given the equation 4x^2 − 8x + 20 = 0, what are the values of h and k when the equation is written in vertex form a(x − h)^2 + k = 0? a. h = 4, k = −16 b. h = 4, k = −1 c. h = 1, k = −24 d. h = 1, k = 16

Answers

Answer 1

the values of h and k when the equation is written in vertex form a(x − h)^2 + k = 0  is (d) h = 1, k = 16.

To write the given quadratic equation [tex]4x^2 - 8x + 20 = 0[/tex] in vertex form, [tex]a(x - h)^2 + k = 0[/tex], we need to complete the square. The vertex form allows us to easily identify the vertex of the quadratic function.

First, let's factor out the common factor of 4 from the equation:

[tex]4(x^2 - 2x) + 20 = 0[/tex]

Next, we want to complete the square for the expression inside the parentheses, x^2 - 2x. To do this, we take half of the coefficient of x (-2), square it, and add it inside the parentheses. However, since we added an extra term inside the parentheses, we need to subtract it outside the parentheses to maintain the equality:

[tex]4(x^2 - 2x + (-2/2)^2) - 4(1)^2 + 20 = 0[/tex]

Simplifying further:

[tex]4(x^2 - 2x + 1) - 4 + 20 = 0[/tex]

[tex]4(x - 1)^2 + 16 = 0[/tex]

Comparing this to the vertex form, [tex]a(x - h)^2 + k[/tex], we can identify the values of h and k. The vertex form tells us that the vertex of the parabola is at the point (h, k).

From the equation, we can see that h = 1 and k = 16.

Therefore, the correct answer is (d) h = 1, k = 16.

To know more about equation visit:

brainly.com/question/649785

#SPJ11


Related Questions

determine whether the relation r on the set of all people is reflexive, symmetric, antisymmetric, and/or transitive, where (a, b) ∈ r if and only if a is taller than b. (check all that apply.)

Answers

Let’s begin with the relation R. Relation R on the set of all people is reflexive, antisymmetric, and transitive, but not symmetric.

If the relation R were symmetric, then that would imply that if a is taller than b, then b is taller than a as well. This does not hold true always. In other words, just because a is taller than b does not mean that b is taller than a too.Relation R is reflexive since each person is at least as tall as themselves. This means a relation R is formed by all the pairs (a, a) with a∈ all people.Relation R is transitive as well. If a is taller than b and b is taller than c, then a must be taller than c too. This means if (a, b) and (b, c) both belong to the relation R, then (a, c) also belongs to the relation R. This forms a cycle of height between the individuals.Relation R is also antisymmetric. If a is taller than b, then b cannot be taller than a. It implies that whenever (a, b) and (b, a) both belong to the relation R, a must be equal to b. If a person is as tall as someone else, then he/she cannot be taller than that person.Relation R is formed by all the pairs (a, b) with a, b∈ all people such that a is taller than b. Let’s determine the properties of relation R.R is not symmetric. Since the relation R is formed only by the people who are taller than others, just because a is taller than b does not mean that b is taller than a as well.R is reflexive. Each person is at least as tall as themselves. This means a relation R is formed by all the pairs (a, a) with a∈ all people.R is transitive. If a is taller than b and b is taller than c, then a must be taller than c too. This means if (a, b) and (b, c) both belong to the relation R, then (a, c) also belongs to the relation R. This forms a cycle of height between the individuals.R is antisymmetric. If a is taller than b, then b cannot be taller than a. It implies that whenever (a, b) and (b, a) both belong to the relation R, a must be equal to b. If a person is as tall as someone else, then he/she cannot be taller than that person.

Relation R is reflexive, antisymmetric, and transitive, but not symmetric.

To know more about Relations visit:

brainly.com/question/31111483

#SPJ11

The change in population size over any time period can be written formula1.mml If a starting population size is 200 individuals and there are 20 births and 10 deaths per year, the per capita growth rate (r) is ____ and the new population size after one year will be _____. a) 0.05, 210 b) -0.10, 180 c) 10, 210 d) 0.10, 220 e) -0.05, 190

Answers

The per capita growth rate (r) is 0.05 and the new population size after one year will be 220. The correct option is D.

The per capita growth rate is the rate of population growth on a per-individual basis, and it is determined as the difference between the birth rate and the death rate, divided by the original population size. For example, the formula for calculating the per capita growth rate is: r = (B - D) / N where B is the birth rate, D is the death rate, and N is the original population size. Substituting the provided values in the formula1.mml, the per capita growth rate would be: r = (20 - 10) / 200 = 0.05So, the per capita growth rate is 0.05.

After that, the new population size after one year can be calculated using the following formula: Nt = N0 + rN0, where N0 is the original population size, Nt is the new population size, and r is the per capita growth rate. Substituting the values in the formula: Nt = 200 + (0.05 x 200) = 200 + 10 = 210So, the new population size after one year will be 220.

To know more about growth visit:-

https://brainly.com/question/28994799

#SPJ11

Find the area of an equilateral triangle with a side of 6 inches.
a. 4.5√3 in²
b. 9√3 in²
c. 6√3 in²

Answers

The answer is b. 9 * sqrt(3) in^2.

To find the area of an equilateral triangle, we can use the formula:

Area = (side length^2 * sqrt(3)) / 4

Given that the side length of the equilateral triangle is 6 inches, we can substitute this value into the formula:

Area = (6^2 * sqrt(3)) / 4

Simplifying further:

Area = (36 * sqrt(3)) / 4

To simplify the expression, we can divide 36 by 4:

Area = 9 * sqrt(3)

So, the area of the equilateral triangle with a side length of 6 inches is 9 * sqrt(3) square inches.

the area of an equilateral triangle with a side of 6 inches is 9√3 square inches. Hence, option b is correct. by using formula A = (√3/4) × a²A

An equilateral triangle has all three sides equal. Therefore, each angle of the triangle is 60°. Let us now proceed to calculate the area of the equilateral triangle given side length 6 inches .The formula to find the area of an equilateral triangle is,A = (√3/4) × a²Where A is the area of the triangle and a is the length of the side of the equilateral triangle. Substitute the value of a = 6 inches in the formula and calculate the area of the equilateral triangle.A = (√3/4) × a²A = (√3/4) × 6²A = (√3/4) × 36A = 9√3 square inches.

To know more about equilateral triangle Visit:

https://brainly.com/question/27213413

#SPJ11

does each function describe exponential growth or exponential decay? exponential growth exponential decay a.y=12(1.3)t
b.y=21(1.3)t c.y = 0.3(0.95)t d.y = 200(0.73)t e.y=4(14)t
f.y=4(41)t g.y = 250(1.004)t

Answers

Among the given functions, the exponential growth functions are represented by (a), (b), (e), and (f), while the exponential decay functions are represented by (c), (d), and (g).

In an exponential growth function, the base of the exponential term is greater than 1. This means that as the independent variable increases, the dependent variable grows at an increasing rate. Functions (a), (b), (e), and (f) exhibit exponential growth.

(a) y = [tex]12(1.3)^t[/tex] represents exponential growth because the base 1.3 is greater than 1, and as t increases, y grows exponentially.

(b) y = [tex]21(1.3)^t[/tex] also demonstrates exponential growth as the base 1.3 is greater than 1, resulting in an exponential increase in y as t increases.

(e) y = [tex]4(14)^t[/tex] and (f) y = [tex]4(41)^t[/tex] also represent exponential growth, as the bases 14 and 41 are greater than 1, leading to an exponential growth of y as t increases.

On the other hand, exponential decay occurs when the base of the exponential term is between 0 and 1. In this case, as the independent variable increases, the dependent variable decreases at a decreasing rate. Functions (c), (d), and (g) demonstrate exponential decay.

(c) y = [tex]0.3(0.95)^t[/tex] represents exponential decay because the base 0.95 is between 0 and 1, causing y to decay exponentially as t increases.

(d) y = [tex]200(0.73)^t[/tex] also exhibits exponential decay, as the base 0.73 is between 0 and 1, resulting in a decreasing value of y as t increases.

(g) y = [tex]250(1.004)^t[/tex] represents exponential decay because the base 1.004 is slightly greater than 1, but still within the range of exponential decay. As t increases, y decays at a decreasing rate.

In summary, functions (a), (b), (e), and (f) represent exponential growth, while functions (c), (d), and (g) represent exponential decay.

Learn more about exponential growth function here:

https://brainly.com/question/14355665

#SPJ11

please solve this question within 20 Min
this is my main question
3. (简答题, 40.0分) Let X be a random variable with density function Compute (a) P{X>0}; (b) P{0 < X

Answers

The value of the probabilities are:

(a) P(X > 0) = 1/2

(b) P(0 < X < 1) = 1/2

We have,

To compute the probabilities, we need to integrate the density function over the given intervals.

(a) P(X > 0):

To find P(X > 0), we need to integrate the density function f(x) = k(1 - x²) from 0 to 1:

P(X > 0) = ∫[0,1] f(x) dx

First, we need to determine the constant k by ensuring that the total area under the density function is equal to 1:

∫[-1,1] f(x) dx = 1

∫[-1,1] k(1 - x²) dx = 1

Solving the integral:

k ∫[-1,1] (1 - x²) dx = 1

k [x - (x³)/3] | [-1,1] = 1

k [(1 - (1³)/3) - (-1 - (-1)³/3)] = 1

k [(1 - 1/3) - (-1  1/3)] = 1

k (2/3 + 2/3) = 1

k = 3/4

Now we can compute P(X > 0):

P(X > 0) = ∫[0,1] (3/4)(1 - x²) dx

P(X > 0) = (3/4) [x - (x³)/3] | [0,1]

P(X > 0) = (3/4) [(1 - (1³)/3) - (0 - (0³)/3)]

P(X > 0) = (3/4) [(2/3) - 0]

P(X > 0) = (3/4) * (2/3) = 1/2

Therefore, P(X > 0) = 1/2.

(b) P(0 < X < 1):

To find P(0 < X < 1), we integrate the density function f(x) = k(1 - x²) from 0 to 1:

P(0 < X < 1) = ∫[0,1] f(x) dx

Using the previously determined value of k (k = 3/4), we can compute P(0 < X < 1):

P(0 < X < 1) = ∫[0,1] (3/4)(1 - x²) dx

P(0 < X < 1) = (3/4) [x - (x³)/3] | [0,1]

P(0 < X < 1) = (3/4) [(1 - (1³)/3) - (0 - (0³)/3)]

P(0 < X < 1) = (3/4) [(2/3) - 0]

P(0 < X < 1) = (3/4) * (2/3) = 1/2

Therefore, P(0 < X < 1) = 1/2.

Thus,

The value of the probabilities are:

(a) P(X > 0) = 1/2

(b) P(0 < X < 1) = 1/2

Learn more about probability here:

https://brainly.com/question/14099682

#SPJ4

The complete question:

Let X be a random variable with the density function f(x) = k(1 - x^2) for -1 ≤ x ≤ 1 and 0 elsewhere.

Compute the following probabilities:

(a) P(X > 0)

(b) P(0 < X < 1)

Suppose there is a 60% chance that a white blood cell will be a neutrophil.If a group of researchers randomly selected 15 white blood cells for their pioneer study, what is the probability that half (i.e. 7.5) or less of the sample are neutrophils? OA60% OB) 0.21% C) 21.48% D) 78.52% O E) -0.79%

Answers

The probability that half or less of the sample are neutrophils is approximately C, 21.48%.

How to find probability?

To solve this problem, use the binomial distribution. The probability of success (p) is 0.60 (60% chance of selecting a neutrophil) and the sample size (n) is 15.

To find the probability that half or less of the sample are neutrophils, which means to find the cumulative probability from 0 to 7.5 (since we can't have a fraction of a white blood cell).

Using a binomial distribution calculator or a statistical software, calculate this probability.

P(X ≤ 7.5) = P(X = 0) + P(X = 1) + ... + P(X = 7) + P(X = 7.5)

P(X ≤ 7.5) = 0.000 + 0.001 + ... + 0.179 + P(X = 7.5)

Now, P(X = 7.5) represents the probability of getting exactly 7.5 neutrophils, which is not a whole number. However, in a binomial distribution, probabilities are calculated for discrete values, so make an adjustment.

Consider P(X = 7) and P(X = 8) as the probabilities surrounding 7.5, and split the probability evenly between them:

P(X = 7) = P(X = 8) = 0.179 / 2 = 0.0895

Now calculate the cumulative probability:

P(X ≤ 7.5) = 0.000 + 0.001 + ... + 0.179 + 0.0895 + 0.0895

P(X ≤ 7.5) ≈ 0.2148

Therefore, the probability that half or less of the sample are neutrophils is approximately 21.48%.

The correct answer is (C) 21.48%.

Find out more on probability here: https://brainly.com/question/25870256

#SPJ1

HELPP Write the equation of the given line in slope-intercept form:

Answers

Answer:

y = -3x - 1

Step-by-step explanation:

The slope-intercept form is y = mx + b

m = the slope

b = y-intercept

Slope = rise/run or (y2 - y1) / (x2 - x1)

Point (-1, 2) (1, -4)

We see the y decrease by 6 and the x increase by 2, so the slope is

m = -6 / 2 = -3

Y-intercept is located at (0, - 1)

So, the equation is y = -3x - 1

Week 5 portfolio project.....Need help on ideas how to put this
together. My research topic is the impact covid-19 has on the
healthcare industry.. zoom in for view
Statistics in Excel with Data Analysis Toolpak Week 5 . Due by the end of Week 5 at 11:59 pm, ET. This week your analysis should be performed in Excel and documented in your research paper. Data Analy

Answers

The COVID-19 pandemic has had a significant impact on the healthcare industry worldwide such as increased demand and strain on healthcare systems.

How to explain the impact

Increased demand and strain on healthcare systems: The rapid spread of the virus resulted in a surge in the number of patients requiring medical care.

Focus on infectious disease management: COVID-19 became a top priority for healthcare providers globally. Resources were redirected towards testing, treatment, and containment efforts, with a particular emphasis on developing effective diagnostic tools, vaccines, and therapeutics.

Telemedicine and digital health solutions: In order to minimize the risk of virus transmission and provide care to patients while maintaining social distancing, telemedicine and digital health solutions saw widespread adoption.

Supply chain disruptions: The pandemic disrupted global supply chains, causing shortages of essential medical supplies, personal protective equipment (PPE), and medications. Healthcare providers faced challenges in obtaining necessary equipment and resources, leading to rationing and prioritization of supplies.

Financial impact: The healthcare industry experienced significant financial implications due to the pandemic. Many hospitals and healthcare facilities faced revenue losses due to canceled procedures and decreased patient volumes, especially in areas with strict lockdowns or overwhelmed healthcare systems.

Mental health and well-being: The pandemic had a profound impact on the mental health of healthcare workers. They faced immense stress, burnout, and emotional exhaustion due to long working hours, high patient loads, and the emotional toll of treating severely ill or dying patients.

Leans more about pandemic on.

https://brainly.com/question/18759665

#SPJ4

A particle moves in a vertical plane along the closed path seen in the figure(Figure 1) starting at A and eventually returning to its starting point. How much work is done on the particle by gravity?

Answers

the work done by the gravity on the particle will be zero ,by using formula of work done = force x displacement

Given that a particle moves in a vertical plane along the closed path seen in the figure, starting at A and eventually returning to its starting point. We are supposed to find the work done on the particle by gravity.What is work done?Work done is a physical quantity which is defined as the product of the force applied to an object and the distance it moves in the direction of the force. The formula for work done is given by:Work done = force x distance moved in the direction of force When the particle moves in a closed path and returns to the initial position, then the net displacement is zero.

To know more about work done Visit:

https://brainly.com/question/32263955

#SPJ11

You are told that X ($), the amount spent per patron at the
Royal Brisbane show is normally distributed with mean $49.75 and
standard deviation $13.60. Given this, answer the following
questions:
a) D

Answers

The formula for finding z-score is given by:z-score = (X - μ)/σ

Given that mean μ = $49.75 and standard deviation σ = $13.60

Value of X = $60

z-score = (X - μ)/σ

= (60 - 49.75)/13.60

= 0.755

Therefore, the z-score for a value of $60 is 0.755.

Note: The z-score is a measure of how many standard deviations a data point is from the mean.

It tells us how much a value deviates from the mean in terms of standard deviation units. A z-score of 0 means the value is at the mean, a positive z-score means it is above the mean, and a negative z-score means it is below the mean.

To know more about equation visit :-

https://brainly.com/question/475676

#SPJ11

Heavy football players: Following are the weights, in pounds, for samples of offensive and defensive linemen on a professional football team at the beginning of a recent year. Offense: 278 302 310 290 252 304 359 319 350 260 300 359 Defense: 278 295 351 307 338 266 298 250 296 294 299 289
(a) Find the sample standard deviation for the weights for the offensive linemen. Round the answer to at least one decimal place. The sample standard deviation for the weights for the offensive linemen is lb. (b) Find the sample standard deviation for the weights for the defensive linemen. Round the answer to at least one decimal place. The sample standard deviation for the weights for the defensive linemen is Ib.

Answers

The standard deviation for each sample are given as follows:

a) Offensive lineman: 35.5 lb.

b) Defensive lineman: 27.5 lb.

What are the mean and the standard deviation of a data-set?

The mean of a data-set is defined as the sum of all values in the data-set, divided by the cardinality of the data-set, which is the number of values in the data-set.The standard deviation of a data-set is defined as the square root of the sum of the differences squared between each observation and the mean, divided by the cardinality of the data-set.

For the offense, the mean is given as follows:

Mean = (278 + 302 + 310 + 290 + 252 + 304 + 359 + 319 + 350 + 260 + 300 + 359)/12 = 306.9 lbs.

Then the sum of the differences squared is given as follows:

(278 - 306.9)² + (302 - 306.9)² + ... + (359 - 306.9)².

We take the above result, divide by the sample size, and take the square root to obtain the standard deviation of 35.5 lb.

The same procedure is followed for the players on defense.

More can be learned about the standard deviation of a data-set at https://brainly.com/question/475676

#SPJ4

Let n1=60, X1=10, n2=90, and X2=10. The estimated value of the
standard error for the difference between two population
proportions is
0.0676
0.0923
0.0154
0.0656

Answers

The estimated value of the standard error for the difference between the two population proportions is approximately 0.1092.

To estimate the standard error for the difference between two population proportions, you can use the following formula:

Standard Error = sqrt((p1 * (1 - p1) / n1) + (p2 * (1 - p2) / n2))

where p1 and p2 are the sample proportions, and n1 and n2 are the respective sample sizes.

In this case, you are given n1 = 60, X1 = 10, n2 = 90, and X2 = 10. To estimate the standard error, you need to calculate the sample proportions first:

p1 = X1 / n1 = 10 / 60 = 1/6

p2 = X2 / n2 = 10 / 90 = 1/9

Now, substitute these values into the formula:

Standard Error = sqrt((1/6 * (1 - 1/6) / 60) + (1/9 * (1 - 1/9) / 90))

Simplifying the expression:

Standard Error = sqrt((5/36 * 31/36) / 60 + (8/81 * 73/81) / 90)

Standard Error ≈ sqrt(0.0042 + 0.0077)

Standard Error ≈ sqrt(0.0119)

Standard Error ≈ 0.1092

Therefore, the estimated value of the standard error for the difference between the two population proportions is approximately 0.1092.

Learn more about  population from

https://brainly.com/question/25896797

#SPJ11


#24 A particular cell in Excel is referred to by it's cell name,
such as D25. The D refers to the ______?
#32
The correct way to enter a cell address (for cell D3) in Excel
when you want the row to al

Answers

#24: The "D" in the cell name D25 refers to the column identifier in Excel.

#32: To enter a cell address in Excel, specifically for cell D3, when you want the row to always remain the same, you use the dollar sign ($) before the row number. So, the correct way to enter the cell address D3 while keeping the row fixed is "$D$3". By adding the dollar sign before both the column letter and the row number, the cell reference becomes an absolute reference, meaning it will not change when copied or filled down to other cells.

This is useful when you want to refer to a specific cell in formulas or when creating structured references in Excel tables.

Learn more about number here: brainly.com/question/28982016

#SPJ11

If the zero conditional mean assumption holds, we can give our coefficients a causal interpretation. True False

Answers

True. If the zero conditional mean assumption holds, the coefficients can be given a causal interpretation.

True. If the zero conditional mean assumption, also known as the exogeneity assumption or the assumption of no omitted variables bias, holds in a regression model, then the coefficients can be given a causal interpretation.

The zero conditional mean assumption states that the error term in the regression model has an expected value of zero given the values of the independent variables. This assumption is important for establishing causality because it implies that there is no systematic relationship between the error term and the independent variables.

When this assumption is satisfied, we can interpret the coefficients as representing the causal effect of the independent variables on the dependent variable, holding other factors constant. However, if the zero conditional mean assumption is violated, the coefficients may be biased and cannot be interpreted causally.

To learn more about “variable” refer to the  https://brainly.com/question/28248724

#SPJ11

How to determine if slopes are for parallel lines, perpendicular lines, or neither.

Answers

When two lines are graphed on a coordinate plane, they can be either parallel, perpendicular, or neither. Here's how to determine if slopes are for parallel lines, perpendicular lines, or neither:Slopes of Parallel LinesParallel lines have the same slope.

If two lines have slopes that are the same or equal, the lines are parallel. The slope-intercept equation for a line is y = mx + b. Where m represents the slope of the line and b represents the y-intercept.Slopes of Perpendicular LinesPerpendicular lines have slopes that are negative reciprocals of each other. The product of the slopes of two perpendicular lines is -1.

This is because the negative reciprocal of any non-zero number is the opposite of its reciprocal. In other words, if you flip a fraction, the numerator becomes the denominator and vice versa, then multiply the result by -1.To summarize, two lines are parallel if they have the same slope, perpendicular if their slopes are negative reciprocals of each other, and neither parallel nor perpendicular if their slopes are neither equal nor negative reciprocals of each other.

To know more about reciprocal visit:

brainly.com/question/15590281

#SPJ11

Problem 4. (1 point) Construct both a 90% and a 95% confidence interval for $₁. Ĵ₁ = 30, s = 4.1, SSxx = 67, n = 20 90%:

Answers

The given data with a Sample mean of 30, a sample standard deviation of 4.1, a sample size of 20, and SSxx of 67, the 90% confidence interval is ($28.418, $31.582), and the 95% confidence interval is ($28.083, $31.917).

To construct a confidence interval for the population mean, we need to use the formula:

Confidence interval = sample mean ± margin of error

First, let's calculate the sample mean (Ĵ₁), which is given as 30.

Next, we need to calculate the standard error (SE) using the formula:

SE = s / √n

Where s is the sample standard deviation and n is the sample size.

Given that s = 4.1 and n = 20, we can calculate the standard error:

SE = 4.1 / √20 ≈ 0.917

To calculate the margin of error, we need to determine the critical value associated with the desired confidence level. For a 90% confidence level, the critical value can be obtained from a t-table or calculator. Since the sample size is small (n < 30), we use a t-distribution instead of a normal distribution.

For a 90% confidence level with 20 degrees of freedom, the critical value is approximately 1.725.

Now, we can calculate the margin of error:

Margin of error = critical value * standard error

                = 1.725 * 0.917

                ≈ 1.582

Now we can construct the 90% confidence interval:

Confidence interval = sample mean ± margin of error

                   = 30 ± 1.582

                   ≈ (28.418, 31.582)

Thus, the 90% confidence interval for $₁ is approximately ($28.418, $31.582).

To construct a 95% confidence interval, the process is the same, but we need to use the appropriate critical value. For a 95% confidence level with 20 degrees of freedom, the critical value is approximately 2.086.

Using the same formula as above, the margin of error is:

Margin of error = 2.086 * 0.917

              ≈ 1.917

So, the 95% confidence interval is:

Confidence interval = sample mean ± margin of error

                   = 30 ± 1.917

                   ≈ (28.083, 31.917)

Therefore, the 95% confidence interval for $₁ is approximately ($28.083, $31.917).the given data with a sample mean of 30, a sample standard deviation of 4.1, a sample size of 20, and SSxx of 67, the 90% confidence interval is ($28.418, $31.582), and the 95% confidence interval is ($28.083, $31.917).

For more questions Sample mean.

https://brainly.com/question/30331609

#SPJ8

Suppose there is a medical screening procedure for a specific cancer that has sensitivity = .90, and a specificity = .95. Suppose the underlying rate of the cancer in the population is .001. Let B be the Event "the person has that specific cancer," and let A be the event "the screening procedure gives a positive result." What is the probability that a person has the disease given the result of the screening is positive?

Answers

The probability that a person has the disease given the result of the screening is positive is approximately 0.0162.

The probability that a person has the disease given the result of the screening is positive can be calculated using Bayes’ Theorem.

Bayes’ Theorem states that the probability of an event (A), given that another event (B) has occurred, can be calculated using the following formula:

[tex]$$P(A | B) = \frac{P(B | A) P(A)}{P(B)}$$[/tex]

where,

$$P(A | B)$$

is the probability of event A occurring given that event B has occurred, $$P(B | A)$$

is the probability of event B occurring given that event A has occurred,

$$P(A)$$

is the prior probability of event A occurring, and

$$P(B)$$

is the prior probability of event B occurring.

Using the given information, we can calculate the required probability as follows: Given,

[tex]$$P(B | A) = 0.90$$ (sensitivity)$$P(B' | A') = 0.95$$ (specificity)$$P(A) = 0.001$$$$P(A') = 1 - P(A) = 0.999$$[/tex]

We want to find

$$P(A | B)$$.

Using Bayes’ theorem, we can write:

[tex]$$P(A | B) = \frac{P(B | A) P(A)}{P(B | A) P(A) + P(B | A') P(A')}$$$$= \frac{0.90 \cdot 0.001}{0.90 \cdot 0.001 + 0.05 \cdot 0.999}$$$$≈ 0.0162$$[/tex]

Therefore, the probability that a person has the disease given the result of the screening is positive is approximately 0.0162.

To know more on probability visit:

https://brainly.com/question/13604758

#SPJ11

I really need some of help please and thank you​

Answers

The angle m∠2 in the line is 54 degrees.

How to find the angles in a line?

complementary angles are angles that sum up to 90 degrees. The angles m∠1 and m∠2 sum up to 90 degrees. Therefore, they are complementary angles.

Let's find the angle m∠2 as follows:

m∠1 + m∠2 = 90

m∠1 = 36 degrees

Therefore,

36 + m∠2 = 90

m∠2 = 90 - 36

m∠2 = 54 degrees

learn more on angles here: https://brainly.com/question/23777548

#SPJ1

find the mean, , and standard deviation, , for a binomial random variable x. (round all answers for to three decimal places.)

Answers

The binomial random variable, X, denotes the number of successful outcomes in a sequence of n independent trials that may result in a success or failure. Here, we have to find the mean and standard deviation of a binomial random variable X.I

n a binomial experiment, we have the following probabilities:Probability of success, pProbability of failure, q = 1 - pThe mean of X is given by the formula:μ = npThe variance of X is given by the formula:σ² = npqThe standard deviation of X is given by the formula:σ = sqrt(npq)Where n is the number of trials.For the given problem, we have not been given the values of n, p, and q.

Hence, it's not possible to find the mean, variance, and standard deviation of X. Without these values, we cannot proceed further and thus the answer cannot be given.Following are the formulas of mean and standard deviation:Mean: μ = np; variance: σ² = npq and standard deviation: σ = sqrt(npq).These formulas are used to calculate the mean and standard deviation of a binomial distribution.

To Know more about deviation visit:

brainly.com/question/31835352

#SPJ11

the product of all digits of positive integer $m$ is $105.$ how many such $m$s are there with distinct digits?

Answers

We need to find the total number of such $m$'s with distinct digits whose product of all digits of positive integer $m$ is $105. $Here we have, $105=3×5×7$Therefore, the number $m$ must have $1,3, $ and $5$ as digits.

Also, $m$ must be a three-digit number because $105$ cannot be expressed as a product of more than three digits. For the ones digit, we can use $5. $For the hundreds digit, we can use $1$ or $3. $We have two options to choose the digit for the hundred's place (1 or 3). After choosing the hundred's digit, the tens digit is forced to be the remaining digit, so we have only one option for that. Therefore, there are $2$ options for choosing the hundred's digit and $1$ option for choosing the tens digit. Hence the total number of $m$'s possible$=2 × 1= 2.$Therefore, there are two such $m$'s.

To know more about digits visit:

brainly.com/question/30142622

#SPJ11

Which results from multiplying the six trigonometric functions?
a. -3
b. -11
c. -1
d. 13

Answers

Answer:

The main answer:

The answer is c. -1.

What is the result when you multiply the six trigonometric functions?

The six trigonometric functions are sine (sin), cosine (cos), tangent (tan), cosecant (csc), secant (sec), and cotangent (cot). When these functions are multiplied together, the result is always equal to -1.

To understand why the product of the six trigonometric functions is -1, we can examine the reciprocal relationships between these functions. The reciprocals of sine, cosine, and tangent are cosecant, secant, and cotangent, respectively. Thus, if we multiply a trigonometric function by its reciprocal, the result will always be 1.

When we multiply all six trigonometric functions together, we can pair each function with its reciprocal, resulting in a product of 1 for each pair. However, since there are three pairs in total, the overall product is 1 x 1 x 1 = 1 cubed, which equals 1.

However, there is an additional factor to consider. The sign of the trigonometric functions depends on the quadrant in which the angle lies. In three quadrants, sine, tangent, cosecant, and cotangent are positive, while cosine and secant are negative. In the remaining quadrant, cosine and secant are positive, while sine, tangent, cosecant, and cotangent are negative. The negative sign from the cosine and secant functions cancels out the positive signs from the other functions, resulting in a final product of -1.

Learn more about:Trigonometry and its functions

brainly.com/question/17586607

#SPJ11

in this diagram bac = edf if the area of bac=15in what is the area of edf

Answers

In the diagram the area of edf is 15 sq. in.

In the given diagram bac = edf, and the area of bac is 15 in. Now we need to determine the area of edf.Using the area of a triangle formula:Area of a triangle = 1/2 × Base × Height

We know that both triangles have the same base (ac).Therefore, to find the area of edf, we need to find the height of edf.In triangle bac, we can find the height as follows:

Area of bac = 1/2 × ac × height

bac15 = 1/2 × ac × height

bac30 = ac × heightbacHeightbac = 30 / ac

Now that we have the heightbac, we can use it to find the area of edf as follows:

Area of edf = 1/2 × ac × heightedfArea of edf = 1/2 × ac × heightbacArea of edf = 1/2 × ac × 30/ac

Area of edf = 15

To know more about  triangles :

https://brainly.com/question/2773823

#SPJ11

A hollow shaft with a 1.6 in. outer diameter and a wall thickness of 0.125 in. is subjected to a twisting moment of and a bending moment of 2000 lb-in. Determine the stresses at point A (where x is maximum), and then compute and draw the maximum shear stress element. Describe its orientation relative to the shaft axis.

Answers

To determine the stresses at point A in the hollow shaft, we need to consider both the twisting moment and the bending moment.

Given:

Outer diameter of the shaft (D) = 1.6 in.

Wall thickness (t) = 0.125 in.

Twisting moment (T) = [value missing]

Bending moment (M) = 2000 lb-in

To calculate the stresses, we can use the following formulas:

Shear stress due to twisting:

τ_twist = (T * r) / J

Bending stress:

σ_bend = (M * c) / I

Where:

r = Radius from the center of the shaft to the point of interest (in this case, point A)

J = Polar moment of inertia

c = Distance from the neutral axis to the outer fiber (in this case, half of the wall thickness)

I = Area moment of inertia

To find the values of J and I, we need to calculate the inner radius (r_inner) and the outer radius (r_outer):

r_inner = (D / 2) - t

r_outer = D / 2

Next, we can calculate the values of J and I:

J = π * (r_outer^4 - r_inner^4) / 2

I = π * (r_outer^4 - r_inner^4) / 4

Finally, we can substitute these values into the formulas to calculate the stresses at point A.

Regarding the maximum shear stress element, it occurs at a 45-degree angle to the shaft axis. It forms a plane that is inclined at 45 degrees to the longitudinal axis of the shaft.

To know more about Calculate visit-

brainly.com/question/31718487

#SPJ11

Suppose that the weight of an newborn fawn is Uniformly distributed between 1.7 and 3.4 kg. Suppose that a newborn fawn is randomly selected. Round answers to 4 decimal places when possible. a. The mean of this distribution is 2.55 O b. The standard deviation is c. The probability that fawn will weigh exactly 2.9 kg is P(x - 2.9) - d. The probability that a newborn fawn will be weigh between 2.2 and 2.8 is P(2.2 < x < 2.8) = e. The probability that a newborn fawn will be weigh more than 2.84 is P(x > 2.84) = f. P(x > 2.3 | x < 2.6) = g. Find the 60th percentile.

Answers

The answer to the question is given in parts:

a. The mean of this distribution is 2.55.

The mean of a uniform distribution is the average of its minimum and maximum values, which is given by the following formula:

Mean = (Maximum value + Minimum value)/2

Therefore, Mean = (3.4 + 1.7)/2 = 2.55.

b. The standard deviation is 0.4243.

The formula for the standard deviation of a uniform distribution is given by the following formula:

Standard deviation = (Maximum value - Minimum value)/√12

Therefore, Standard deviation = (3.4 - 1.7)/√12 = 0.4243 (rounded to four decimal places).

c. The probability that fawn will weigh exactly 2.9 kg is 0.

The probability of a continuous random variable taking a specific value is always zero.

Therefore, the probability that the fawn will weigh exactly 2.9 kg is 0.

d. The probability that a newborn fawn will weigh between 2.2 and 2.8 is P(2.2 < x < 2.8) = 0.25.

The probability of a continuous uniform distribution is given by the following formula:

Probability = (Maximum value - Minimum value)/(Total range)

Therefore, Probability = (2.8 - 2.2)/(3.4 - 1.7) = 0.25.

e. The probability that a newborn fawn will weigh more than 2.84 is P(x > 2.84) = 0.27.

The probability of a continuous uniform distribution is given by the following formula:

Probability = (Maximum value - Minimum value)/(Total range)

Therefore, Probability = (3.4 - 2.84)/(3.4 - 1.7) = 0.27.f. P(x > 2.3 | x < 2.6) = 0.5.

This conditional probability can be found using the following formula:

P(x > 2.3 | x < 2.6) = P(2.3 < x < 2.6)/P(x < 2.6)

The probability that x is between 2.3 and 2.6 is given by the following formula:

Probability = (2.6 - 2.3)/(3.4 - 1.7) = 0.147

The probability that x is less than 2.6 is given by the following formula:

Probability = (2.6 - 1.7)/(3.4 - 1.7) = 0.441

Therefore,

P(x > 2.3 | x < 2.6) = 0.147/0.441 = 0.5g.

Find the 60th percentile. The 60th percentile is the value below which 60% of the observations fall. The percentile can be found using the following formula:

Percentile = Minimum value + (Percentile rank/100) × Total range

Therefore, Percentile = 1.7 + (60/100) × (3.4 - 1.7) = 2.38 (rounded to two decimal places).

Therefore, the 60th percentile is 2.38.

learn more about standard deviation here:

https://brainly.com/question/12402189

#SPJ11

Mr. Spock sees a Gorn. He says that the Gorn is in the 95.99th
percentile. If the heights of Gorns are normally distributed with a
mean of 200 cm and a standard deviation of 5 cm. How tall is the
Gorn

Answers

The height of the Gorn is approximately 209.4 cm.

To find the height of the Gorn, we need to calculate the z-score by using the standard normal distribution formula.

z = (x - μ) / σ where z = z-score

x = the height of the Gornμ

= the mean height of Gorns

= 200 cmσ

= the standard deviation of heights of Gorns = 5 cm

Now, we have to find the value of the z-score that corresponds to the 95.99th percentile.

For that, we use the standard normal distribution table.

The standard normal distribution table provides the area to the left of the z-score.

We need to find the area to the right of the z-score, which is given by:1 - area to the left of the z-score

So, the area to the left of the z-score that corresponds to the 95.99th percentile is:

Area to the left of the z-score = 0.9599

To find the corresponding z-score, we look in the standard normal distribution table and find the value of z that has an area of 0.9599 to the left of it.

We can use the z-score table to find the value of z.

Using the z-score table, the value of z that corresponds to an area of 0.9599 to the left of it is 1.88.z = 1.88

Substitute the given values of μ, σ, and z into the standard normal distribution formula and solve for x.1.88 = (x - 200) / 5

Multiplying both sides by 5, we get:9.4 = x - 200

Adding 200 to both sides, we get:x = 209.4

Therefore, the height of the Gorn is approximately 209.4 cm.

Know more about height here:

https://brainly.com/question/28122539

#SPJ11

An Ontario city health official reports that, based on a random sample of 90 days, the average daily Covid-19 vaccinations administered was 1200. If the population standard deviation is 210 vaccinations, then a 99% confidence interval for the population mean daily vaccinations is Multiple Choice eBook O O 1200 + 6 1200 + 43 1200 ± 57 1200 + 5

Answers

A 99% confidence interval for the population mean daily vaccinations is [1154.06, 1245.94].

We can use the formula for a confidence interval for the population mean:

Confidence Interval = sample mean ± (critical value) * (standard error)

Where:

sample mean = 1200 (given)

critical value is obtained from a t-distribution table with n-1 degrees of freedom and the desired level of confidence. For a 99% confidence level with 89 degrees of freedom, the critical value is approximately 2.64.

standard error = population standard deviation / sqrt(sample size). In this case, standard error = 210 / sqrt(90) = 22.16.

Plugging in these values, we get:

Confidence Interval = 1200 ± 2.64 * 22.16

Confidence Interval = [1154.06, 1245.94]

Therefore, a 99% confidence interval for the population mean daily vaccinations is [1154.06, 1245.94].

Learn more about  population from

https://brainly.com/question/25896797

#SPJ11

Compute the least-squares regression line for predicting y from x given the following summary statistics. Round the slope and y- intercept to at least four decimal places. x = 42,000 S.. = 2.2 y = 41,

Answers

The slope of the least-squares regression line is 0 and the y-intercept is 41.

Given that

x = 42,000Sx

= 2.2y

= 41

We need to compute the least-squares regression line for predicting y from x.

For this, we first calculate the slope of the line as shown below:

slope, b = Sxy/Sx²

where Sxy is the sum of the products of the deviations for x and y from their means.

So we need to compute Sxy as shown below:

Sxy = Σxy - (Σx * Σy)/n

where Σxy is the sum of the products of x and y values.

Using the given values, we get:

Sxy = (42,000*41) - (42,000*41)/1= 0

So the slope of the line is:b = Sxy/Sx²= 0/(2.2)²= 0

So the least-squares regression line for predicting y from x is:y = a + bx

where a is the y-intercept and b is the slope of the line.

So substituting the values of x and y, we get:41 = a + 0(42,000)a = 41

Thus the equation of the line is:y = 41

So, the slope of the least-squares regression line is 0 and the y-intercept is 41.

Know more about the slope here:
https://brainly.com/question/3493733

#SPJ11

if+you+deposit+$10,000+at+1.85%+simple+interest,+compounded+daily,+what+would+your+ending+balance+be+after+3+years?

Answers

The ending balance would be $11,268.55 after 3 years.

If you deposit $10,000 at 1.85% simple interest, compounded daily, what would your ending balance be after 3 years?The ending balance after 3 years is $11,268.55 for $10,000 deposited at 1.85% simple interest, compounded daily.

To calculate the ending balance after 3 years,

we can use the formula for compound interest which is given by;A = P (1 + r/n)^(n*t)Where A is the ending amount, P is the principal amount, r is the annual interest rate, n is the number of times

the interest is compounded per year and t is the number of years.

Using the given values, we get;P = $10,000r = 1.85%n = 365t = 3 years

Substituting the values in the formula, we get;A = 10000(1 + 0.0185/365)^(365*3)A = $11,268.55

To know more about balance visit:

https://brainly.com/question/27154367

#SPJ11

Find the curve in the xy-plane that passes through the point (9,4) and whose slope at each point is 3 x

. y=

Answers

The required curve in the xy-plane is y = (3x²) / 2 – 117.5.

The given differential equation is y′ = 3x.

Here we have to find the curve in the xy-plane that passes through the point (9, 4) and whose slope at each point is 3x.

To solve the given differential equation, we have to integrate both sides with respect to x, which is shown below;

∫dy = ∫3xdxIntegrating both sides, we get;y = (3x²)/2 + C

where C is a constant of integration.

Now, we have to use the given point (9, 4) to find the value of C.

Substituting x = 9 and y = 4, we get;4 = (3 * 9²) / 2 + C4 = 121.5 + C C = -117.5N

Now we can substitute the value of C in the above equation;y = (3x²) / 2 – 117.5

Therefore, the required curve in the xy-plane is y = (3x²) / 2 – 117.5.

Know more about a curve  here:

https://brainly.com/question/26460726

#SPJ11

Use the convolution theorem and Laplace transforms to compute 3 3 *2. 3 3 2= (Туре an expression using t as the variable.)

Answers

The convolution theorem is a technique used to simplify the multiplication of two Laplace transform functions, that is, the Laplace transform of the convolution of two functions is equal to the product of their Laplace transforms.

Consider the Laplace transform of the first function, f(t) = 3t3, which is given by F(s) = L{f(t)} = 3!/(s4). Likewise, the Laplace transform of the second function g(t) = 2t is given by G(s) = L{g(t)} = 2/(s2).Using the convolution theorem, we have the following relationship: L{f(t)*g(t)} = F(s)*G(s)where * denotes convolution of the two functions.

Hence, L{f(t)*g(t)} = (3!/(s4)) * (2/(s2))Multiplying the two Laplace transforms, we get: L{f(t)*g(t)} = 6/(s6)Hence, f(t)*g(t) = L-1{L{f(t)*g(t)}} = L-1{6/(s6)}Taking the inverse Laplace transform of the above expression, we obtain:f(t)*g(t) = 6 t5/5, where t ≥ 0Therefore, the expression using t as the variable is:f(t)*g(t) = (6t5)/5.

To know more about inverse visit :

https://brainly.com/question/30339780

#SPJ11

Other Questions
(a) Describe the MacDougall-Kemp model of labour mobility including its key . assumptions. [30 marks] TRUE/FALSE slavery did not affect northern merchants and manufacturers. Earl orders a custom-made tuxedo for his wedding from Taylor. Earl's bride cancels the wedding on the day of Earl's final fitting. Earl does not pay for the tuxedo, and Taylor sells it to a friend. The sale to a friend represents a breach of contract. specific performance. rescission and restitution. a mitigation of damages. The use of consistency across time/incidents in due process serves toGroup of answer choicesinform the employee exactly what behavior(s) are not permitted by the organizationreduce the possibility that a court will use a firms "custom" rather than its regulations in the courts decisionsprovide accurate, objectively true information for the firms use in a disciplinary proceedinga & ca & b The FTSE 100 is an index of the 100 largest market capitalization stocks traded on the London Stock Exchange. You think that 100 stocks are too much to keep up with, so you want to drop that number to 50. By doing this, what is the percentage drop in the UNIQUE relations between any two stocks in your portfolio that you will have to worry about? ABC Corp. sponsors a defined benefit pension plan for its employees. On January 1, 2021, the following balances related to this plan. Plan assets (market-related value) Projected benefit obligation Pension asset/liability Prior service cost OCI-LOSS As a result of the operation of the plan during 2021, the actuary provided the following additional data for 2021. Service cost Actual return on plan assets Amortization of prior service cost Contributions $270,000 340,000 70,000 Cr. 90,000 39,000 Benefits paid retirees Settlement rate Expected return on plan assets Average remaining service life of active employees $45,000 27,000 12,000 65,000 41,000 7% 8% 10 years a. Compute pension expense for ABC Corp. for the year 2021 by preparing a pension worksheet that shows the journal entry for pension expense. Steel rails are laid down at an air temperature of 4 C as partof a new train line in the Blue Mountains. The standard rail lengthis 12m.Find the length of the gap that should be left between rai F SCALE 4 1 2 3 2 2 0 0 0 0 1 3 0 3 1 0 0 0 0 0 0 1 0 1 4 3 0 1 1 1 1 0 0 1 1 1 1 2 0 1 2 0 4 0 1 0 3 0 F SCALE LENGTH (MI) 39.80 5.00 0.06 0.10 9.00 14.40 4.20 1.52 10.01 0.09 0.20 6.42 5.73 1.75 15.00 0.50 0.15 0.38 0.28 57.00 2.87 0.21 29.60 6.00 2.00 28.01 7.10 2.29 0.56 1.00 1.00 0.50 2.52 0.51 0.50 2.40 4.09 2.00 0.60 5.00 0.80 0.26 6.00 3.20 5.70 0.16 21.00 1.83 3.50 1.00 LENGTH (MI) WIDTH (YD) 400 100 100 200 400 50 50 30 25 50 20 300 40 50 100 200 10 30 50 50 50 30 10 100 50 800 100 350 150 50 100 20 50 70 50 450 50 150 80 75 27 75 400 60 1200 50 100 100 150 50 WIDTH (TD) Use software or a calculator to find the range, variance, and standard deviation of the F-scale measurements from the tornadoes listed the data set available below. Be careful to account for missing data. Click the icon to view the tornado data. can be deleted from the Since the data are missing at random, the tornadoes with missing values data set. The range of the F-scale measurements is (Round to one decimal place as needed.) .Residential Roofing Company purchases inventory of $54,500. The freight cost is $800. Its supplier uses the FOB destination method. What is the total cost of purchasing the inventory to Residential Roofing? calculate the length of b to the nearest centimeter. what is the wavelength, in nm , of a photon with energy 0.30 ev ? A psychiatrist is interested in finding a 90% confidence interval for the tics per hour exhibited by children with Tourette syndrome. The data below show the tics in an observed hour for 12 randomly selected children with Tourette syndrome. Round answers to 3 decimal places where possible. 8836 86 12 4 0 11 8 11 a. To compute the confidence interval use a distribution. b. With 90% confidence the population mean number of tics per hour that children with Tourette syndrome exhibit is between 3.705 x and 10.461 x. c. If many groups of 12 randomly selected children with Tourette syndrome are observed, then a different confidence interval would be produced from each group. About 90 percent of these confidence intervals will contain the true population mean number of tics per hour and about 10 percent will not contain the true population mean number of tics per hour. Find the probability of a flopping a set in holdem given thatyou have a pocket pair (Express as % and round to 2 digits). F(x)=square root 2xG(x)= square root 32x 10. If the angle of incidence is along the normal, what is the angle of reflection a) 0 b) 90 c) 30 d) 180 what percentage of the area under the normal curve is to the left of z1z1 and to the right of z2z2? round your answer to two decimal places. 3 of 10 View Policies Current Attempt in Progress For each of the following independent situations, indicate contingent liability disclosed for a company using IFRS. a. A lawsuit against a company that management believes the company will settle in the future with a payment that it can estimate. A lawsuit against a company that management believes the company will settle in the future but is unable to estimate. A nuisance lawsuit against the company, which the company does not anticipate losing. An estimate of warranty costs pertaining to products sold in the current year that a company estimates it will pay in the future. An estimate of cleanup costs that a company will spend at a mine site in order to comply with new provincial regulations when abandoning that site next year. The company has been operating the mine for the past 20 years. b. C. d. e. Not recorded nor disclosed Only record Record and disclose a provision Not recorded, disclose only what is terry winters's color and information attempting to transform into this painting? Determine whether the triangles are similar by AA similarity, SAS similarity, SSS similarity, or not similar. Fill in the missing numbers to complete the linear equation that gives the rule for this table.y = ___x +____x y2 -243 -474 -705 -93