For the reaction
2S(s)+ 3O2\rightarrow 2SO3(g)
how many moles of SO3 can be produced from 6.0 g O2 and excess S?
Group of answer choices
none of these
0.28 mol SO3
4.0 mol SO3
0.25 mol SO3
0.13 mol SO3

Answers

Answer 1

To determine the number of moles of SO3 produced, we need to use the stoichiometry of the balanced equation.

The balanced equation tells us that 3 moles of O2 react with 2 moles of S to produce 2 moles of SO3. Therefore, the molar ratio between O2 and SO3 is 3:2.

To find the moles of SO3 produced from 6.0 g of O2, we need to convert the mass of O2 to moles using its molar mass. The molar mass of O2 is approximately 32 g/mol.

Moles of O2 = mass of O2 / molar mass of O2

Moles of O2 = 6.0 g / 32 g/mol

Moles of O2 = 0.1875 mol

Using the molar ratio, we can calculate the moles of SO3 produced:

Moles of SO3 = (0.1875 mol O2) x (2 mol SO3 / 3 mol O2)

Moles of SO3 = 0.125 mol

Therefore, the correct answer is 0.13 mol SO3.

Learn more about moles here : brainly.com/question/30885025
#SPJ11


Related Questions

If a radioactive isotope has a half-life of 400 million years, how long will it take for 50% of the material to change to the daughter product?

Answers

If a radioactive isotope has a half-life of 400 million years, it will take 400 million years for 50% of the material to change to the daughter product.

How long it takes for half of the radioactive atoms to decay is known as the half-life of the isotope. A radioactive isotope's half-life is the amount of time it takes for half of the parent material to decay to the daughter product. It's worth noting that a half-life isn't a fixed amount of time for each radioactive isotope.

The following formula can be used to calculate the amount of radioactive isotope remaining after a given period of time:

t=ln(N₀/N) / λ

Where:

t= time elapsedN₀= initial quantity of isotopeN= quantity of isotope after a given timeλ= decay constant

For this problem, we need to solve for the time (t) at which 50% of the radioactive isotope has decayed:

0.5N₀ = N₀ e^(-λt)

0.5 = e^(-λt)

t = ln(0.5) / (-λ)

We know that the half-life of this isotope is 400 million years, which means that λ is equal to:

ln(2) / (400,000,000 years)

λ = 0.00000000017 / year

Substituting that value into the formula:

t = ln(0.5) / (-0.00000000017 / year)

t ≈ 400,000,000 years

Learn more about radioactive isotope: https://brainly.com/question/28039996

#SPJ11

Sodium phosphate has industrial uses ranging from clarifying crude sugar to manufacturing paper. It is sold as TSP in hardware stores and used in solution to remove boiler scale and to wash painted brick and concrete. What is the pH of a solution containing 33 g of Na PO, per liter? What is the [OH) of the solution? Show your work using units and correct sig. figs. Hints: (i.) Write the equation for the reaction between sodium phosphate and water. (ii.) You'll need the K of the hydrogen phosphate ion, HPO,, to calculate the K, of the phosphate ion, Po.". (iii.) Set up an I.C.E. table to calculate [OH). (iv.) Use the hydroxide ion concentration to determine the hydronium ion concentration and then the pH.

Answers

To determine the pH and [OH-] of a sodium phosphate solution, several steps need to be followed. The balanced equation for the reaction between sodium phosphate and water should be written, and the equilibrium constant (K) for the hydrogen phosphate ion (HPO_{4} ^{-2}) should be obtained. Using an I.C.E. table, the [OH-] can be calculated. From there, the hydronium ion concentration ([[tex]H_{3}O^{+}[/tex]]) can be determined, leading to the calculation of the pH.

The balanced equation for the reaction between sodium phosphate (Na_{3}PO_{4}) and water ([tex]H_{2}O[/tex]) can be written as follows:

[tex]Na_{3}PO_{4}[/tex] + H_{2}O ⇌ 3Na+ + [tex]PO_{4} ^{-3}[/tex] + H_{2}O

To determine the equilibrium constant (K) for the hydrogen phosphate ion (HPO_{4} ^{-2}), the K of the dihydrogen phosphate ion ([tex]HPO_{4} ^{-}[/tex]) is needed. This can be found in reference materials. Next, an I.C.E. (Initial, Change, Equilibrium) table can be set up to calculate the concentration of hydroxide ions ([OH^{-}]) in the solution. By knowing the concentration of sodium phosphate, the concentration of PO_{4} ^{-3}can be determined at equilibrium.

From the [[tex]OH^{-}[/tex]], the hydronium ion concentration ([H_{3}O^{+}]) can be calculated using the Kw (ionization constant for water) equation: Kw = [H_{3}O^{+}[OH^{-}] = 1.0 x 10^-14 at 25°C. Finally, the pH can be determined by taking the negative logarithm (base 10) of the [H_{3}O^{+}]. By following these steps, the pH and [OH^{-}] of the sodium phosphate solution containing 33 g of [tex]Na_{3}PO_{4}[/tex] per liter can be calculated using the appropriate units and significant figures.

Learn more about ions here: https://brainly.com/question/968488

#SPJ11

write the complete electron configuration for bromine using the periodic table

Answers

Bromine is a non-metal element with the chemical symbol Br and atomic number 35. To write the complete electron configuration of bromine, we first need to determine the number of electrons in its neutral state. Since bromine has an atomic number of 35, it means that it has 35 electrons in its neutral state.

The electron configuration of bromine can be written by using the Aufbau principle, which states that electrons fill the lowest energy level orbitals first before moving to higher energy levels. The electron configuration for bromine can be written as follows:

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p5

The first number represents the principal quantum number, which determines the energy level of the electrons. The letters represent the subshells, where s, p, d, and f are the different subshells. The superscript numbers represent the number of electrons in each subshell.

In the case of bromine, the first two electrons are in the 1s orbital, followed by two electrons in the 2s orbital and six electrons in the 2p orbital. After that, there are two electrons in the 3s orbital and six electrons in the 3p orbital. The remaining ten electrons are in the 4s, 3d, and 4p orbitals, with five electrons in the 4p orbital.

Thus, the complete electron configuration for bromine using the periodic table is 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p5.

To know more about periodic table visit:

https://brainly.com/question/24208948

#SPJ11

.Which of the following is an example of a buffer? Can be more than one if needed
a.) a weak acid and its conjugate acid
b.) a weak acid and its conjugate base
c.) a weak base and its conjugate base
d.) a weak base and its conjugate acid

Answers

Buffer is a solution that has the ability to resist changes in pH on the addition of small amounts of either acid or base. Buffers are either acidic or alkaline, and they are often composed of a weak acid and its corresponding salt or a weak base and its corresponding salt.

An example of a buffer can be more than one. Given options are as follows:a) A weak acid and its conjugate acid is not an example of a buffer.b) A weak acid and its conjugate base is an example of a buffer. The buffer is created by combining a weak acid and its salt with a weak base. As a result, it resists a change in pH.c) A weak base and its conjugate base is not an example of a buffer.d) A weak base and its conjugate acid is an example of a buffer. The buffer is created by combining a weak base and its salt with a weak acid. As a result, it resists a change in pH. Therefore, option (b) and (d) are both examples of a buffer.

To know more about components visit:

https://brainly.com/question/15713599

#SPJ11

calculate the phph of 1.0 ll of the solution upon addition of 0.010 molmol of solid naohnaoh to the original buffer solution.

Answers

The pH of a 1.0 L solution will be calculated after adding 0.010 mol of solid NaOH to the original buffer solution.

To determine the pH of the solution after the addition of NaOH, we need to consider the properties of the buffer solution and the effect of NaOH on its pH. A buffer solution consists of a weak acid and its conjugate base (or a weak base and its conjugate acid) and helps maintain a relatively stable pH when small amounts of acid or base are added.

When solid NaOH is added to the buffer solution, it dissociates into Na+ and OH- ions. The OH- ions will react with the weak acid component of the buffer, causing the formation of water and the conjugate base of the weak acid. This reaction reduces the concentration of the weak acid in the solution, shifting the equilibrium towards the basic side.

The addition of a small amount of NaOH to the buffer solution will result in a small change in pH. The extent of the pH change will depend on the initial buffer capacity and the amount of NaOH added. If the buffer is strong and has a high capacity, the pH change will be relatively small.

To calculate the exact pH, we need to know the initial concentrations of the weak acid and its conjugate base in the buffer solution and their dissociation constants (Ka). With this information, we can use the Henderson-Hasselbalch equation, which relates the pH of a buffer solution to the concentrations of the weak acid and its conjugate base, to calculate the pH after the addition of NaOH.

To learn more about solution - brainly.com/question/31990203

#SPJ11

What volume of o2 is produced when 28.5 g of hydrogen peroxide decomposes to form water and oxygen at 150 degrees c and 2.0 atm?

Answers

Taking into account the reaction stoichiometry, the volume of O₂ is 7.28406 L when 28.5 g of hydrogen peroxide decomposes to form water and oxygen at 150 degrees c and 2.0 atm.

Reaction stoichiometry

The balanced reaction is:

2 H₂O₂  → 2 H₂O + O₂

By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:

H₂O₂: 2 molesH₂O: 2 molesO₂: 1 mole

The molar mass of the compounds is:

H₂O₂: 34 g/moleH₂O: 18 g/moleO₂: 32 g/mole

By reaction stoichiometry, the following mass quantities of each compound participate in the reaction:

H₂O₂: 2 mole× 34 g/mole= 68 gramsH₂O: 2 moles× 18 g/mole= 36 gramsO₂: 1 mole× 32 g/mole= 32 grams

Mass of O₂ formed

The following rule of three can be applied: if by reaction stoichiometry 68 grams of H₂O₂ form 1 mole of O₂, 28.5 grams of H₂O₂ form how many moles of O₂?

moles of O₂= (28.5 grams of H₂O₂×1 mole of O₂)÷68 grams of H₂O₂

moles of O₂= 0.42 grams

Then, 0.42 moles of O₂ are formed.

Definition of ideal gas law

Ideal gases are a simplification of real gases that is done to study them more easily. It is considered to be formed by point particles, do not interact with each other and move randomly. It is also considered that the molecules of an ideal gas, in themselves, do not occupy any volume.

The pressure, P, the temperature, T, and the volume, V, of an ideal gas, are related by a simple formula called the ideal gas law:

P×V = n×R×T

Where:

P is the gas pressure.V is the volume that occupies.T is its temperature.R is the ideal gas constant. The universal constant of ideal gases R has the same value for all gaseous substances. n is the number of moles of the gas.

Volume of O₂

In this case, you know:

P= 2 atmV = ?n= 0.42 molesR= 0.082 (atmL)÷(molK)T= 150 C= 423 K

Replacing in the definition of the ideal gas law:

2 atm×V = 0.42 moles×0.082 (atmL)÷(molK)× 423 K

Solving:

V = (0.42 moles×0.082 (atmL)÷(molK)× 423 K)÷ 2 atm

V= 7.28406 L

Finally, the volume of O₂ is 7.28406 L.

Learn more about the reaction stoichiometry:

brainly.com/question/24741074

#SPJ4

How many molecules are contained in 5.8 moles of acetaminophen molecules?

Answers

To determine the number of molecules in 5.8 moles of acetaminophen, we can use Avogadro's number as a conversion factor. Avogadro's number (6.022 × 10^23) represents the number of molecules in one mole of a substance. By multiplying the number of moles by Avogadro's number, we can find the number of molecules.

Avogadro's number is a fundamental constant that relates the number of particles (atoms, molecules, or ions) to the amount of substance in moles. It is approximately 6.022 × 10^{23} particles per mole. In this case, we have 5.8 moles of acetaminophen. To find the number of molecules, we can use the following conversion:

Number of molecules = Number of moles × Avogadro's number

Substituting the given values:

Number of molecules = 5.8 moles × 6.022 × [tex]10^{23}[/tex] molecules/mole

Calculating the result:

Number of molecules = 3.49556 × [tex]10^{24}[/tex] molecules

Therefore, there are approximately 3.49556 × 10^24 molecules in 5.8 moles of acetaminophen.

Learn more about moles here: https://brainly.com/question/29367909

#SPJ11

which of the following statements regarding orbitals is/are true?
~A 2p orbital is smaller than a 3p orbital.
~ A 1s orbital can be represented as a two-dimensional circle centered around the nucleus of an atom.
~There is no difference between the orbitals of the modern model of the atom and the orbits of the Bohr model of the atom.
~The p orbitals always come in sets of four.
~The d orbitals always have three lobes.

Answers

The statements: A 2p orbital is smaller than a 3p orbital and the p orbitals always come in sets of four are true. Rest of the statements are false.

A 2p orbital is smaller than a 3p orbital. This statement is true. The principal quantum number (n) indicates the energy level of the orbital, and as n increases, the size of the orbital increases. Therefore, a 2p orbital is smaller in size compared to a 3p orbital.

A 1s orbital can be represented as a two-dimensional circle centered around the nucleus of an atom. This statement is not true. The shape of the 1s orbital is spherically symmetric, and it cannot be accurately represented as a two-dimensional circle. The electron density of the 1s orbital is highest near the nucleus and gradually decreases as we move away from it.

There is no difference between the orbitals of the modern model of the atom and the orbits of the Bohr model of the atom. This statement is not true. The modern model of the atom, based on quantum mechanics, describes orbitals as probability distributions where electrons are likely to be found. In contrast, the Bohr model proposed specific, discrete orbits for electrons, which is now known to be an oversimplification.

The p orbitals always come in sets of four. This statement is true. In each energy level above the first (n > 1), there are three p orbitals: px, py, and pz. Each of these p orbitals has a different orientation in space but has the same energy.

The d orbitals always have three lobes. This statement is not true. The d orbitals have different shapes and can have various numbers of lobes. In fact, five out of the seven d orbitals have four lobes, while the other two have a different shape. The dxy, dxz, and dyz orbitals have two lobes, while the dz^2 and dx^2-y^2 orbitals have four lobes.

Learn more about orbitals here, https://brainly.com/question/20319149

#SPJ11

For the reaction between nitrogen monoxide and chlorine to produce nitrosyl chloride, 2NO(g) + Cl2(g) à 2NOCl(g), it is found that tripling the initial concentration of both reactants increases the initial rate by a factor of 27. If only the initial concentration of chlorine is tripled, the initial rate increases by a factor of 3. What is the order of the reaction with respect to Cl2?
A) ½
B) 0
C) 3
D) 1
E) 2

Answers

Comparing these two scenarios, we can conclude that the order of the reaction with respect to Cl₂ is 1. Therefore, the correct answer is (D) 1.

To determine the order of the reaction with respect to Cl₂, we can use the information provided about the effect of concentration changes on the initial rate.

Let's analyze the given data:

When the initial concentrations of both reactants, NO and Cl₂, are tripled, the initial rate increases by a factor of 27. This indicates that the rate is proportional to the cube of the initial concentration of both reactants.

When only the initial concentration of Cl₂ is tripled, the initial rate increases by a factor of 3. This indicates that the rate is directly proportional to the initial concentration of Cl₂.

Comparing these two scenarios, we can conclude that the order of the reaction with respect to Cl₂ is 1.

Therefore, the correct answer is (D) 1.

Learn more about Order of the reaction from the link given below.

https://brainly.com/question/31609774

#SPJ4

An increase in temperature of ten degrees Celsius will have what effect on the rate? Select the correct answer below: O the rate will double O the rate will quadruple O the rate will be cut in half O depends on the reaction

Answers

An increase in temperature of ten degrees Celsius will typically have a significant effect on the rate of a reaction. The specific outcome, whether the rate doubles, quadruples, is halved, or depends on the reaction, depends on the nature of the reaction and the associated rate equation.

The effect of temperature on the rate of a reaction can be determined by the Arrhenius equation and the concept of reaction rate constant (k). In general, an increase in temperature leads to an increase in the rate of a reaction. The Arrhenius equation states that the rate constant (k) is exponentially dependent on temperature (T) through the term exp(-Ea/RT), where Ea is the activation energy, R is the gas constant, and T is the absolute temperature.

When the temperature increases, the exponential term in the Arrhenius equation becomes larger, resulting in a higher rate constant. As a consequence, the rate of the reaction tends to increase. However, the exact relationship between temperature and rate depends on the specific rate equation for the reaction. Therefore, without knowledge of the specific reaction and its rate equation, it is not possible to determine the exact outcome of increasing the temperature by ten degrees Celsius. It could lead to the rate doubling, quadrupling, being halved, or having a different effect altogether, depending on the particular reaction and its associated rate equation.

Learn more about temperature here: https://brainly.com/question/23411503

#SPJ11

This term is not used to describe the reaction itself but rather what is interacting with reaction of interest.
a) Surrounding
b) Vessel
c) Gas molecules
d) System

Answers

The term that is not used to describe the reaction itself but rather what is interacting with the reaction of interest is the surrounding.

Surroundings are what interacts with the reaction of interest but not the reaction itself. For example, when a piece of magnesium metal reacts with hydrochloric acid, the hydrochloric acid is the reaction of interest, and the magnesium is the reactant. The surroundings in this situation are the beaker, air in the room, and table on which the beaker is placed.The environment around the reaction is known as the surrounding. It includes everything that is not part of the reaction of interest but may interact with it, such as the atmosphere, temperature, pressure, and other components. When we say that a reaction is exothermic, we are referring to the fact that it releases heat to the surroundings because it is a property of the reaction's surroundings.

Learn more about reaction here:

https://brainly.com/question/30464598

#SPJ11

An example of a material that is excluded from the Right to Know Law is:
A. Professional cleaning products
B. "Liquid Paper" correction fluid
C. Carbon tetrachloride 2000
D. All of the above

Answers

The Right to Know Law is a law that mandates access to information held by the government. It applies to all states and localities in the United States. However, there are exceptions to this rule. In addition to public safety and privacy concerns, there is a category of information that is explicitly excluded from the Right to Know Law. (a) A professional cleaning product is an example of a material that is excluded from the Right to Know Law.

As per the given options, a professional cleaning product is an example of a material that is excluded from the Right to Know Law. In 1984, the federal government amended the Right to Know Law to require businesses to provide information about hazardous chemicals in the workplace to employees. This law, known as the Hazard Communication Standard (HCS), requires employers to make information about hazardous chemicals available to employees in the form of Safety Data Sheets (SDSs) and labels.The HCS applies to all employers with hazardous chemicals in their workplace and requires them to provide their employees with 100-word descriptions of the hazards associated with those chemicals, as well as information on how to protect themselves from exposure. Therefore, a professional cleaning product is an example of a material that is excluded from the Right to Know Law.

To know more about Right to Know Law visit:

https://brainly.com/question/32368201

#SPJ11

If 15.00 mL of a 1.00 M HCl solution is mixed with 25.00 mL of a 0.250 M NaOH solution in a process that produces 273 mg of NaCl, what is the percentage yield of NaCl?

Answers

The percentage yeild of the NaCl from the calculation is 73.8 %

What is the percentage yield?

The percentage yield is a measure of the efficiency of a chemical reaction or process, indicating the proportion of the theoretical yield that is actually obtained in practice.

Number of moles of HCl = 1 * 15/1000

= 0.015 moles

Number of moles of NaOH = 25/1000 * 0.250

= 0.00625 moles

Since the reaction is 1:1, we can see that NaOH is the limiting reactant

Theoretical yeild = 0.00625 moles * 58.5 g/mol

= 0.37 g or 370 mg

We have the percentage yeild is;

273/370 * 100/1

= 73.8 %

Learn more about percentage yield:https://brainly.com/question/30794636

#SPJ4

only 0.015 l of a 0.880 m barium nitrate solution is available to mix with 0.024 l sample of a 1.36 m potassium sulfate solution. the precipitate baso4 is centrifuged, collected, dried, and found to have a mass of 2.52 g . what are the theoretical yield, and the percent yield. (answer: 3.08 g, 81.8%)

Answers

Only 0.015 l of a 0.880 m barium nitrate solution and 0.024 l of a 1.36 m potassium sulfate sample are available for mixing. The precipitate  BaSO₄ has a mass of 2.52 g after being centrifuged, collected, and dried. The percent yield is about 81.8%, and the theoretical yield is 3.08 g.

To calculate the theoretical yield and percent yield, we first need to determine the limiting reactant. The limiting reactant is the one that is completely consumed and determines the maximum amount of product that can be formed.

Let's calculate the moles of barium nitrate (Ba(NO₃)₂) and potassium sulfate (K₂SO₄) using their respective concentrations and volumes:

Moles of Ba(NO₃)₂ = 0.015 L × 0.880 mol/L = 0.0132 mol

Moles of K₂SO₄ = 0.024 L × 1.36 mol/L = 0.03264 mol

Now, we can compare the moles of the two reactants to determine the limiting reactant.

Ba(NO₃)₂:K₂SO₄ ratio = 0.0132 mol : 0.03264 mol ≈ 1 : 2.47

Since the ratio is approximately 1:2.47, it means that Ba(NO₃)₂ is the limiting reactant. Therefore, the amount of BaSO₄ formed will be determined by the moles of Ba(NO₃)₂.

To calculate the theoretical yield of BaSO₄, we need to convert the moles of Ba(NO₃)₂ to grams of BaSO₄ using the molar mass:

Molar mass of BaSO₄ = 137.33 g/mol (from periodic table)

Theoretical yield of BaSO₄ = 0.0132 mol × 233.39 g/mol = 3.08 g

Now, we can calculate the percent yield by dividing the actual yield (2.52 g) by the theoretical yield (3.08 g) and multiplying by 100:

[tex]\begin{equation}\text{Percent yield} = \frac{2.52 \text{ g}}{3.08 \text{ g}} \times 100\% \approx 81.8\%[/tex]

Therefore, the theoretical yield is 3.08 g and the percent yield is approximately 81.8%.

To know more about the limiting reactant refer here :

https://brainly.com/question/32459503#

#SPJ11

in a test tube containing precipitatie of pbcro4 in water: what are the concentraions of lead(II) and chromate ions in equilibrium with the solid? show your calculations. use the Ksp from the prelab table above

Answers

The concentrations of [tex]Pb^{2+}[/tex] and [tex]CrO_4^{2-}[/tex]in equilibrium with the solid [tex]PbCrO_4[/tex] are approximately 5.29 x [tex]10^{-7}\,\text{M}[/tex] .

To determine the concentrations of lead(II) and chromate ions in equilibrium with the solid precipitate [tex]PbCrO_4[/tex], we need to use the solubility product constant (Ksp) for [tex]PbCrO_4[/tex].

The balanced equation for the dissolution of [tex]PbCrO_4[/tex]is:

[tex]PbCrO_4[/tex](s) ↔ [tex]Pb^{2+}(aq) + CrO_4^{2-}(aq)[/tex]

The Ksp expression for [tex]PbCrO_4[/tex]is:

[tex]K_{sp} = [Pb^{2+}][CrO_4^{2-}][/tex]

From the given information, we can assume that the solid precipitate is in equilibrium with the dissolved ions, so we can represent their concentrations as [tex][Pb^{2+}] and [CrO_4^{2-}][/tex], respectively.

Since PbCrO4 is an ionic solid, it dissociates completely in water, meaning that the concentration of [tex]Pb^{2+}[/tex] will be equal to the concentration of[tex]CrO_4^{2-}[/tex].

Let's assume that the concentration of Pb2+ and CrO4^2- ions in equilibrium is x. Therefore, [[tex]Pb^{2+}[/tex]] = [[tex]CrO_4^{2-}[/tex] = x.

Now, substituting these values into the Ksp expression, we get:

Ksp = x × x = x²

From the prelab table, we can find the value of Ksp for [tex]PbCrO_4[/tex]. Let's say the Ksp value is 2.8 x 10^-13 (this value is just an example; please use the appropriate value from your prelab table).

Setting up the equation:

2.8 x [tex]10^{-13} = x^2[/tex]

Taking the square root of both sides:

[tex]\sqrt{2.8 \times 10^{-13}} = \sqrt{x^2}x \approx 5.29 \times 10^{-7}[/tex]

Therefore, the concentrations of Pb2+ and CrO4^2- ions in equilibrium with the solid [tex]PbCrO_4[/tex]are approximately 5.29 x [tex]10^{-7}\,\text{M}[/tex]

To know more about equilibrium, refer to the link:

https://brainly.com/question/19340344

#SPJ4

Mesitylene is a liquid hydrocarbon. Burning 0.115 g of the compound produces 0.379 g of CO2 and 0.1035 g of water. Find the empirical formula of mesitylene. This is a combustion reaction. All the carbon in the CO2 produced comes from the sample. All the hydrogen in the water produced comes from the sample. Hydrocarbons are binary compounds, made only of carbon and hydrogen.

Answers

The empirical formula is C3H4.

The empirical formula of mesitylene can be found using the data provided in the problem statement.Let's write the balanced combustion reaction for mesitylene first:2 C9H12 + 25 O2 → 18 CO2 + 12 H2OThe molar mass of the compound (C9H12) can be calculated as follows:9 moles of carbon × 12 g/mol = 108 g/mol12 moles of hydrogen × 1 g/mol = 12 g/molMolar mass of the compound = 108 + 12 = 120 g/molThe amount of CO2 produced is 0.379 g and the amount of H2O produced is 0.1035 g.Moles of CO2 produced = 0.379 g / 44 g/mol = 0.0086 molesMoles of H2O produced = 0.1035 g / 18 g/mol = 0.00575 molesUsing the balanced chemical equation, we can calculate the moles of C9H12 required to produce these amounts of CO2 and H2O. Since we know that the ratio of carbon to water in the compound is 9:12, we can determine the number of moles of each element present in the compound.Moles of C9H12 required = (0.0086 mol CO2 × 2 mol C9H12) / 18 mol CO2 = 0.00096 mol C9H12Moles of carbon = 0.00096 mol C9H12 × 9 mol C / mol C9H12 = 0.00864 mol C9H12Moles of hydrogen = 0.00575 mol H2O × 2 mol H / mol H2O = 0.0115 mol HUsing the mole ratios, we can find the empirical formula:Moles of carbon = 0.00864 mol C9H12 × (1 mol / 0.00864 mol) = 1 mol C9H12Moles of hydrogen = 0.0115 mol H / 0.00864 mol = 1.33 mol H9 carbon atoms and 12 hydrogen atoms are present in one molecule of C9H12. To convert this to an empirical formula, we need to divide by the greatest common factor (GCF), which is 3. Therefore, the empirical formula is C3H4.

Learn more about empirical formula here:

https://brainly.com/question/32125056

#SPJ11

Which of the following statements is true concerning ideal gases? The gas particles in a sample exert attraction for one another The temperature of the gas sample is directly related to the average velocity of the gas particles, A gas exerts pressure as a result of the collisions of the gas molecules with the wall of the container At STP 10 L of Ar (9) contains about twice the number of atoms as 1.0 L of Ne (g) because the molar mass of Ar is about twion that of No

Answers

The statement that is true concerning ideal gases is:

"A gas exerts pressure as a result of the collisions of the gas molecules with the wall of the container."

This statement is one of the fundamental principles of ideal gases known as the kinetic theory of gases. According to this theory, gas particles are in constant random motion and collide with each other and the walls of the container. These collisions result in the exertion of pressure by the gas.

The other statements are not true for ideal gases:

The gas particles in a sample do not exert attraction for one another. Ideal gases are assumed to have negligible intermolecular forces and are treated as non-interacting particles.

The temperature of a gas sample is related to the average kinetic energy of the gas particles, not their average velocity. The kinetic energy is directly proportional to the temperature, but velocity depends on factors such as the mass of the particles.

The statement about the comparison of 10 L of Ar to 1.0 L of Ne is not accurate. The number of atoms in a gas sample is determined by Avogadro's law, which states that equal volumes of gases at the same temperature and pressure contain the same number of particles (atoms or molecules), regardless of their molar masses.

Learn more about Ideal gases from the link given below.

https://brainly.com/question/15962335

#SPJ4

If a reaction begins by adding 0.10 mol of A and 0.10 mol of B in a 1.0 L vessel, which of the following is true at equilibrium? Keq = 100
A + 2B ⇌ 2C
[A] > [B]
[B] = [C]
[B] > [C]
[A] = [B]
[A] < [B]

Answers

The correct option is (C) [B] > [C].

A + 2B ⇌ 2CThe equilibrium constant, Keq = 100Mole of A, nA = 0.1 molMole of B, nB = 0.1 molInitial concentration of A, [A] = 0.1/1.0 = 0.1 MInitial concentration of B, [B] = 0.1/1.0 = 0.1 MAt equilibrium, the reaction quotient (Qc) is given as,Qc = [C]²/([A][B]²)As Keq > Qc, the forward reaction is favored and the concentration of reactants decreases while the concentration of products increases. Now, let us determine the concentration of products C when the reaction reaches equilibrium.As the mole ratio of A:B:C is 1:2:2, the number of moles of C formed = 2nB = 2(0.1) = 0.2molConcentration of C at equilibrium, [C] = 0.2/1.0 = 0.2 MNow, let us compare the concentration of each reactant and product at equilibrium:[A] > [B][A] = [B][A] < [B][B] > [C][B] = [C]Hence, the correct option is (C) [B] > [C].

Learn more about  equilibrium constant here:

https://brainly.com/question/28559466

#SPJ11

1. the accepted value for the heat of reaction for the dissolving of potassium chloride (kcl) is 17.2 kj/mol of kcl. determine the percent error in your measured value. (2 pts)

Answers

The percent error in the measured value is 5.81%.

The accepted value for the heat of reaction for the dissolving of potassium chloride (KCl) is 17.2 kJ/mol of KCl. We need to calculate the percent error in your measured value.Using the formula for percent error:Percent Error = 100 x (Measured Value - Accepted Value) / Accepted ValueIn this case, we don't have the measured value. Let's assume that the measured value is 18.2 kJ/mol of KCl.Substitute the values in the above formula:Percent Error = 100 x (18.2 - 17.2) / 17.2Percent Error = 5.81%Therefore, the percent error in the measured value is 5.81%.

Learn more about percent error here:

https://brainly.com/question/30545034

#SPJ11

The addition of 1.130 g of zinc metal to 0.100 L of 0.3457 M HCl in a coffee-cup calorimeter causes the temperature to increase from 15.00°C to 21.29°C. What is the value of molar heat of reaction for the following reaction?
Zn(s)+2HCl(aq) -> ZnCl2(aq)+H2(g)
Assume the density and specific heat of the solution are 1.00 g/mL and 4.18 J/g·°C, respectively.

Answers

The molar heat of reaction for the given reaction is approximately -141.4 kJ/mol.

To calculate the molar heat of reaction, we need to use the equation:

q = m * C * ΔT

where:

q is the heat transferred in joules (J),m is the mass of the solution in grams (g),C is the specific heat of the solution in J/g·°C,ΔT is the change in temperature in °C.

First, let's calculate the heat transferred (q) in joules. Since the reaction is exothermic, q will be negative:

q = -m * C * ΔT

Given:

Mass of the solution = volume of the solution * density of the solution

Mass of the solution = 0.100 L * 1.00 g/mL = 0.100 kg = 100 g

Specific heat of the solution (C) = 4.18 J/g·°C

Change in temperature (ΔT) = 21.29°C - 15.00°C = 6.29°C

q = -100 g * 4.18 J/g·°C * 6.29°C

q ≈ -2498.134 J

Next, we need to calculate the moles of zinc used in the reaction. To do this, we use the molar mass of zinc:

Molar mass of Zn = 65.38 g/mol

Mass of zinc used = 1.130 g

Moles of Zn = Mass of Zn / Molar mass of Zn

Moles of Zn = 1.130 g / 65.38 g/mol

Moles of Zn ≈ 0.017 mol

Finally, we can calculate the molar heat of reaction (ΔH) using the equation:

ΔH = q / moles of Zn

ΔH ≈ -2498.134 J / 0.017 mol

ΔH ≈ -147010.235 J/mol

ΔH ≈ -147.0 kJ/mol (rounded to one decimal place)

Therefore, the molar heat of reaction for the given reaction is approximately -141.4 kJ/mol.

To learn more about molar heat of reaction, Visit:

https://brainly.com/question/30470955

#SPJ11

When 2.16 g of H2 reacts with excess O2 by the following equation, 258 kJ of heat are released.
What is the change of enthalpy associated with the reaction of 1 mol of hydrogen gas?
2H2 + O2 ⟶ 2H2O
*Round your answer to the nearest whole number.
*Include a negative sign if appropriate.

Answers

The change of enthalpy associated with the reaction of 1 mol of hydrogen gas is -241 kJ. This is calculated by dividing the heat released when 2.16 g of hydrogen gas reacts by the mass of 1 mol of hydrogen gas.

The change of enthalpy associated with the reaction of 1 mol of hydrogen gas can be determined by calculating the molar heat of reaction. Given that 2.16 g of H2 reacts with excess O2 and releases 258 kJ of heat, we can use this information to find the molar heat of reaction.

To calculate the molar heat of reaction, we first need to convert the mass of hydrogen gas to moles. The molar mass of hydrogen gas (H2) is 2 g/mol, so 2.16 g of H2 corresponds to (2.16 g / 2 g/mol) = 1.08 mol of H2.

Next, we divide the amount of heat released (258 kJ) by the number of moles of H2 (1.08 mol) to find the molar heat of reaction.

Molar heat of reaction = (258 kJ / 1.08 mol) ≈ 238.9 kJ/mol.

Rounding the result to the nearest whole number, the change of enthalpy associated with the reaction of 1 mol of hydrogen gas is approximately -239 kJ/mol. The negative sign indicates that the reaction is exothermic, releasing heat.

To learn more about enthalpy here brainly.com/question/29145818

#SPJ11

Rx: 0.1% atropine sulfate in 10 mL sterile water for injection. How many milligrams of atropine sulfate is required to prepare this order?

A 100 mg

B. 10 mg

C. 0.1 mg

D. 5 mg

Answers

To prepare the given order of 0.1% atropine sulfate in 10 mL sterile water for injection, you would require  B. 10 mg of atropine sulfate.

The concentration of atropine sulfate is given as 0.1%, which means there are 0.1 grams of atropine sulfate in 100 mL of solution. To determine the amount of atropine sulfate required for 10 mL of solution, we can use the proportion:

(0.1 g / 100 mL) = (X g / 10 mL)

Cross-multiplying and solving for X, we find:

X = (0.1 g * 10 mL) / 100 mL = 0.01 g = 10 mg

Therefore, you would require 10 mg of atropine sulfate to prepare the given order.

Option B is the correct answer.

You can learn more about atropine sulfate at

https://brainly.com/question/8174136

#SPJ11

SOP-toluene (notebook places on top of very hot hot plate next to full beaker)

Answers

A notebook should not be placed on top of a hot plate next to a full beaker of toluene as it goes against the sop of toluene.

When working with hazardous chemicals like toluene, it is important to abide by the guidelines outlined in the SOP.

Placing a notebook on a hot plate next to a beaker of toluene introduces additional safety risks unrelated to handling the toluene itself.

An object like a notebook is a flammable substance that poses a fire hazard when placed near a hot plate. Having a full beaker of toluene next to it further increases the risk of fire and other accidents like chemical exposure.

Therefore, it is important to adhere to the rules given in the SOP to maintain a safe working environment by keeping flammable materials away from heat sources.

But if the situation is already out of control, it is best to contact the supervisors, safety officer, or other knowledgeable personnel who can provide specific guidance and handle the situation.

Read more about Lab SOP and safety measures on :

https://brainly.com/question/30564201

The correct question is:

How does placing a flammable object next to toluene differ from the SOP given for handling toluene?

Which of the following statements is true about the electronic transition n4 within the hydrogen atom? of n2 A photon within the visible range will be emitted A photon within the infrared range will be emitted A photon within the ultraviolet range will be emitted No photon will be emitted

Answers

The electronic transition n=4 to n=2 within the hydrogen atom corresponds to the emission of a photon within the visible range.

The electronic transitions in hydrogen atoms involve the movement of an electron from one energy level (n) to another. The energy of the emitted photon is given by the difference in energy between the initial and final energy levels.

In this case, the transition n=4 to n=2 corresponds to an electron moving from the fourth energy level to the second energy level. This transition results in the emission of a photon. The energy of the emitted photon is equal to the energy difference between these two levels.

The energy of a photon is directly related to its wavelength. Photons with higher energy have shorter wavelengths, and photons with lower energy have longer wavelengths. The visible range of light is characterized by photons with wavelengths between approximately 400 to 700 nanometers.

Since the n=4 to n=2 transition corresponds to the emission of a photon, and the visible range falls within this energy range, the correct statement is that a photon within the visible range will be emitted during this electronic transition.

Learn more about electronic transition here:

https://brainly.com/question/12950701

#SPJ11

The active ingredient in milk of magnesia is Mg(OH)2. Complete and balance the following equation. Mg(OH)2 + HCI →

Answers

The active ingredient in milk of magnesia is Mg[tex](0H)_{2}[/tex] . To complete and balance the equation

Mg[tex](0H)_{2}[/tex] + 2HCl → Mg[tex]Cl_{2}[/tex] + 2[tex]H_{2}[/tex]O

To complete and balance the equation

Mg[tex](0H)_{2}[/tex] + 2HCl → Mg[tex]Cl_{2}[/tex] + [tex]H_{2}[/tex]O

The balanced equation is

Mg[tex](0H)_{2}[/tex] + 2HCl → Mg[tex]Cl_{2}[/tex] + 2[tex]H_{2}[/tex]O

In this reaction, magnesium hydroxide (Mg[tex](0H)_{2}[/tex] ) reacts with hydrochloric acid (HCl) to form magnesium chloride (Mg[tex]Cl_{2}[/tex] ) and water

([tex]H_{2}[/tex]O).

To know more about milk of magnesia here

https://brainly.com/question/13570252

#SPJ4

Normal values for chemistry tests on serous fluid are different from values obtained on serum.

a. True
b. False

Answers

a. True. Due to the differences in composition between serous fluid and serum, the normal values for chemistry tests can vary.

Serum refers to the liquid component of blood that remains after the blood has clotted and the clot has been removed.

On the other hand, serous fluid is a clear, watery fluid that is similar to serum and is found in body cavities such as the pleural, peritoneal, and pericardial cavities.

The composition of serous fluid can differ from serum due to various factors. When testing serous fluid, the values for chemistry tests such as electrolytes, proteins, enzymes, and other analytes may have different reference ranges compared to those obtained from serum testing. This is because the cellular and protein content of serous fluid is different from that of blood serum.

For example, the normal range for protein concentration in serum is generally higher compared to serous fluid due to the presence of fibrinogen and other proteins involved in clotting that are not present in serous fluid.

Due to the differences in composition between serous fluid and serum, the normal values for chemistry tests can vary. Therefore, it is important to use appropriate reference ranges specific to serous fluid when interpreting the results of chemistry tests on serous fluid samples.

To know more about serum visit:

https://brainly.com/question/30559641

#SPJ11

Schrödinger Equation and the Particle in a Box
Combine your answers from Parts A and B. Find the expression for the left side of the Schrödinger equation valid on the interval 0?x?L.
Express your answer in terms of ?, m, n, x, L, and C as needed.
??22md2dx2?n(x)+U(x)?n(x) =

Answers

The expression for the left side of the Schrödinger equation, valid on the interval 0 ≤ x ≤ L, is: -((h^2)/(8π^2m)) * (d^2ψ_n(x)/dx^2) + U(x) * ψ_n(x) = E_n * ψ_n(x)

The Schrödinger equation describes the behavior of a quantum particle in terms of its wave function ψ(x). In the context of the Particle in a Box, the wave function represents the probability amplitude of finding the particle at a particular position (x) within the box.

The left side of the Schrödinger equation consists of two terms: the kinetic energy term and the potential energy term.

Kinetic Energy Term:

The kinetic energy term represents the particle's kinetic energy operator. In one dimension, it is given by -(h^2/(8π^2m)) * (d^2ψ_n(x)/dx^2), where h is the Planck's constant, m is the mass of the particle, and ψ_n(x) is the wave function corresponding to the nth energy level.

Potential Energy Term:

The potential energy term, U(x), represents the potential energy function of the particle within the box. It depends on the specific conditions of the system.

Right Side:

The right side of the Schrödinger equation represents the total energy of the particle, E_n, multiplied by the wave function ψ_n(x). E_n is quantized and corresponds to the energy eigenvalue associated with the nth energy level.

The expression -(h^2/(8π^2m)) * (d^2ψ_n(x)/dx^2) + U(x) * ψ_n(x) = E_n * ψ_n(x) represents the left side of the Schrödinger equation for the Particle in a Box system, valid on the interval 0 ≤ x ≤ L. It combines the kinetic energy and potential energy terms, with the right side representing the total energy of the particle.

To know more about Schrödinger, visit:

https://brainly.in/question/10303664

#SPJ11

how many milliliters (ml) of 0.5 m naoh will be used to completely neutralize 3.0 g of acetic acid, hc2h3o2 in a commercial sample of vinegar?

Answers

Approximately 20.0 mL of 0.5 M NaOH will be used to completely neutralize 3.0 g of acetic acid (HC2H3O2) in the vinegar sample.

To determine the volume of NaOH required to neutralize the given amount of acetic acid, we need to use the stoichiometry of the balanced chemical equation between acetic acid and NaOH.

The balanced equation for the neutralization reaction between acetic acid and sodium hydroxide is:

HC2H3O2 + NaOH → NaC2H3O2 + H2O

From the equation, we can see that the stoichiometric ratio between acetic acid and sodium hydroxide is 1:1. This means that 1 mole of acetic acid reacts with 1 mole of NaOH.

First, we need to calculate the moles of acetic acid using its molar mass:

Molar mass of HC2H3O2 = 60.05 g/mol

Moles of HC2H3O2 = 3.0 g / 60.05 g/mol ≈ 0.04997 mol

Since the stoichiometric ratio is 1:1, the moles of NaOH required will be the same as the moles of acetic acid.

Now, we can calculate the volume of 0.5 M NaOH needed using the formula for molarity:

Molarity = Moles of solute / Volume of solution (in liters)

0.5 M = 0.04997 mol / Volume (in liters)

Rearranging the equation to solve for volume, we have:

Volume (in liters) = 0.04997 mol / 0.5 M = 0.09994 L

Since 1 L is equal to 1000 mL, we can convert the volume to milliliters:

Volume (in mL) = 0.09994 L * 1000 mL/L ≈ 99.94 mL

Rounding to the appropriate number of significant figures, we find that approximately 20.0 mL of 0.5 M NaOH will be used to completely neutralize 3.0 g of acetic acid in the vinegar sample.

Learn more about NaOH: https://brainly.com/question/29636119

#SPJ11

the molality of hydrochloric acid, hcl, in an aqueous solution is 8.56 mol/kg.what is the mole fraction of hydrochloric acid in the solution?

Answers

The mole fraction of hydrochloric acid (HCl) in the solution is approximately 0.460.

Molality (m) is defined as the number of moles of solute per kilogram of solvent. In this case, the molality of HCl is given as 8.56 mol/kg. Mole fraction (X) is defined as the ratio of the moles of a component to the total moles of all components in the solution.

To calculate the mole fraction of HCl, we need to know the total number of moles in the solution. However, the information provided only gives the molality of HCl, which provides the moles of HCl per kilogram of solvent, but not the total moles of the solution. Without the total moles of the solution, it is not possible to directly calculate the mole fraction of HCl. Therefore, based on the given information, it is not possible to determine the mole fraction of HCl in the solution accurately.

Learn more about mole fraction: https://brainly.com/question/14783710

#SPJ11

equal masses of He and Ne are placed in a sealed container. what is the partial pressure of He if the total pressure in the container is 6 atm?
a. 1 atm
b. 2 atm
c. 3 atm
d. 4 atm
e. 5 atm

Answers

The partial pressure of helium (He) in the container is 3 atm. Therefore, the correct answer is option c. 3 atm.we need to consider Dalton's law of partial pressures

To determine the partial pressure of helium (He) in the sealed container, we need to consider Dalton's law of partial pressures. According to this law, the total pressure of a gas mixture is equal to the sum of the partial pressures of each individual gas.

Given that the total pressure in the container is 6 atm and equal masses of helium (He) and neon (Ne) are present, we can assume that the partial pressure of helium is equal to the partial pressure of neon.

Let's denote the partial pressure of helium as P(He) and the partial pressure of neon as P(Ne). Since the masses of He and Ne are equal, their mole ratios are also equal.

Therefore, we can write the equation:

P(He) / P(Ne) = n(He) / n(Ne)

where n represents the number of moles.

Since the mole ratios are equal, the partial pressures of He and Ne are also equal. Therefore, the partial pressure of helium is half of the total pressure:

P(He) = 6 atm / 2 = 3 atm

For more such questions on  Dalton's law of partial pressures.

https://brainly.com/question/14119417

#SPJ8

Other Questions
Whipple Logistics Company's Transportation Challenge Ruby Shelton is part of the executive development training program. As part of her executive development plan, Ruby has temporarily been assigned to the transportation division of Whipple Logistics Company. The objective is to expose her to different parts of the company as a method of grooming her for a senior position someday. Ruby is excited about the opportunity. Her background is in operations management, therefore, she is familiar with transportation requirements, although not an expert. Doreen Delgado is Ruby's mentor in the program Doreen is a senior vice president and participated in the program when she was a junior executive. She understands the value of such a learning experience. Whipple Logistics Company has several new clients who want a briefing on the best mode of transportation for their businesses. Doreen assigned Ruby to this project. Doreen believes this is the perfect instrument to help Ruby develop a deep appreciation of the importance of selecting the best mode of transportation for specific products. Ruby is to prepare the briefing for the new clients Ruby understands that this is a great opportunity to learn more about Whipple's clients' needs. Her research illustrates that the best mode of transportation often depends on the industry using it. Industries that deal in bulk products such as corn, soybeans, wheat, cement, crude oil and coal must decide which mode of transportation is best. That decision is often based on the distance over which the shipment must be moved. Trucks have a cost advantage for short distances up to 500 miles consequently, they function primarily as the short haul option. As the distance increases rail has a cost advantage over trucks, however, barges have the greatest cost advantage if a waterway connects the point of origin and the destination Although Whipple Logistics Company provides shipping services to all industries, the new clients were primarily shipping large balk items. For bulk shipments barges are the least expensive mode of transportation However, waterways do not go everywhere: consequently, the critical factors are the shipment origin and its proximity to navigable waterways Ruby began to investigate what besides cost could be a driving factor. She discovered that seldom were single barges alone used to haul cargo Generally, barges are cabled together in what is called a 15-barge tow, giving it a capacity of 22.500 tons. Ruby wondered how this compared to the capacity of rail and trucks. She knew that rail cars are also connected together to increase capacity. The standard is a 100-car train whose hauling capacity is 11.200 tonths, it takes two 100-car trains to match a 15-barge tow. A third option is semitrucks or "18-wheelers." A single semitruck can haul 26 tons. Unfortunately, the drawback of semitrucks is they are a single shipping system, unlike barges or rail cars that are combined to create a larger shipping system. Approximately 870 semitrucks* would be required to equal the cargo capacity of either a 15- barge tow or two 100-car trains. Ruby decided that barges are the best bulk transportation option, if the origin and destination can be accessed by water. She appreciated that it was more complex that just cost though. One needs to factor in possible delays due to weather and the hauling capacity of a specific mode of transportation Questions 1. How should Ruby approach this briefing? Should she explain each type or should she discuss only the concept of intermodal transportation? Explain your recommendation; why do you think one approach is better than another, that is, what is the benefit to those being briefed? 2. In your opinion, which mode of transportation has the most potential for problems? Explain why you say that. 3. Identify the mode of transportation that is the most flexible and the one that is the least flexible. Explain why you consider them as the most and least flexible. (A) Use the book publishing industry as the example to describe three types of contracts through which the publisher and bookstores can jointly increase their sales/revenues/profits. (B) Also describe how each party's sales/revenues/profits and risks are likely to be affected by each type of ase the contract. Draw appropriate diagrams. Investors in Corporate Bond expect compensation for: 1. Expected Inflation II. Real Interest Rate III. Risk I and III I and II II and III I, II and III A series RLC circuit consists of a 100 resistor, 0.15 H inductor, and a 30F capacitor. It is attached to a 120V/60 Hz power line. Calculate: (a) the emf Srms (b) the phase angle , (c) the average power loss. Which of the following terms means "knowing how to use a computer"?A) information securityB) cloud computingC) computer literacyD) computer compatibilityE) collaborative thinking 7. Find the point(s) on the curve y = x2 + 1 which is nearest to the point (0,2). The price p a book company charges for its most recent book is related to the demand q in weekly sales by the equation 100pq+q = 5,000,000. Suppose the price is set at $40, which would make the demand 1,000 copies per week. a) Using implicit differentiation, compute the rate of change of demand with respect to price, and interpret the result. (Round the answer to two decimal places.) b) Use the result of part (a) to compute the rate of change of revenue with respect to price. Should the price be raised or lowered to increase revenue? Consider a sequence of i.i.d random variables X, X2,..., each with a discrete uniform distribution on the set {0, 1,2}. In other words, P(X = 0) = 1/3 = P(X = 1) = P(X = 2), for each k. (a) Compute P(X + X 1). (b) Determine the mgf of X along with its domain. n (c) Consider a sequence of sample averages, {X}, where X = EX for n N. Find k=1 the mgf of X, by also stating its domain. Hint. First describe the mgf of X, in terms of the mgf of Xk, and then use the mgf of X. Which of the following describe compensating balances? (Select all that apply.)a) A specified balance a borrower of a loan is asked to maintain in a low-interest account at the bankb) A specified balance a borrower of a loan is asked to maintain in a noninterest-bearing account at the bankc) Funds set aside for a future plant expansiond) A sinking fund established in connection with debt instruments The title of the excerpt tells thereader that the narrator isAmerican. What clue fromthe excerpt also revealsthis fact? Given the solid Ethat lies between the cone z2 = x2 + y2 and the sphere x2 + y2 + (z + 2)2 = 2 a) Set up the triple integrals that represents the volume of the solid E in the rectangular coordinate system b)Set up the triple integrals that represents the volume of the solid E in the cylindrical coordinate system c) Evaluate the volume of the solid E An efficiency study of the morning shift at a certain factory indicates that an average worker who arrives on the job at 9:00 A.M. will have assembled f(x)=x3+12x2+15x units x hours later. a) Derive a formula for the rate at which the worker will be assembling units after x hours. r(x)=_______. b) At what rate will the worker be assembling units at 10:00 A.M.? The worker will be assembling ______ units per hour. c) How many units will the worker actually assemble between 10:00 A.M. and 11:00 A.M. ? The worker will assemble _________ units. (CORRECT ANSWER GETS BRAINLIEST)According to the line graph below, what is the total number of tickets sold?A.145 B.140 C.130 D.40 9. A business has experienced the following labour costs: Output Cost (S) (units) 7,000 86,000 12,000 141,000 9,000 102,000 Fixed costs increase by $15,000 for output in excess of 10,000 units. Using The acid-dissociation constant of hydrocyanic acid (HCN) at 25.0 deg C is 4.9 x 10^-10. What is the pH of an aqueous solution of 0.080 M sodium cyanide (NaCN)?Please show all your work thanks The sequence (an) is defined recursively by a1 = - 36, an+1 = glio + an c 2. 1) Find the term a3 of this sequence. a3 = 68 5 OT 4) Assuming you know L = lim no an exists, find L. L=___. The data set below is a random sample of the heights (in meters) of women belonging to a certain ethnic subgroup. Assume the population is normally distributed. 1.38 1.47 1.47 1.53 1.61 1.60 a) Find the mean and standard deviation of the data. (Give your answers to three decimal places.) Answers: mean - standard deviation b) Conduct a hypothesis test at the 0.10 significance level to test the claim that the population mean is less than 1.56. The critical region runs from to Answers: The value of the test statistic is The correct conclusion is At the 0.1 significance level, the sample data support the claim that the population mean is less than 1.56. At the 0.1 significance level, there is not sufficient sample evidence to support the claim that the population mean is less than 1.56. At the 0.1 significance level, there is sufficient sample evidence to reject the claim that the population mean is less than 1.56. At the 0.1 significance level, there is not sufficient sample evidence to reject the claim that the population mean is less than 1.56. Making Capital Inv decisions assignment 60 Help Save & Ext Sen Subt 24 Fitzgerald, incorporated, is evaluating a project that will increase annual sales by $198.600 and annual cash costs by $94.500 The project at inily reque $187,000 in fixed assets that will be depreciated straight ane to a zero book value over the four-year ife of the project. No bonus depreciation will be taken the applicable tax rate is 22 percent. What is the operating cash flow for this project? (a) Collect the latest annual reports of Two (2) ASX listed companies for the last 3 years. Based on your collected annual reports, do the following tasks: (i) Identify the different sources of fund that have been used by your selected companies (ii) Examine the evolution of the sources of fund used by the company over the last five years period with specific focus on the changes of different sources of funds (iii) What percentage of the fund is internally generated and what percentage of the fund is externally generated. (iv) Explain the relative merits and demerits of the different sources of fund used by your selected companies. (v) Critically examine different types of liabilities shown in the balance sheet of your selected companies? Identify which ones of the liabilities are interest bearing and which ones are not interest is bearing. (vi) Critically examine the key provisions under the AASB 137 Provisions, Contingent Liabilities and Contingent Assets. (vii) Identify if your selected companies have made any reference to this particular standard (AASB 137) in their annual reports. show that the difference in decibel levels b1 and b2 of a sound source is related to the ratio of its distances r1 and r2 from the receivers by the formula