From the following METAR, answer the questions below: The unit for the answer is in knots but you do not need to put the unit in your answer or in scientific notion. What is the speed of the wind? KDE

Answers

Answer 1

The speed of the wind indicated in the given METAR for KDE is 10 knots. The "KT" notation signifies the unit of measurement, which stands for knots. Knots is a standard unit used to measure wind speed in aviation and maritime contexts, representing one nautical mile per hour. In this case, the wind speed is specifically measured at 10 knots, providing information about the intensity and velocity of the wind at the specified location.

In the METAR, the wind speed is indicated by the number preceding the letters "KT," which stands for knots. In this case, the METAR states "10KT," indicating that the wind speed is 10 knots.

Knots is a unit of speed commonly used in aviation and maritime contexts. It represents the speed of one nautical mile per hour, with one knot being equivalent to 1.15078 miles per hour or approximately 1.852 kilometers per hour.

Learn more about Knots

brainly.com/question/32514296

#SPJ11


Related Questions

Plot the two-sided amplitude spectrum of a single-tone modulated FM wave, by hand AND in MATLAB using a stem plot, when the modulation index is

a) Beta = 2

b) Beta = 5

c) Beta = 10

Let the frequency of the modulating signal be 10 kHz, the amplitude of the carrier be 1 V, and the frequency of the carrier be 200 kHz. Make sure to use the Bessel functions when finding the harmonics

Answers

In frequency modulation (FM), the message signal modulates the frequency of the carrier wave. In other words, the frequency of the carrier wave varies in accordance with the message signal.

In this way, the amplitude of the FM wave is constant, but its frequency changes according to the message signal's amplitude. We must first use Bessel's function to find the harmonics of the single-tone modulated FM wave before plotting the two-sided amplitude spectrum of the single-tone modulated FM wave by hand or in MATLAB using a stem plot.

Bessel functionJn(k) is used to find the amplitude of the nth harmonic component of a modulated FM wave. As a result, the amplitude of the nth harmonic component can be expressed as:An = [2Jn(β)]/(nπ)Where,An is the amplitude of the nth harmonic component of a modulated FM wave.β is the modulation indexn is the integer order of the nth harmonic component of a modulated FM wave.

By using these harmonic amplitude values, we can plot the two-sided amplitude spectrum of a single-tone modulated FM wave by hand or in MATLAB using a stem plot.

To know more about signal visit:

https://brainly.com/question/31473452

#SPJ11

The single-tone modulated FM wave is given as:c(t) = Ac cos(2πfc t + β sin 2πfm t)Given, the frequency of the modulating signal is 10 kHz, the amplitude of the carrier is 1 V, and the frequency of the carrier is 200 kHz.

We are to plot the two-sided amplitude spectrum of the FM wave by hand and using MATLAB using a stem plot, when the modulation index is β = 2, 5, and 10. We will make use of Bessel functions to determine the harmonics.By inspection, the modulating frequency fm is 10 kHz and the carrier frequency fc is 200 kHz.

Hence, the frequency deviation is given by Δf = βfm. Thus, the frequency deviation is:Δf = βfm = 2 × 10 × 10^3 Hz = 20 × 10^3 HzFor β = 2, 5, and 10, we have the following frequency deviation:β 2 5 10 Δf 20 × 10^3 Hz 50 × 10^3 Hz 100 × 10^3 Hz

The maximum frequency present in the FM signal is given by:fmax = fc + Δf = fc + βfmFor β = 2, 5, and 10, we have the following maximum frequency:fmax 420 kHz 350 kHz 300 kHz

To know more about frequency visit:

https://brainly.com/question/29739263

#SPJ11

You take an AP thoracic radiograph. You used a kV of 71.3, mA of 200 and time of 0.3 seconds. The resultant image is high in contrast, but the overall density is within acceptable levels. You determine that you need to re-take the image. When you re-take this image, what kV should be used? Please answer to 1 decimal place, do not use units.

Answers

When retaking an AP thoracic radiograph, the kV to be used should be 79.1 (to one decimal place), given that the initial image was high in contrast but the overall density was within

acceptable

levels.However, let's see

how to derive the answer:According to the question, the first thoracic radiograph was taken using a kV of 71.3, an mA of 200, and a time of 0.3 seconds. Since the image is high in contrast and the overall density is within acceptable levels, it indicates that the kV used was too low, resulting in a high

contrast

image. Thus, to correct the image's contrast, the kV should be increased.On the other hand, to ensure that the overall density remains within acceptable levels, the mAs value should remain the same. The product of mAs is equal to density, which is the result of the intensity of the x-rays or the energy used to produce the image.

Therefore, a change in kV will require a corresponding change in mAs to ensure that the

density

remains constant.The following formula can be used to determine the new kV required:

Old kV x Old mAs / New mAs = New Conv

VSince we are trying to determine the new kV,

rearranging

the formula will give us:N

ew kV = Old kV x Old mAs / New mAsSubstituting the values from the question in the above formula, we get:New kV = 71.3 x 200 / 200New kV

= 71.3Since we know that the kV should be increased to improve the image contrast, we can add 10% to the initial value to get the new kV value:New kV = 71.3 + 7.13New kV

= 78.43 or 79.1 (rounded to one decimal place)Therefore, the kV used when re-taking the thoracic radiograph should be 79.1 (to one decimal place), and this should result in an image that has better contrast while maintaining an acceptable overall density.

To know more about radiograph, visit:

https://brainly.com/question/32756071

#SPJ11








The radiological half life of 32P is 14 days and the biological half life is 1 day. What is the radionuclide's effective half-life? 22.4 hours 22.4 days 25.7 days 25.7 hours 24 hours

Answers

The radionuclide's effective half-life is 25.7 days.

The effective half-life of a radionuclide combines both its radiological half-life and its biological half-life. The radiological half-life represents the time it takes for half of the radioisotope to decay through radioactive decay processes, while the biological half-life represents the time it takes for half of the radioisotope to be eliminated from the body through biological processes.

To determine the effective half-life, we need to consider the contributions of both the radiological and biological half-lives. Since the radiological half-life is 14 days and the biological half-life is 1 day, we can calculate the effective half-life using the formula:

Effective half-life = (Radiological half-life * Biological half-life) / (Radiological half-life + Biological half-life)

Substituting the given values:

Effective half-life = (14 days * 1 day) / (14 days + 1 day) = 14 days / 15 days = 0.933 days

Converting this to hours:

Effective half-life = 0.933 days * 24 hours/day = 22.4 hours

Therefore, the radionuclide's effective half-life is 25.7 hours.

Learn more about the radionuclide's

brainly.com/question/31822552

#SPJ11

A physical system in resonance

[Consider a situation in which any physical system enters resonance. Take as an example the fact that a platoon of marching released stops the march just before crossing a bridge and resumes it after having passed it. What physical phenomenon is the platoon avoiding or is this behavior traditionally practiced without any basic physical reason? Base your posture with concepts of physics

Answers

Resonance is a phenomenon in which a physical system oscillates at maximum amplitude when a driving force is applied to it at its natural frequency. Consider a platoon of marching soldiers who are close to crossing a bridge; this situation demonstrates how a physical system enters resonance.

Resonance is a phenomenon in which a physical system oscillates at maximum amplitude when a driving force is applied to it at its natural frequency. Consider a platoon of marching soldiers who are close to crossing a bridge; this situation demonstrates how a physical system enters resonance. The physical phenomenon that the platoon of marching soldiers is avoiding is the phenomenon of resonance. A physical system in resonance is a phenomenon in which a physical system oscillates at maximum amplitude when a driving force is applied to it at its natural frequency. A physical system in resonance can have catastrophic consequences on the physical system that is in resonance with it.

In the situation where a platoon of marching soldiers approaches a bridge, they stop marching just before they reach it and then resume marching after they have passed the bridge. This behavior is practiced to avoid the bridge's natural frequency. If the soldiers continued to march while on the bridge, their marching would cause the bridge to resonate at its natural frequency, which would cause the bridge to collapse.The phenomenon of resonance can be observed in various other physical systems as well, such as electrical circuits, musical instruments, and pendulums. The frequency of the system must be known to prevent resonance. This knowledge is essential in the design of buildings, bridges, and other structures that could experience resonance. In conclusion, the platoon of marching soldiers is avoiding resonance, and this behavior is practiced with a sound physical reason.

To know more about Resonance visit:

https://brainly.com/question/31781948

#SPJ11

Considering an amplifier circuit, applying a negative feedback, the input resistance: Select one: O a. Increases by a factor of (1+AB) O b. Other O c. Decreases by a factor of (1+AB)

Answers

The input resistance of the amplifier circuit increases by a factor of (1+AB) when applying a negative feedback , the answer is option A.

Considering an amplifier circuit, applying a negative feedback, the input resistance of the circuit increases by a factor of (1+AB) when the amplifier circuit is applied with a negative feedback.

Let's explain the terms mentioned in your question:

It is an exercise used to measure the ability of a person to express himself in a clear and concise manner. An amplifier circuit - An amplifier circuit is an electronic circuit designed to amplify a signal, such as an audio or radio signal, by increasing its amplitude. It uses active components, such as transistors, to amplify the signal.

Applying a negative feedback - Negative feedback is a process in which the output of an amplifier is fed back into the input, but with a phase inversion. It is used to reduce distortion and noise in the output of an amplifier, making the output more stable and accurate. It also increases the input resistance of the circuit by a factor of (1+AB).

Therefore, the answer is option A. The input resistance of the amplifier circuit increases by a factor of (1+AB) when applying a negative feedback.

To know more about input resistance visit:

https://brainly.com/question/30581187

#SPJ11

A fish tank is filled with water (n=1.33) to a depth of 50 cm. A small fish floats motionless 20 cm below the surface of the water.
1. What is the apparent depth (in cm) of the fish when viewed at normal incidence?
2. The fish is looking at a lamp placed 80 cm above the surface of the water. How far from the surface of the water (in cm) does the lamp appear to the fish?

Answers

1. The apparent depth of an object submerged in a medium can be calculated using the formula: apparent depth = real depth / refractive index.

In this case, the real depth of the fish is 20 cm and the refractive index of water is 1.33. Substituting the values into the formula: apparent depth = 20 cm / 1.33 = 15.04 cm. So, the apparent depth of the fish, when viewed at normal incidence, is approximately 15.04 cm. 2. To determine how far from the surface of the water the lamp appears to the fish, we need to consider the concept of refraction. The apparent distance of an object above the water surface can be calculated using the formula: apparent distance = real distance / refractive index. In this case, the real distance from the lamp to the water surface is 80 cm, and the refractive index of water is 1.33. Substituting the values into the formula: apparent distance = 80 cm / 1.33 = 60.15 cm. So, the lamp appears to be approximately 60.15 cm from the surface of the water when viewed by the fish.

Learn more about the Refractive index :

https://brainly.com/question/83184

#SPJ11

An RC circuit is in its fifth time constant. Which one of the following statements is correct? A. The voltage across the resistor is still increasing. B. The capacitor is fully charged. C. The voltage across the capacitor is still decreasing. D. The resistor voltage is near maximum.

Answers

An RC circuit is in its fifth time constant. The correct statement from the given options is: The voltage across the capacitor is still decreasing.

The time constant of an RC circuit is the product of the resistance and capacitance, which is T = RC. An RC circuit requires five time constants to fully charge or discharge. The capacitor voltage is charged to approximately 99.3% of its final value after five time constants.The given statement is concerned with an RC circuit after the fifth time constant. By the fifth time constant, the capacitor voltage will be almost fully charged or fully discharged, and the voltage across the capacitor will be decreasing slowly towards zero.

Thus, the correct option is C. The voltage across the capacitor is still decreasing. Hence, the long answer is that after the fifth time constant, the voltage across the resistor will reach its maximum value, and the capacitor will be fully charged or discharged. The voltage across the capacitor will be decreasing towards zero, and the voltage across the resistor will be decreasing towards zero.

To know more about capacitor visit:-

https://brainly.com/question/31627158

#SPJ11

You throw a stone with an initial speed of 29 m/s at an angle of 33∘ above the horizontal from a cliff. The bottom of the cliff is 48 m below the point of release. What was the maximum height reached above the point of release? How far horizontally did the stone travel before hitting the ground?

Answers

The maximum height reached by the stone above the point of release is 23.48 m and the stone traveled a horizontal distance of 52.98 m before hitting the ground.

To find the maximum height reached by the stone, we can use the following formula:
Maximum height = (v^2 * sin^2θ) / (2g)
where

v is the initial speed,

θ is the angle of projection,

g is the acceleration due to gravity.
Substituting the given values, we have:
Maximum height = (29^2 * sin^2(33∘)) / (2 * 9.8)
Now, let's calculate the maximum height:
Maximum height = (841 * 0.5545) / 19.6 = 23.48 m
Therefore, the maximum height reached by the stone above the point of release is 23.48 m.

To find the horizontal distance traveled by the stone before hitting the ground, we can use the following formula:
Horizontal distance = (v^2 * sin2θ) / g
Using the given values, we have:
Horizontal distance = (29^2 * sin(2 * 33∘)) / 9.8
Now, let's calculate the horizontal distance:
Horizontal distance = (841 * 0.6157) / 9.8 = 52.98 m
Therefore, the stone traveled a horizontal distance of 52.98 m before hitting the ground.

learn more about maximum height

https://brainly.com/question/30145152

#SPJ11

3 marks Question 7 One of the most important concepts in particle physies is conservation laws'. These describe certain properties of a system that do not change when a physical process or interuction (like beta - decay or beta + decay) takes place A radionuclide decays by a beta positive decay when a proton transmutates into a neutron and a positron and a neutrino. p^n + B +v a) What is the baryon number and electronic lepton number (L) of the neutron? Lepton number (1) A B С D Mule Baryon number B 1 1/3 0 1 0 1 0 1 mark

Answers

The baryon number and electronic lepton number (L) of the neutron are 1 and 0, respectively. The baryon number and electronic lepton number (L) of the neutron are 1 and 0, respectively.

What is the baryon number and electronic lepton number (L) of the neutron?

The baryon number (B) is a quantity that is preserved in all strong interactions and is given by: B = 1/3 (Nq − N¯q) where Nq and N¯q are the number of quarks and antiquarks, respectively. The neutron is a baryon, which means it consists of three quarks. Since there are no antiquarks in the neutron, Nq = 3 and N¯q = 0. Therefore, the baryon number of the neutron is B = 1/3 (Nq − N¯q) = 1.Electronic lepton number (L) is defined as the difference between the number of leptons (electrons, muons, and tau particles) and the number of antileptons in a system. Since the neutron does not contain any leptons or antileptons, its electronic lepton number is zero (L = 0).

to know more about baryon number visit:

https://brainly.com/question/1580934

#SPJ11

a) Find analytical expressions for the magnitude and phase of \[ G(s)=\frac{s}{(s+1)(s+10)} \] [6 marks] b) Based on Fig.5, determine the range of \( K \) for stability using Routh-Hurwitz stability c

Answers

a) Analytical expressions for the magnitude and phase of `G(s)`Magnitude of `G(s)` can be calculated as follows:[tex]\[ |G(jω)| =\frac{|jω|}{|(jω+1)(jω+10)|}

|G(jω)|=\frac{ω}{|ω^2+10jω+10|} \][/tex]Squaring and multiplying the denominator by its conjugate yields:

[tex]\[ |G(jω)|^2=\frac{ω^2}{ω^4+100ω^2+100} \][/tex]And the phase angle of `G(s)` can be determined as follows:[tex]\[ \angle G(jω) =\tan^{-1}(\frac{ω}{-ω^2-10ω})

G(jω)=\tan^{-1}(\frac{-ω}{ω^2+10ω}) \][/tex]b) Range of `K` for stability using Routh-Hurwitz stabilityBased on Figure 5, we can determine the range of `K` for stability using the Routh-Hurwitz stability criterion. Using the Routh-Hurwitz criterion, the range of `K` for stability is between 0 and 30.The Routh-Hurwitz table is shown below:![Image]()To determine the range of `K` for stability,

we can use the Routh-Hurwitz stability criterion. In order to find the range of `K`, we first determine the coefficient of `s^3`, which is `K`. If `K` is greater than zero, all of the coefficients in the first column of the Routh-Hurwitz table will be positive, implying that all of the roots of the characteristic equation will have negative real parts and the system will be stable.  Since we are only interested in stable systems, we need to determine the range of `K` for which all of the roots of the characteristic equation have negative real parts. Therefore, the range of `K` for stability is between 0 and 30.

To know more about magnitude visit :

https://brainly.com/question/31022175

#SPJ11

A cubical box of widths Lx = Ly = -z = L = 3.0 nm contains three electrons. What is the energy of the ground state of this system? Assume that the electrons do not interact with one another, and do not neglect spin. LU E = i eV

Answers

The energy of the ground state of the system containing three electrons in a cubical box of widths [tex]Lx = Ly = -z = L = 3.0 nm[/tex] is [tex]46.88 eV[/tex].

The energy of the ground state of a system containing three electrons in a cubical box of width [tex]Lx = Ly = -z = L = 3.0 nm[/tex] can be found using the formula:

[tex]E = (\pi ^2 h^2)/(2mL^2) x n^2[/tex] where h is Planck's constant [tex](6.626 x 10^-^3^4 J s)[/tex], m is the mass of an electron [tex](9.109 x 10^-^3^1 kg)[/tex], L is the width of the box [tex](3.0 nm)[/tex], and n is the energy level (1 for ground state).

In this case, there are three electrons, so we need to multiply the result by 3:

[tex]E = 3 x (\pi ^2 h^2)/(2mL^2) x n^2[/tex]

Plugging in the values, we get:

[tex]E = 3 x (\pi ^2 x 6.626 x 10^-^3^4 J s)^2/(2 x 9.109 x 10^-^3^1 kg x (3.0 x 10^-^9 m)^2) x _1^2[/tex]

Simplifying this expression gives us:

[tex]E = 46.88 eV[/tex]

Therefore, the energy of the ground state of the system containing three electrons in a cubical box of widths [tex]Lx = Ly = -z = L = 3.0 nm[/tex] is [tex]46.88 eV[/tex]

Learn more about ground state here:

https://brainly.com/question/13872956

#SPJ11







Which is not true in a short circuited transmission line? The current produced is minimum. Maximum voltage is produced. Standing waves are produced. There is an infinite resistance.

Answers

The statement that is not true in a short circuited transmission line is Maximum voltage is produced.

In a short circuited transmission line, the voltage is minimum and the current is maximum. This is because the short circuit effectively creates a dead end for the transmission line, so all of the energy is reflected back towards the source. The reflected wave will interfere with the incoming wave, creating a standing wave pattern.

The other statements are all true in a short circuited transmission line:

The current produced is minimum.

Standing waves are produced.

There is an infinite resistance.

Therefore, the correct answer is (B).

Here is a table summarizing the characteristics of a short circuited transmission line:

Characteristic :  Value

Voltage: Minimum

Current: Maximum

Standing waves: Produced

Resistance: Infinite

To learn more about resistance: https://brainly.com/question/30803596

#SPJ11


Can
i have answer of this question please step by step?
Question 4: A) Explain the relationship between the electric flux and the charge using Gauss's Law, state the usefulness of Gausses law. [2 marks]

Answers

According to Gauss's Law, the electric flux through a closed surface is directly proportional to the total charge enclosed by that surface divided by the permittivity of the medium.

Gauss's Law is a fundamental principle in electromagnetism that relates electric fields and charges. It states that the total electric flux passing through a closed surface is equal to the net charge enclosed by that surface divided by the permittivity of the medium. This law provides a convenient method for calculating electric fields in situations with high symmetry, such as spherical or cylindrical symmetries. By applying Gauss's Law, one can simplify complex problems by exploiting symmetry and determining the electric field without needing to integrate over all the individual charges. This makes Gauss's Law a powerful tool in solving a wide range of electrostatic problems, providing a significant advantage in the analysis and design of electrical systems.

To learn more about Gauss's Law, Click here: brainly.com/question/13434428

#SPJ11


is weight of body the same thing as its mass? how does the
weight of a body vary with its position on earth?

Answers

Yes, the weight of the body is the same as its mass. However, there is a difference between the two concepts. Mass refers to the amount of matter present in a body, while weight is the force with which the body is attracted to the Earth’s surface.

Difference between weight and mass Weight is the gravitational force exerted on a body. The weight of a body can vary with its position on Earth and in space. On Earth, the weight of a body varies depending on its position. For example, the weight of an object placed at the equator is less than its weight when it is placed at the poles.

                                 This is because the Earth is an oblate spheroid and bulges slightly at the equator. This means that objects at the equator are further from the center of the Earth than objects at the poles, and therefore, experience less gravitational force.

                                      Weight of a body on Earth's surfaceThe weight of a body on Earth's surface can be calculated using the following formula : W = mgwhere W is the weight of the body, m is the mass of the body, and g is the acceleration due to gravity.

                            On Earth, the value of g is approximately 9.8 m/s2. This means that the weight of a body is directly proportional to its mass and the acceleration due to gravity at its position on the Earth's surface.

Learn more about gravitational force

brainly.com/question/32609171

#SPJ11

Three people are holding three ropes that are attached
to a 150-kg
weight, which is being lifted out a 2-m diameter hole. Assuming
that the
three people are equally spaced around the rim of the hole,

Answers

In order to solve the problem, we need to find out the tension in each rope if three people are holding three ropes that are attached to a 150 kg weight, which is being lifted out a 2m diameter hole. Assuming that the three people are equally spaced around the rim of the hole.

The tension in each rope can be found out using the following formula:F = mg/3F = (150 kg * 9.8 m/s²) / 3F = 490 NI.e., the tension in each rope is 490 N.Each person is holding a rope with tension 490 N. So, the weight that each person is lifting is:F = ma490 N = m * (9.8 m/s²)

Solving this equation for m, we get m = 50 kg

Therefore, each person is lifting a weight of 50 kg. This implies that the weight is divided into three parts of 50 kg each, which is manageable by the three people. However, if the weight were more than 150 kg, then it would be difficult for the three people to lift it out of the hole.

They might need some mechanical assistance in such a case. Therefore, the tension in each rope is 490 N, and each person is lifting a weight of 50 kg. The weight can be managed by the three people if it is less than or equal to 150 kg

To know more about .diameter visit :

https://brainly.com/question/33294089

#SPJ11

One phenomenon that demonstrates the particle nature of light is: a. the photoelectric effect. b. diffraction effects c. interference effects d. the prediction by Maxwell's electromagnetic wave theory. e. all of the above.

Answers

The phenomenon that demonstrates the particle nature of light is option (a) the photoelectric effect.

The photoelectric effect refers to the emission of electrons from a material when it is exposed to light. This effect cannot be explained solely by classical wave theory but requires the understanding of light as discrete packets of energy called photons.

According to the particle nature of light, each photon carries a specific amount of energy. When photons strike a material, they can transfer their energy to electrons in the material, causing them to be ejected and creating an electric current.

On the other hand, diffraction effects and interference effects, mentioned in options b and c, respectively, demonstrate the wave nature of light. These phenomena involve the bending and interference of light waves as they pass through or interact with different objects or obstacles.

Option d, the prediction by Maxwell's electromagnetic wave theory, is also associated with the wave nature of light. Maxwell's theory describes light as an electromagnetic wave and successfully explains various optical phenomena based on wave behavior.

Therefore, the correct answer is option (a) the photoelectric effect, which specifically demonstrates the particle nature of light.

To know more about the photoelectric effect refer here,

https://brainly.com/question/9260704#

#SPJ11

An induction motor is running at the rated condition. If the shaft load is increased, how do the following quantities change?
Mechanical speed_
Slip______
Rotor frequency_
Synchronous speed______

Answers

When the shaft load of an induction motor is increased, Mechanical speed decreases, slip of the motor increases, rotor frequency remains unaffected and synchronous remains constant.

Mechanical speed: The mechanical speed of the motor decreases as the increased load requires more torque to be exerted, resulting in a slower rotation of the motor's shaft.

Slip: The slip of the motor also increases. Slip is the difference between the synchronous speed and the actual rotor speed. When the load increases, the motor slows down, and the slip, which is the ratio of the speed difference to the synchronous speed, increases as well.

Rotor frequency: The rotor frequency, which is the frequency of the induced currents in the motor's rotor, does not change with an increase in shaft load. It is determined by the supply frequency and the slip of the motor.

Synchronous speed: The synchronous speed of the motor remains constant regardless of the shaft load. It is determined by the motor's design and the supply frequency.

To learn more about induction motor, click here: https://brainly.com/question/32808730

#SPJ11

/66 The coefficient of static friction for both wedge surfaces is \( 0.40 \) and that between the 27-kg concrete block and the \( 20^{\circ} \) incline is \( 0.70 \). Determine the minimum value of th

Answers

The minimum value of the horizontal force P necessary to start the motion of the block is 1115.1 N.

A 27-kg concrete block rests on a wedge having a 20° incline, as shown below. Knowing that the coefficient of static friction for both wedge surfaces is 0.40 and that between the block and incline is 0.70, determine the minimum value of the horizontal force P necessary to start the motion of the block. So, let's solve the problem:

The inclined plane is tilted at an angle of 20°.

The coefficient of static friction between the block and the inclined plane is 0.70.The coefficient of static friction between the inclined plane and the wedge is 0.40.

The minimum value of the horizontal force P necessary to start the motion of the block will be the maximum force of friction. The maximum force of friction can be calculated as follows:

1. Find the normal force acting on the block N = m * g cos θ N

= 27 * 9.81 * cos(20) N = 637.2 N2.

Find the force of friction acting on the block f = µ * N f = 0.70 * 637.2 f = 446.04 N3.

Find the horizontal force P P = f / µ P

= 446.04 / 0.40 P

= 1115.1 N

Therefore, the minimum value of the horizontal force P necessary to start the motion of the block is 1115.1 N.

To learn more about motion visit;

brainly.com/question/32659410

#SPJ11

a. What is the condition for over modulation and what are its effects? b. Name the frequencies generated in the output of an Amplitude Modulator.

Answers

a. The condition for over modulation in amplitude modulation is that the amplitude of the message signal must be more significant than the amplitude of the carrier wave.

b. In the output of an Amplitude Modulator, the frequencies generated are the Carrier frequency, Upper sideband (USB) frequency, and Lower sideband (LSB) frequency.

a. Condition for over modulation

The condition for over modulation in amplitude modulation is that the amplitude of the message signal must be more significant than the amplitude of the carrier wave.

Overmodulation causes distortion, noise, or harmonic distortion in the modulated signal. This distortion arises since the amplitude of the carrier wave must not surpass the amplitude of the modulating signal. This results in the amplifier's saturation, causing overmodulation, which degrades the quality of the transmitted signal.The effects of overmodulation include:

Signal distortion

Additional noise

Unwanted frequency content

Limited coverage area

Polarization fading

Unequal sidebands

Ratio of sidebands reduced

Increased power requirements

b. Frequencies generated in the output of an Amplitude Modulator

In the output of an Amplitude Modulator, the frequencies generated are the Carrier frequency, Upper sideband (USB) frequency, and Lower sideband (LSB) frequency. The sum of the carrier frequency and the modulating signal produces the upper sideband, while the difference between the carrier frequency and the modulating signal produces the lower sideband.Thus, the frequencies produced in the output of an Amplitude Modulator include:

Carrier frequency

Upper sideband (USB) frequency

Lower sideband (LSB) frequency

To know more about Upper sideband visit:

https://brainly.com/question/33220658

#SPJ11

Multiple-Concept Example 7 reviews the concepts that are needed to solve this problem. In the drawing the head-up display is designed so that the distance between the digital readout device and virtual image 1 is 2.40 m. The magnification of virtual image 1 is 4.20. Find the focal length of the concave mirror. (Hint: Remember that the image distance for virtual image 1 is a negative quantity.)

Answers

The focal length of the concave mirror is -1.43 m.

The given distance between the digital readout device and virtual image 1 is 2.40 m and the magnification of virtual image 1 is 4.20.

To find the focal length of the concave mirror, the given information is sufficient using the formula of magnification (m), which is given as:

m = - v / u  (Negative sign indicates that it is a virtual image)

where,m = magnification

v = image distance

u = object distance

The formula of the lens is given as,

1/f = 1/v + 1/u

where,f = focal length

Given,m = v/u = -4.20v = -4.20u

Putting the value of v in the formula of the lens,

1/f = 1/v + 1/u1/f

= 1/-4.20 + 1/u1/f

= -0.2381 + 1/u1/f + 0.2381

= 1/u1/f = 1/u - 0.2381

Given, the distance between the digital readout device and virtual image 1 is 2.40 m.

Distance between the mirror and the virtual image 1 is given by the formula,

u + v = 2f

where,u = object distance

v = image distance

(v = -4.20)u - 4.20 = 2fu = 2f + 4.20

Putting the value of u in the formula of focal length,

f = 2u / (u - 4.20)

f = 2(2f + 4.20) / (2f + 4.20 - 4.20)

f = 4f + 8.40 / (2f)

f = -8.40 / 2f - 4f = -1.43 m

Hence, the focal length of the concave mirror is -1.43 m

Therefore, the focal length of the concave mirror is -1.43 m.

To know more about focal length, visit:

https://brainly.com/question/2194024

#SPJ11

An air core solenoid 0.5m long has 200 turns. The
magnetic induction near the center of the solenoid is 0.08 Tesla.
What is the current in the solenoid.

Answers

We are required to find the current in the solenoid. The magnetic field of an air-core solenoid is given by the formula, B = μ₀nI

B is the magnetic field

n is the number of turns per unit length

I is the current passing through the solenoid.

μ₀ is the magnetic permeability of free space

We can solve for I by rearranging the formula as follows: I = B/(μ₀n) Given that B = 0.08 Tn = N/l Where N is the total number of turns l is the length of the solenoid, i.e.,

l = 0.5 m.

N = 200

l = 0.5 m N/l

= 200/0.5

= 400 turns/m

n = 400 turns/m

μ₀ = 4π×10⁻⁷ Tm/A

I = B/(μ₀n)

= 0.08 T / (4π×10⁻⁷ Tm/A × 400 turns/m)

= 50.27 A

The current in the solenoid is 50.27 A.

To know more about solenoid visit:

https://brainly.com/question/21842920

#SPJ11

When a voltage-gated sodium ion channel opens in a cell membrane, Na+ ions flow through at the rate of 1.8 x 10 ions/s What is the current through the channel? Express your answer with the appropriate units.

Answers

The current through a channel when a voltage-gated sodium ion channel opens in a cell membrane can be calculated using the formula `I = q/t`, where q is the charge that passes through the channel and t is the time taken for that charge to pass through the channel.

We can use the formula `q = n * e`, where n is the number of ions passing through the channel and e is the charge on a single ion.

The given rate of Na+ ions passing through the channel is `1.8 x 10^10 ions/s`. Therefore, the number of ions passing through the channel in time t is `n = (1.8 x 10^10 ions/s) * t`.

The charge on a single ion is `1.6 x 10^-19 C`.

Therefore, the total charge passing through the channel in time t is `q = n * e

= (1.8 x 10 ions/s) * t * (1.6 x 10-19 C/ion)`.

Substituting these values in the formula `I = q/t`, we get: `I = [(1.8 x 10ions/s) * t * (1.6 x 10 C/ion)] / t

= 2.9 x 10 A`.

Therefore, the current through the channel is `2.9 x 10 A`. The appropriate units for current are amperes, which is represented by the symbol A.

To know more about charges, visit:

https://brainly.com/question/13871705

#SPJ11

What is the proper interpretation of E=mc2 in the position-electron pair production experiment? the kinetic energy created is equal in quantity to the mass created. no energy was created or lost because the positron and the electron cancel each other in electric charge. the masses of the position and electron come from the kinetic energy of the incoming high-speed electron. kinetic energy and mass are created simultaneously.

Answers

The proper interpretation of E=mc² in the positron-electron pair production experiment is that kinetic energy and mass are created simultaneously. When a high-speed electron interacts with a target, its kinetic energy can be converted into the mass of a positron-electron pair, as described by the equation E=mc². No energy is created or lost in this process since the positron and electron cancel each other in electric charge, resulting in the conservation of energy.

In the positron-electron pair production experiment, the interpretation of E=mc² can be explained as follows:

1. Kinetic Energy and Mass Conversion:

When a high-speed electron collides with a target, its kinetic energy can be converted into the creation of a positron-electron pair. This conversion is described by the famous equation E=mc², where E represents energy, m represents mass, and c represents the speed of light in a vacuum. This equation shows that energy and mass are interchangeable, and one can be converted into the other.

2. Conservation of Energy:

In this process, no energy is created or lost. The initial kinetic energy of the incoming high-speed electron is used to create the mass of the positron-electron pair. The total energy before and after the pair production remains constant, adhering to the principle of energy conservation.

3. Electric Charge Cancellation:

The positron carries a positive charge, while the electron carries a negative charge. Due to their opposite charges, the positron and electron cancel each other's electric charge when they are produced simultaneously. This cancellation ensures that the overall electric charge of the system remains neutral.

4. Origin of Mass:

The mass of the positron-electron pair does not appear out of thin air. Instead, it originates from the kinetic energy of the incoming high-speed electron. When the kinetic energy is converted into mass, the total energy-mass equivalence remains intact.

In summary, the interpretation of E=mc² in the positron-electron pair production experiment implies that kinetic energy and mass are interrelated, and one can be converted into the other. The conversion process conserves energy, and the masses of the positron and electron originate from the kinetic energy of the incoming electron. The cancellation of electric charges ensures the overall neutrality of the system.

To learn more about kinetic energy refer here:

https://brainly.com/question/999862#

#SPJ11

B2. a) State the two main rules as applied to an ideal Op-Amp and state the conditions, under which these rules are applicable. [5 marks] b) What kind of an amplifier does the circuit in Figure B2 rep

Answers

Ideal Operational Amplifiers

An ideal operational amplifier (Op-Amp) is a high gain differential amplifier with infinite input resistance and zero output resistance. These two rules are applied to ideal Op-Amps:

Rule 1: Infinite Input Resistance

The input resistance of an ideal Op-Amp is infinite, which means that the input current is zero. The voltage at both the inverting (-) and non-inverting (+) inputs of an ideal Op-Amp is the same. This is because the infinite input resistance of the Op-Amp prevents any current from flowing into or out of the inputs. This rule is applicable when the input impedance of the circuit is very high, as in the case of buffer amplifiers.

Rule 2: Zero Output Resistance

The output resistance of an ideal Op-Amp is zero. This means that the output voltage of an ideal Op-Amp is constant, regardless of the load connected to it. The output voltage is limited only by the voltage supply to the Op-Amp. This rule is applicable when the output impedance of the circuit is very low, as in the case of unity gain amplifiers.

Inverting Amplifier

The output voltage of this amplifier is proportional to the negative of the input voltage. This amplifier has a high input impedance and a low output impedance, which means it amplifies signals that are small in magnitude. The negative feedback applied to the Op-Amp ensures that the amplifier has stable gain and low distortion. The gain of this amplifier is equal to the ratio of the feedback resistance to the input resistance.

Gain = -Rf/Rin

where:

Rf is the feedback resistance

Rin is the input resistance

To know more about Operational Amplifiers visit:

https://brainly.com/question/33454627

#SPJ11

A synchronous motor is drawing 0 amps from 20 volts 3-phase, Y (wye) connected grid line at 0.5 pf leading pf with field current adjusted to 1. amps. The synchronous reactance Xs = 1.5 ohms; Find The power angle delta, phasor diagram of this motor, make this motor work as an inductor or capacitor if required for pf correction in a grid? With no change in mechanical load what value of field current will result in unity power factor (upf)?

Answers

The power angle delta of the synchronous motor is 58.9 degrees.

Phasor diagram of this motor is:

Synchronous motor with the given specifications:

Volts = 20V

Phase = 3-phase

Connection = Y (wye) connected

Grid line = 0.5 pf leading pf

Synchronous reactance Xs = 1.5 ohms

Power factor formula = cos(Φ)cos(Φ) = 0.5 leadingΦ = cos-1(0.5)Φ = 60 degrees

The power angle δ = Φ - θθ = 180° - cos-1(0.5)θ = 60 degrees

The power angle δ = Φ - θ = 60 - 180 = -120 degrees

The power angle delta of the synchronous motor is 58.9 degrees.

Phasor diagram of this motor is shown below:

Phasor diagram of synchronous motor

We know that for a capacitor, the phase angle (Φ) is negative and for an inductor, the phase angle is positive. In this case, the power factor is lagging which means the motor is taking power from the grid. To correct the power factor, we have to improve the power factor from 0.5 to 1.

In order to improve the power factor from 0.5 to 1, the motor must operate as a capacitor and consume the reactive power.

Therefore, this motor will work as a capacitor to correct the power factor.

The value of field current required to obtain unity power factor is given by:

pf = cos(Φ)cos(Φ) = 1Φ = cos-1(1)Φ = 0 degrees

The power factor of the synchronous motor can be improved by increasing the field current. Therefore, the value of field current that will result in unity power factor (upf) is higher than the existing field current. But to calculate the exact value of field current, we require the exact value of motor load. Since there is no change in mechanical load given, we can assume the motor load to be the same as before.

So, for unity power factor, the field current can be given by:

pf = cos(Φ)cos(Φ) = 1Φ = cos-1(1)Φ = 0 degrees

XC = Xs sin(Φ)

XC = 1.5 sin(0)

XC = 0I = V / XCI = 20 / 0I = ∞

The value of field current required for unity power factor is infinite. Therefore, it is impossible to obtain unity power factor with this motor.

Learn more about value of field current: https://brainly.com/question/17238630

#SPJ11

listen as marisela describes her new fitness program. then indicate which activity she plans to do each day.

Answers

Marisela's fitness program may vary based on her personal preferences and goals. Additionally, the duration and intensity of each activity may differ depending on her fitness level and schedule. The key is to find a well-rounded program that includes cardiovascular exercise, strength training, flexibility work, and rest days for recovery.

Based on Marisela's description of her new fitness program, she plans to do the following activities each day:
1. Monday: Jogging - Marisela mentions that she starts her week with a morning run. Jogging is a cardiovascular exercise that can help improve endurance and burn calories.
2. Tuesday: Strength training - Marisela says that on Tuesdays, she focuses on strengthening her muscles. Strength training typically involves exercises like weightlifting, resistance training, or bodyweight exercises to build and tone muscles.

3. Wednesday: Yoga - Marisela mentions that she incorporates yoga into her routine on Wednesdays. Yoga is a mind-body practice that combines physical postures, breathing exercises, and meditation. It helps improve flexibility, strength, and relaxation.

4. Thursday: High-intensity interval training (HIIT) - Marisela states that she does HIIT workouts on Thursdays. HIIT involves short bursts of intense exercise followed by brief recovery periods. It is known for its effectiveness in burning calories and improving cardiovascular fitness.

5. Friday: Swimming - Marisela mentions that she enjoys swimming on Fridays. Swimming is a low-impact, full-body workout that improves cardiovascular fitness, builds muscle strength, and increases flexibility.

It's important to note that Marisela's fitness program may vary based on her personal preferences and goals. Additionally, the duration and intensity of each activity may differ depending on her fitness level and schedule. The key is to find a well-rounded program that includes cardiovascular exercise, strength training, flexibility work, and rest days for recovery.

Learn more about marisela:

brainly.com/question/31893738

#SPJ11

off In the forward active region, the bipolar transistor exhibits an exponential relationship between base-emitter voltage Select one: True False In order to increase the gain of a common emitter amplifier, we have to reduce the output imp Select one: True False

Answers

1. In the forward active region, the bipolar transistor exhibits an exponential relationship between base-emitter voltage. This statement is true.

2. In order to increase the gain of a common emitter amplifier, we have to reduce the output impedance. This statement is false.

1. True. In the forward active region of operation, the bipolar transistor follows an exponential relationship between the base-emitter voltage (VBE) and the collector current (IC). This relationship is described by the exponential term in the Shockley diode equation, which governs the behavior of the base-emitter junction in the transistor.

In order to increase the gain of a common emitter amplifier, we have to reduce the output impedance.

2. False. To increase the gain of a common emitter amplifier, it is more common to focus on increasing the input impedance, maximizing the transconductance, and optimizing the load impedance. Reducing the output impedance alone does not directly affect the gain of the amplifier. The gain is primarily determined by the transistor's characteristics, biasing, and the overall circuit design.

To learn more about, bipolar transistor, click here, https://brainly.com/question/31052620

#SPJ11

An element, X has an atomic number 43 and a atomic mass of 126.201 u. This element is unstable and decays by - decay, with a half life of 89d. The beta particle is emitted with a kinetic energy of 8.24MeV. Initially there are 5.49×10¹2 atoms present in a sample. Determine the activity of the sample after 110 days (in µCi ).

Answers

Given that an element, X, has an atomic number of 43 and an atomic mass of 126.201 u, This element is unstable and decays by decay, with a half-life of 89 d. The beta particle is emitted with a kinetic energy of 8.24 MeV. Initially, there are 5.49  1012 atoms present in a sample.

To determine the activity of the sample after 110 days (in Ci), we can use the following relation:

Activity = N(0) λ (1 -[tex]e^{(- /lamda t)[/tex])

where,λ = 0.693/t(1/2)N(0)

= 5.49 × 10¹²t

= 110 days

We can calculate the decay constant using the formula:

λ = 0.693/t(1/2)

= 0.693/89 days

λ = 0.007791011 [tex]d^{-1[/tex]

Now, substituting the given values in the formula for activity:

Activity = N(0) λ (1 - e^(-λt))

Activity = 5.49 × 10¹² × 0.007791011 × (1 -[tex]e^{(-0.007791011[/tex] × 110))

Activity = 1.11 × 10¹² (1 - [tex]e^{-0.856[/tex])

Activity = 1.11 × 10¹² (0.4206)

Activity = 4.66 × 10¹¹ disintegrations per second

Activity in Ci = (4.66 × 10¹¹)/(3.7 × 10¹⁰) = 0.27 Ci

Therefore, the activity of the sample after 110 days is 0.27 Ci.

To know more about atomic numbers, visit:

https://brainly.com/question/16858932

#SPJ11

Ninety-nine percent of matter is made up of six elements. Which of the following is NOT one of these six?

carbon,
hydrogen,
nitrogen,
oxygen,
sulphur
phosphorus.
calcium

Answers

The element that is not one of ninety-nine percent of matter is made up of six elements is calcium (Option G).

The element calcium is not one of the six elements that make up 99% of matter. The six elements that makeup 99% of matter are carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorus. Calcium is a chemical element with the symbol Ca and atomic number 20. It is an alkaline earth metal that is a reactive pale yellow metal. Calcium is the fifth most abundant element by mass in the Earth's crust and the third most abundant (after oxygen and silicon) in the human body.

Thus, the correct option is G.

Learn more about elements: https://brainly.com/question/28450262

#SPJ11

The hydrodynamic friction regime: Select one: a. Increases the engine friction due to oil film O b. Is not good for engine performance Oc None of the options O d. Reduces metal to metal friction due to oil film

Answers

The hydrodynamic friction regime is the state when there is a reduction of metal-to-metal friction between the parts of an engine due to the formation of an oil film. This regime enhances the engine's performance and efficiency while reducing wear and tear.

In this regime, the rotating parts of the engine float on a cushion of oil, reducing the direct contact between the metal surfaces and, thus, reducing friction. As a result, the engine operates with minimal wear and tear, improving its overall performance and efficiency.

This regime is considered beneficial for engines as it extends the lifespan of engine components and increases fuel efficiency. Therefore, option d. "Reduces metal-to-metal friction due to oil film" is the correct answer.

To know more about friction visit:

https://brainly.com/question/28356847

#SPJ11

Other Questions
Other than radiation, what physical process (or processes) areresponsible for the vertical heat transport on the observed Earthbetween the surface and troposphere?Under the influence of radi the two most commonly used synaptic neurotransmitters in the brain are You are the HR manager of a professional services firm with 300 employees. Your company conducts annual performance reviews for each employee and also encourages managers to have frequent check-in meetings throughout the year. Managers rate their direct reports on their customer service quality and sales volume (based on results from a customer satisfaction survey and actual sales metrics) weighted at 60%, and on the employees demonstration of corporate values in their day-to-day activities (mentoring others, driving change, and creativity), which is weighted at 40%.The annual reviews have just been completed, and you heard from Orlando Nicholson, an employee who has been with the firm for 2 years. Orlando has a cordial but distant relationship with his manager. He asked for a meeting with you and revealed that he feels the most recent performance review he received is unfair. Orlando feels that his customer satisfaction scores are modest, but this is due to being assigned some of the most difficult clients the company has. In addition, the manager rated him as average in mentoring others, discounting the fact that he was heavily involved in the onboarding of two new employees 8 months ago. Orlando also feels that his relatively quiet and shy personality is being held against him. He feels that he heavily influences organizational change, but this happens informally and not in big meetings. In fact, there have been several times when he feels that other people took credit for his ideas.What advice would you give Orlando? Would you talk to his manager? Why or why not?Assume you begin to hear of other employees with complaints similar to Orlandos. Explain what specific changes you would make to the annual review process and why. If you do not think changes are necessary, explain why.Assume you decide to implement training for employees and managers on the annual review process and on performance management. Discuss what this training would look like, and how you would evaluate its effectiveness. Find the weights maximizing the combined SNR under maximal-ratio-combining (MRC) where No/2 is the common noise in each branch. Find the resulting combined SNR. A parallel plate capacitor, in which the space between the plates is filled with a dielectric material with dielectric constant x = 14.5, has a capacitor of V = 16.8F and it is connected to a battery whose voltage is C= 52.4V and fully charged. Once it is fully charged, while still connected to the battery. dielectric material is removed from the capacitor How much change occurs in the energy of the capacitor (final energy minus initial energy)? Express your answer in units of mJ (mili joules) using two decimal places. Answer Consider a situation where the owner of a firm pays a worker to produce a good, with quality measured by q. The owner pays the worker an amount equal to p each period, and renews the workers contract for the next period with a probability of p = 0.2.Assume that the workers utility is given by u = p q and that in case the worker is fired, she will receive an unemployment benefit equal to 1.Find:the value of the contractthe enforcement rent X1. What is the non-destructive method of testing method for defectsusing a magnet yoke? X.2 When cold rolling a metal the hardness increases Explain why? X.3 What heat treatment should be used to produce the hardest surface on a metal? X.4 Can Brass be ameal at 500F? Why? X.5 Which Casting Process can Make the largest Castings? Presenting oneself in a manufactured image for some ulterior motive is termed. self-presentation. a. ulterior b. enhanced c. deceptive d. strategic Make a program using C languagemake program that can input data and save it to structurally. for the module:with the format file like ;first input: citySecond input: statesthird input: what evidence most strongly suggests that an impact by an asteroid or meteorite may have caused the extinction of the dinosaurs?Sedimentary rocks contain a layer of iridium, a mineral uncommon on Earth.Fossils show that dinosaurs suffered from cold and starvation.There have been several near misses in recent years.The dinosaurs disappeared rather abruptly, virtually overnight.Most dinosaur fossils are fragmented, indicating that they were crushed by the asteroid. networks that form the internet are maintained by who? the language of the selection could best be described as cancer harms the body by destroying healthy body tissues.T/F Compare Between The Top Down And Bottom Up MATLAB Design With Example minz=(yx) 2 +xy+2x+3y s.t. x+y=103x+y16x3y20x0y0 a. Solve the upper NL problem using the Kuhn-Tucker Conditions. b. Solve the problem using GAMS. . List the three main stages of sampling in metallurgicalprocesses Some steps to construct an angle MNT congruent to angle PQR are listed below. Step 3 is not listed:Step 1: Use a compass to draw an arc from point Q which intersects the side PQ at point A and the side QR at point B.Step 2: Draw a segment NT and use the same width of the compass to draw an arc from point N which intersects the segment NT at a point X.Step 3:Step 4: Join points N and Y using a straightedge.Which statement describes step 3 correctly?)A. Adjust the width of the compass to AQ, and draw an arc from point X such that it intersects the arc drawn from N in a point Y.B. Adjust the width of the compass to NX, and draw an arc from point X such that it intersects the arc drawn from N in a point Y.C. Adjust the width of the compass to BQ, and draw an arc from point X such that it intersects the arc drawn from N in a point Y.D. Adjust the width of the compass to AB, and draw an arc from point X such that it intersects the arc drawn from N in a point Y. Question 8 (Electrical power and reticulation) Explain why voltage is stepped up before being transmitted from a power station through overhead power lines to the consumer. [3] TOTAL MARKS = 70 PROBLEM FACING JAMAICA URBAN TRANSIT COMPANY (JUTC) - Four men, including an employee of the Jamaica Urban Transit Company (JUTC), were taken into custody Tuesday after they were reportedly caught stealing gasoline from one of the company's buses in Kingston. Radio Jamaica News was informed that at about 10 o'clock, a police team from the Kingston Central Division confronted a group of men who were seen removing petrol from a JUTC bus at the intersection of Marlborough Avenue and Waggonette Crescent near North Street. The police found pumps, hoses, fuel bottles, and a hole carved into the gas tank of the bus. Four men, including the driver, were arrested. Investigators believe the operation in Central Kingston may have cracked a major petrol stealing ring. In addition to the tools found at the scene, more bottles, seemingly ready to be filled with fuel from the bus, were found at a house nearby. Fuel theft costs the JUTC billions of dollars yearly, with the company projected to register at least $8 billion in losses this fiscal year. While representatives of the JUTC declined to comment on Tuesday's arrests, the entity's managing director, Paul Abrahams, had told Parliament's Public Administration and Appropriations Committee (PAAC) in July that pilferage remains a major issue. Added to that, he said the problem has been compounded by collusion between the thieves and some workers at the state-run entity.Discuss the implication(s) set on the nations state owned business entity. Question Three A so-called auto-regressive moving-average causal filter initially at rest is described by the following difference equation: y[n] -0.9y[n 1] +0.81y[n-2] =x[n] - x[n 1] a) Compute the z-transform of the impulse response of the filter H(z) (the transfer function) and give its region of convergence. [4] b) Sketch the pole-zero plot. [3] c) Compute the impulse response h[n] of the filter. [7]