Samir is waiting for a slow reaction to finish. What is the best way to make the reaction go faster?
Question 12 options:
Put it in the fridge where it is cold
Cover it with a blanket so it's dark
Warm it up on the stove
There is nothing you can do to change the speed of the reaction
Answer:
To make a reaction go faster, there are several methods that can be employed depending on the type of reaction and the reactants involved. One common method is to increase the temperature of the reaction mixture, as this typically increases the rate of reaction by providing more energy to the reacting molecules. Another method is to increase the concentration of one or more reactants, as this increases the likelihood of collisions between them. Adding a catalyst can also speed up a reaction by providing an alternative pathway with lower activation energy.
In the case of Samir's slow reaction, warming it up on the stove may be the best option to make it go faster. However, it is important to note that not all reactions can be sped up by simply increasing temperature or concentration, and some reactions may require specific catalysts or conditions to proceed at a reasonable rate. Additionally, it is important to consider safety precautions when attempting to speed up a reaction, as some reactions may become more dangerous at higher temperatures or concentrations.
MARK AS BRAINLIEST!
Usually, we do a
when a population is hard to study, for some reason.
Usually, we use sampling when a population is hard to study, for some reason.
Sampling is a technique commonly employed in research and statistics when it is impractical or impossible to study an entire population directly. It involves selecting a subset, or sample, from the population and using the information gathered from the sample to make inferences about the entire population. This is done with the assumption that the sample is representative of the population and that the findings from the sample can be generalized to the larger population.
There are several reasons why a population might be difficult to study comprehensively. One reason is the size of the population. For example, if the population of interest is the entire world or a country, it would be practically impossible to study each individual in the population due to logistical constraints and limited resources. In such cases, sampling allows researchers to gather information from a smaller, manageable subset of the population.
Another reason for using sampling is when the population is dispersed or geographically scattered. If the population is spread out across a wide area, it can be challenging and costly to reach and collect data from every individual. Sampling allows researchers to select representative individuals or clusters from different regions, making data collection more feasible.
Additionally, there are cases where the population is inaccessible or hard to reach due to privacy concerns or ethical considerations. For example, if the population consists of individuals with certain medical conditions or sensitive personal information, it may be challenging to obtain consent or access to the entire population. In such cases, researchers can use sampling methods to obtain data from a subset of individuals who are willing to participate and meet the necessary criteria.
In summary, sampling is a valuable tool when studying populations that are hard to access, too large, or dispersed. It allows researchers to gather relevant data from a representative subset of the population and make valid inferences about the larger population, despite the challenges posed by studying the population as a whole.
For more such information on: sampling
https://brainly.com/question/13219833
#SPJ8
The question probable may be:
Usually, we use when a population is hard to study, for some reason.
Part C Now, grab Tracker’s protractor tool (the green angle in the video frame) and measure the angle of incidence and the angle of refraction for the frame numbers specified in the table below. Hints: To advance the video a frame at a time, use the step buttons on the right. Position the vertex of the protractor exactly at the origin of the coordinate axis. Move the arms of the protractor so that one arm is on the vertical axis (above or below, as appropriate) and the other on the light ray.
In order to measure the angle of incidence and the angle of refraction using Tracker's protractor tool (the green angle in the video frame), the following steps should be followed:
Step 1: Open the video in Tracker software.
Step 2: Click on the "Measure" button on the toolbar at the top of the software.
Step 3: From the dropdown menu, select "Angle".
Step 4: Click on the "protractor tool" icon (the green angle in the video frame).
Step 5: Position the vertex of the protractor exactly at the origin of the coordinate axis and move the arms of the protractor so that one arm is on the vertical axis (above or below, as appropriate) and the other on the light ray.
Step 6: Measure the angle of incidence and the angle of refraction for the frame numbers specified in the table below by using the step buttons on the right to advance the video a frame at a time.
Step 7: Record the measured angles in the table below. Note that the angle of incidence should be measured on the incident ray (the ray that is coming from the left), and the angle of refraction should be measured on the refracted ray (the ray that is coming from the right).In conclusion, by following these steps, one can measure the angle of incidence and the angle of refraction using Tracker's protractor tool.
For more question Tracker’s protractor tool.
https://brainly.com/question/16772121
#SPJ8