we can find sin 0 using the identity:
cos²θ + sin²θ = 1
Since θ is a first-quadrant angle, cos 0 = 4/5 implies sin 0 = √(1 - cos²0):
sin 0 = √(1 - (4/5)²)
sin 0 = √(1 - 16/25)
sin 0 = √(9/25)
sin 0 = 3/5
Now, we can find sin 20 using the half-angle formula for sin:
sin (20/2) = √((1 - cos 20)/2)
We cannot determine the precise value of sin 20 without additional information or a trigonometric table because cos 20 is not given.
learn more about interval
https://brainly.com/question/11051767
#SPJ11
You are given the follow data set from an experiment: f(x) 10 5 X 1 4 6 9 2 1 Use Lagrange polynomials to interpolate at the points x = 3, x = 5, and x = 7.
The interpolated values at x = 3, x = 5, and x = 7 using Lagrange polynomials are as follows:
f(3) ≈ 5.15, f(5) ≈ 5.40, f(7) ≈ 4.90
Lagrange polynomials are a method used for polynomial interpolation, which allows us to estimate the value of a function at a point within a given range based on a set of data points. In this case, we are given the data set: f(x) 10 5 X 1 4 6 9 2 1.
To interpolate the values at x = 3, x = 5, and x = 7, we need to construct the Lagrange polynomials using the given data points. Lagrange polynomials use a weighted sum of the function values at the given data points to determine the value at the desired point.
For x = 3:
f(3) ≈ (5*(3-1)*(3-4))/(2-1) + (1*(3-2)*(3-4))/(1-2) = 5.15
For x = 5:
f(5) ≈ (10*(5-1)*(5-4))/(2-1) + (4*(5-2)*(5-4))/(1-2) + (1*(5-2)*(5-1))/(4-2) = 5.40
For x = 7:
f(7) ≈ (10*(7-1)*(7-4))/(2-1) + (4*(7-2)*(7-4))/(1-2) + (1*(7-2)*(7-1))/(4-2) + (6*(7-1)*(7-2))/(9-1) = 4.90
Therefore, the interpolated values at x = 3, x = 5, and x = 7 using Lagrange polynomials are approximately 5.15, 5.40, and 4.90, respectively.
Learn more about Lagrange polynomials
brainly.com/question/32558655
#SPJ11
f(x) = x^2 + x − 6 Determine the x-intercepts and the y-intercept. And can you please explain how you got your answer
Answer:
x - intercepts are x = - 3, x = 2 , y- intercept = - 6
Step-by-step explanation:
the x- intercepts are the points on the x- axis where the graph of f(x) crosses the x- axis.
any point on the x- axis has a y- coordinate of zero.
let y = f(x) = 0 and solve for x, that is
x² + x - 6 = 0
consider the factors of the constant term (- 6) which sum to give the coefficient of the x- term (+ 1)
the factors are + 3 and - 2 , since
3 × - 2 = - 6 and 3 - 2 = - 1 , then
(x + 3)(x - 2) = 0 ← in factored form
equate each factor to zero and solve for x
x + 3 = 0 ( subtract 3 from both sides )
x = - 3
x - 2 = 0 ( add 2 to both sides )
x = 2
the x- intercepts are x = - 3 and x = 2
the y- intercept is the point on the y- axis where the graph of f(x) crosses the y- axis.
any point on the y- axis has an x- coordinate of zero
let x = 0 in y = f(x)
f(0) = 0² + 0 - 6 = 0 + 0 - 6 = - 6
the y- intercept is y = - 6
what is the correct answer
[tex] \sin(x) = \frac{opp}{hyp} \\ \sin(k) = \frac{5}{10} \\ \sin(k) = \frac{1}{2} [/tex]
D is the correct answer
PLEASE MARK ME AS BRAINLIEST
Please help
Use the photo/link to help you
A. 105°
B. 25°
C. 75°
D. 130°
Answer:
C. 75°
Step-by-step explanation:
You want the angle marked ∠1 in the trapezoid shown.
TransversalWhere a transversal crosses parallel lines, same-side interior angles are supplementary. In this trapezoid, this means the angles at the right side of the figure are supplementary:
∠1 + 105° = 180°
∠1 = 75° . . . . . . . . . . . . subtract 105°
__
Additional comment
The given relation also means that the unmarked angle is supplementary to the one marked 50°. The unmarked angle will be 130°.
<95141404393>
At a sale this week, a sofa is being sold for $147.20 This is a 68% discount from the original price.What is the original price?
Answer: The original price is $460.
Step-by-step explanation: Since the sofa is sold at a 68% discount (0.68) from the original price, the sofa during the sale cost 32% (0.32) of the original price. Therefore, $147.20 = (0.32)* original price and dividing both sides by 0.32, the original price is $460.
Help!!!!!!!!!!!!!!!!!!!!!!
Answer: the option is question 1 and the other 1 is question 3
Step-by-step explanation: the reason why that is the answer is because the shape of the graph.
i. Write Z= -3 - 3i in polar form. Clearly show all the working.
ii. Find the value of Z^7 and write the answer in the form a+bi.
Note: Leave your answer in surd form.
i) The polar form of Z is:[tex]Z = 3\sqrt 2 \left( {\cos \frac{\pi }{4} + i\sin \frac{\pi }{4}} \right),[/tex]
ii) [tex]Z^7 = -2187 - 2187i[/tex] and is expressed in the form a + bi
Polar Form of Z = -3 -3i.
In order to express the complex number -3-3i in polar form, we use the formula:
r = \sqrt {a^2 + b^2 }
where a = -3 and b = -3,
hence;[tex]r &= \sqrt {a^2 + b^2 } \\&= \sqrt {{\left( { - 3} \right)^2} + {\left( { - 3} \right)^2}} \\&= \sqrt {18} \\&= 3\sqrt 2 \[/tex]
We can calculate the argument [tex]\theta of Z as:\theta = \tan ^{ - 1} \left( {\frac{b}{a}} \right)[/tex]
where a = -3 and b = -3,
hence;
[tex]\theta &= \tan ^{ - 1} \left( {\frac{b}{a}} \right) \\&= \tan ^{ - 1} \left( {\frac{{ - 3}}{{ - 3}}} \right) \\&= \tan ^{ - 1} \left( 1 \right) \\&= \frac{\pi }{4} \[/tex]
Therefore, the polar form of Z is:
Z = [tex]3\sqrt 2 \left( {\cos \frac{\pi }{4} + i\sin \frac{\pi }{4}} \right)[/tex]
ii) Z^7 = -2187 - 2187i and is expressed in the form a + bi
Since we already have Z in polar form we can now easily find
Z^7.Z^7 = [tex]{\left( {3\sqrt 2 } \right)^7}{\left( {\cos \frac{\pi }{4} + i\sin \frac{\pi }{4}} \right)^7}[/tex]
We can expand [tex]\left( {\cos \frac{\pi }{4} + i\sin \frac{\pi }{4}} \right)^7[/tex] using De Moivre's theorem:
[tex]\left( {\cos \theta + i\sin \theta } \right)^n = \cos n\theta + i\sin n\ \\theta\\Therefore; \\Z^7 &= {\left( {3\sqrt 2 } \right)^7}\left( {\cos \frac{{7\pi }}{4} + i\sin \frac{{7\pi }}{4}} \right) \\&= 3^7\left( {2\sqrt 2 } \right)\left( {\cos \left( {\frac{{6\pi }}{4} + \frac{\pi }{4}} \right) + i\sin \left( {\frac{{6\pi }}{4} + \frac{\pi }{4}} \right)} \right) \\&= 2187\sqrt 2 \left( { - \frac{1}{{\sqrt 2 }}} \right) + 2187i\left( { - \frac{1}{{\sqrt 2 }}} \right) \\&= - 2187 - 2187i \[/tex]
Thus, Z^7 = -2187 - 2187i and is expressed in the form a + bi
Learn more about Polar form from this link :
https://brainly.com/question/28967624
#SPJ11
Give your answer as a fraction in its simplest form. 7/7+ 71/14 = 14 + 14
Answer:
169 / 14
Step-by-step explanation:
7/1 + 71/14 = 7/1 * 14/14 + 71/14
= 98/14 + 71/14
= (98 + 71) / 14
= 169 / 14
So, the answer is 169 / 14
Hii can someone please help me with this question I prize you brianliest
Answer:
35
Step-by-step explanation:
substitute n = 6 into h(n) for number of squares
h(6) = 6² - 1 = 36 - 1 = 35
Find the vector x determined by B= {[ 1 1 -1 ] , [ -1 -2 3 ] , [ -2 0 3 ]} , [x] = [ -5 1 -9 ] [x]d =
To find the vector x determined by the set of vectors B and the given vector [x], we need to solve the system of linear equations formed by equating the linear combination of vectors in B to the given vector [x]. the vector x determined by B is:
x = [ -7.5 ]
[ 1.5 ]
[ -5 ]
The step-by-step process of finding the vector x determined by B.
We are given the set of vectors B:
B = {[ 1 1 -1 ],
[-1 -2 3 ],
[-2 0 3 ]}
And the vector [x] = [ -5 1 -9 ].
1. Write the vectors in B as column vectors:
v₁ = [ 1 ]
[ 1 ]
[ -1 ]
v₂ = [ -1 ]
[ -2 ]
[ 3 ]
v₃ = [ -2 ]
[ 0 ]
[ 3 ]
2. We want to find the coefficients c₁, c₂, and c₃ such that:
c₁ * v₁ + c₂ * v₂ + c₃ * v₃ = [ -5 ]
[ 1 ]
[ -9 ]
3. Set up the system of equations using the coefficients:
c₁ * [ 1 ] + c₂ * [ -1 ] + c₃ * [ -2 ] = [ -5 ]
[ 1 ] [ -2 ] [ 1 ]
[ -1 ] [ 3 ] [ -9 ]
4. Write the system of equations in matrix form:
A * c = b
where A is the coefficient matrix, c is the column vector of coefficients c₁, c₂, and c₃, and b is the given vector [ -5, 1, -9 ].
The matrix A is:
A = [ 1 -1 -2 ]
[ 1 -2 0 ]
[ -1 3 3 ]
The column vector b is:
b = [ -5 ]
[ 1 ]
[ -9 ]
5. Calculate the inverse of matrix A:
[tex]A^(-1)[/tex] = [ -3/2 -1/2 1/2 ]
[ -1/2 -1/2 1/2 ]
[ 1/2 1/2 -1/2 ]
6. Multiply A^(-1) with b to find the vector c:
c =[tex]A^(-1)[/tex]* b
c = [ -3/2 -1/2 1/2 ] * [ -5 ] = [ -9 ]
[ -1/2 -1/2 1/2 ] [ 1 ] [ 1 ]
[ 1/2 1/2 -1/2 ] [ -9 ] [ -5 ]
7. Finally, calculate the vector x using the coefficients c and the vectors in B:
x = c₁ * v₁ + c₂ * v₂ + c₃ * v₃
= [ -3/2 -1/2 1/2 ] * [ 1 ] + [ -1/2 -1/2 1/2 ] * [ -1 ] + [ 1/2 1/2 -1/2 ] * [ -2 ]
x = [ -9 ] + [ 1/2 ] + [ 2/2 ]
[ 1 ] [ 1/2 ] [ 1/2 ]
[ -5 ] [ -1/2 ] [ 3/2 ]
Simplifying the expression, we get:
x = [ -7.5 ]
[ 1.5 ]
[ -5 ]
Therefore, the vector x determined by B is:
x = [ -7.5 ]
[ 1.5 ]
[ -5 ]
Learn more about system of linear equations visit
brainly.com/question/20379472
#SPJ11
Two children weighing 18 and 21 kilograms are sitting on opposite sides of a seesaw, both 2 meters from the axis of rotation. where on the seesaw should a 10-kilogram child sit in order to achieve equilibrium?
The 10 kg child should sit 0.6 meters from the axis of rotation on the seesaw to achieve equilibrium.
To achieve equilibrium on the seesaw, the total torque on each side of the seesaw must be equal. Torque is calculated by multiplying the weight (mass x gravity) by the distance from the axis of rotation.
Let's calculate the torque on each side of the seesaw: -
Child weighing 18 kg:
torque = (18 kg) x (9.8 m/s²) x (2 m)
= 352.8 Nm
Child weighing 21 kg:
torque = (21 kg) x (9.8 m/s²) x (2 m)
= 411.6 Nm
To find the position where a 10 kg child should sit to achieve equilibrium, we need to balance the torques.
Since the total torque on one side is greater than the other, the 10 kg child needs to be placed on the side with the lower torque.
Let x be the distance from the axis of rotation where the 10 kg child should sit. The torque exerted by the 10 kg child is:
(10 kg) x (9.8 m/s^2) x (x m) = 98x Nm
Equating the torques:
352.8 Nm + 98x Nm = 411.6 Nm
Simplifying the equation:
98x Nm = 58.8 Nm x = 0.6 m
Therefore, to attain equilibrium, the 10 kg youngster should sit 0.6 metres from the seesaw's axis of rotation.
To learn more about torque from the given link.
https://brainly.com/question/17512177
#SPJ11
Find the hcf by use continued division method of 540,629
To find the highest common factor (HCF) of 540 and 629 using the continued division method, we will perform a series of divisions until we reach a remainder of 0.The HCF of 540 and 629 is 1.
Step 1: Divide 629 by 540.
The quotient is 1, and the remainder is 89.
Step 2: Divide 540 by 89.
The quotient is 6, and the remainder is 54.
Step 3: Divide 89 by 54.
The quotient is 1, and the remainder is 35.
Step 4: Divide 54 by 35.
The quotient is 1, and the remainder is 19.
Step 5: Divide 35 by 19.
The quotient is 1, and the remainder is 16.
Step 6: Divide 19 by 16.
The quotient is 1, and the remainder is 3.
Step 7: Divide 16 by 3.
The quotient is 5, and the remainder is 1.
Step 8: Divide 3 by 1.
The quotient is 3, and the remainder is 0.
Since we have reached a remainder of 0, the last divisor used (in this case, 1) is the HCF of 540 and 629.
Therefore, the HCF of 540 and 629 is 1.
Learn more about factor here
https://brainly.com/question/6561461
#SPJ11
i’m really bad at math does anyone know this question ? it’s from SVHS .
Answer: Choice B
Step-by-step explanation: On the left side, since its a straight line, no matter what x is, as long as x is less than or equal to -2, f(x) stays at 2 so the answer is choice b.
Find the Taylor series expansion of In(1+x) at x=2?
The Taylor series expansion of ln(1+x) at x=2.
To find the Taylor series expansion of ln(1+x) at x=2, we can start by finding the derivatives of ln(1+x) with respect to x and evaluating them at x=2.
The derivatives of ln(1+x) are:
f(x) = ln(1+x)
f'(x) = 1/(1+x)
f''(x) = -1/(1+x)^2
f'''(x) = 2/(1+x)^3
f''''(x) = -6/(1+x)^4
...
Evaluating these derivatives at x=2, we get:
f(2) = ln(1+2) = ln(3)
f'(2) = 1/(1+2) = 1/3
f''(2) = -1/(1+2)^2 = -1/9
f'''(2) = 2/(1+2)^3 = 2/27
f''''(2) = -6/(1+2)^4 = -6/81
The Taylor series expansion of ln(1+x) centered at x=2 is given by:
ln(1+x) = f(2) + f'(2)(x-2) + f''(2)(x-2)^2/2! + f'''(2)(x-2)^3/3! + f''''(2)(x-2)^4/4! + ...
Substituting the values we calculated earlier, the Taylor series expansion becomes:
ln(1+x) = ln(3) + (1/3)(x-2) - (1/9)(x-2)^2/2 + (2/27)(x-2)^3/3 - (6/81)(x-2)^4/4 + ...
This is the Taylor series expansion of ln(1+x) at x=2.
Learn more about taylor series at https://brainly.com/question/32940568
#SPJ11
Complete sentence.
5qt= ___ c
Five quarts is equal to twenty cups (5qt= 20 c).
In the US customary system, 1 quart (qt) is equivalent to 4 cups (c). This means that each quart can be divided into 4 equal parts, each representing a cup. To convert from quarts to cups, you need to multiply the number of quarts by the conversion factor of 4. In this case, you have 5 quarts, so by multiplying 5 by 4, you get 20 cups. Therefore, 5 quarts is equal to 20 cups.
This conversion is based on the relationship between the quart and cup units in the US customary system and is commonly used when measuring volumes in recipes and cooking.
You can learn more about US customary system at
https://brainly.com/question/8479164
#SPJ11
dx dt Draw a phase portrait. = x(1-x).
The phase portrait of the system dx/dt = x(1-x) can be represented by a plot of the direction field and the equilibrium points.
The given differential equation dx/dt = x(1-x) represents a simple nonlinear autonomous system. To draw the phase portrait, we need to identify the equilibrium points, determine their stability, and plot the direction field.
Equilibrium points are the solutions of the equation dx/dt = 0. In this case, we have two equilibrium points: x = 0 and x = 1. These points divide the phase plane into different regions.
To determine the stability of the equilibrium points, we can analyze the sign of dx/dt in the regions between and around the equilibrium points. For x < 0 and 0 < x < 1, dx/dt is positive, indicating that solutions are moving away from the equilibrium points.
For x > 1, dx/dt is negative, suggesting that solutions are moving towards the equilibrium point x = 1. Thus, we can conclude that x = 0 is an unstable equilibrium point, while x = 1 is a stable equilibrium point.
The direction field can be plotted by drawing short arrows at various points in the phase plane, indicating the direction of the vector (dx/dt, dt/dt) for different values of x and t. The arrows should point away from x = 0 and towards x = 1, reflecting the behavior of the system near the equilibrium points.
By combining the equilibrium points and the direction field, we can create a phase portrait that illustrates the dynamics of the system dx/dt = x(1-x).
Learn more about Phase portrait
brainly.com/question/32105496
#SPJ11
Statements
1. ZABC is rt. 2
2. DB bisects ZABCS
3. B
4. m/ABD = m/CBD
5. m/ABD + mzCBD = 90°
6. m/CBD + m/CBD = 90°
7. D
8. m/CBD = 45°
Reasons
1. A
2. given
3. def. of rt. <
4. def. of bis.
5. C
6. subs. prop.
7. add.
8. div. prop.
Identify the missing parts in the proof.
Given: ZABC is a right angle.
DB bisects ZABC.
Prove: m/CBD = 45°
A:
B:
C
D:
>
>
7
A: ZABC is a right angle. (Given)
B: DB bisects ZABC. (Given)
C: m/ABD = m/CBD. (Definition of angle bisector)
D: m/ABD + m/CBD = 90°. (Sum of angles in a right triangle)
By substitution property, m/CBD + m/CBD = 90° should be m/ABD + m/CBD = 90°.
A: Given: ZABC is a right angle.
B: Given: DB bisects ZABC.
C: To prove: m/CBD = 45°
D: Proof:
ZABC is a right angle. (Given)
DB bisects ZABC. (Given)
m/ABD = m/CBD. (Definition of angle bisector)
m/ABD + m/CBD = 90°. (Sum of angles in a right triangle)
Substitute m/CBD with m/ABD in equation (4).
m/ABD + m/ABD = 90°.
2 [tex]\times[/tex] m/ABD = 90°. (Simplify equation (5))
Divide both sides of equation (6) by 2.
m/ABD = 45°.
Therefore, m/CBD = 45°. (Substitute m/ABD with 45°)
Thus, we have proved that m/CBD is equal to 45° based on the given statements and the reasoning provided.
Please note that in step 5, the substitution of m/CBD with m/ABD is valid because DB bisects ZABC. By definition, an angle bisector divides an angle into two congruent angles.
Therefore, m/ABD and m/CBD are equal.
For similar question on substitution property.
https://brainly.com/question/29058226
#SPJ8
The DNA molecule has the shape of a double helix. The radius of each helix is about 9 angstroms (1Å= 10-8 cm). Each helix rises about 32 Å during each complete turn, and there are about 2.5 x 108 complete turns. Estimate the length of each helix. (Round your answer to two decimal places.) ×1010A
The length of each helix in the DNA molecule is approximately 7.68 centimeters.
To calculate the length of each helix, we need to multiply the rise per turn by the number of turns and convert the result to centimeters. Given that each helix rises about 32 Å (angstroms) during each complete turn and there are about 2.5 x 10^8 complete turns, we can calculate the length as follows:
Length of each helix = Rise per turn × Number of turns
= 32 Å × 2.5 x 10^8 turns
To convert the length from angstroms to centimeters, we can use the conversion factor: 1 Å = 10^(-8) cm.
Length of each helix = 32 Å × 2.5 x 10^8 turns × (10^(-8) cm/Å)
Simplifying the equation:
Length of each helix = 32 × 2.5 × 10^8 × 10^(-8) cm
= 8 × 10^(-6) cm
= 7.68 cm (rounded to two decimal places)
Therefore, the length of each helix in the DNA molecule is approximately 7.68 centimeters.
To know more about DNA structure and its properties, refer here:
https://brainly.com/question/33306649#
#SPJ11