Answer:
Domain: (-∞, 1]
Range: (-∞, 3]
Step-by-step explanation:
The function starts at point (1, 3) and goes to the left and down forever.
Domain: (-∞, 1]
Range: (-∞, 3]
Answer:
Domain: [tex](-\infty, 1][/tex]
Range: [tex](-\infty, 3][/tex]
Step-by-step explanation:
The domain of a function represents the range of x-values that are part of the function, read left to right. We can see that the function goes forever to the left and stops at [tex]x=1[/tex] when we read left to right. Therefore, the domain of this function is [tex]\boxed{(-\infty, 1]}[/tex].
The point at [tex]x=1[/tex] is a filled-in solid dot so it is included as part of the function. Use square brackets to denote inclusive.
The range of a function represents all y-values that are part of the function, read bottom to top. The function continues down forever and stops at [tex]y=3[/tex] when read bottom to top. Therefore, the range of this function is [tex]\boxed{(-\infty, 3]}[/tex]. Similar to the domain, we use a square bracket on the right to indicate that [tex]y=3[/tex] is included in the function. If the dot was not filled-in, then we would use a parenthesis to indicate that [tex]y=3[/tex] would not be part of the function.
The sum of four consecutive integers is equal to three times the smallest number. What is the sum of the four integers?
Answer:
-18
Step-by-step explanation:
Answer:
-18
Step-by-step explanation:
Let the four consecutive integers be x, (x + 1), (x + 2) & (x + 3)
Smallest integer = x
According to the given condition:
[tex]x + (x + 1) + (x + 2) + (x + 3) = 3x \\ \\ 4x + 6 = 3x \\ \\ 4x - 3x = - 6 \\ \\ x = - 6 \\ \\ Sum\: of\: the\:integers \\=4x + 6 = 4( - 6) + 6 \\ \\ = - 24 + 6 \\ \\ = - 18[/tex]
A statistics professor finds that when she schedules an office hour for student help, an average of 3.3 students arrive. Find the probability that in a randomly selected office hour, the number of student arrivals is 3.
Answer:
0.2209 = 22.09% probability that in a randomly selected office hour, the number of student arrivals is 3.
Step-by-step explanation:
We have the mean during an interval, so the Poisson distribution is used.
Poisson distribution:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
A statistics professor finds that when she schedules an office hour for student help, an average of 3.3 students arrive.
This means that [tex]\mu = 3.3[/tex]
Find the probability that in a randomly selected office hour, the number of student arrivals is 3.
This is P(X = 3). So
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 3) = \frac{e^{-3.3}*3.3^{3}}{(3)!} = 0.2209[/tex]
0.2209 = 22.09% probability that in a randomly selected office hour, the number of student arrivals is 3.
For what value of the variable : is the value of 9-y twice as much as the value of y?
Hi there!
»»————- ★ ————-««
I believe your answer is:
[tex]y = 3[/tex]
»»————- ★ ————-««
Here’s why:
⸻⸻⸻⸻
[tex]\boxed{\text{"The value of 9-y twice as much as the value of y" can be written as:}}\\\\9-y = 2y[/tex]
⸻⸻⸻⸻
[tex]\boxed{\text{Solving for 'y'...}}\\\\9-y=2y\\------------\\\rightarrow 9 -y + y = 2y + y\\\\\rightarrow 9 = 3y\\\\\rightarrow \frac{9=3y}{3}\\\\\rightarrow 3 = y\\\\\rightarrow \boxed{y = 3}[/tex]
⸻⸻⸻⸻
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.
Solve for x. The triangles are similar.
Type the correct answer in each box.
Jessica has $24 and plans to spend it all at the grocery store. She wants to purchase bags of carrots and bagels. Bags of
carrots cost $2 each, and bagels cost $3 per bag. Let x represent the number of bags of carrots and y represent the
number of bags of bagels. Complete the equation in standard form that models this scenario.
(
)x+ (
y=(
D
Submit
Type here to search
73°F Mostly cloudy
3.44
no
F2
F4
F5
F6
FO
F3
0+
F8
+
F10
F11
F12
1-
Fn
Lock
Insert
Pet Sc
a
t
04
O
Step-by-step explanation:
Jessica has $24 and plans to spend it all at the grocery store.Bags of carrots cost $2 each, and bagels cost $3 per bag.Let x represent the number of bags of carrots and y represent the number of bags of bagels.the cost for the 'x' bags of carrots = $2xand the cost for the 'y' bags of bagels = $3ySo, the equation would be,so the equation in standard form that models the given scenario is
2x + 3y = 24
2x + 3y = 24The slope of a line is 2 and the point (1, 1) lies on the line. What is the y-intercept of this line? (0, -1) (0, 5) (-2, 0)
Answer:
(0, -1)
Step-by-step explanation:
It's helpful if we think of slope in the context of rise over run.
Since the point (1, 1) lies on the line, because of the slope 2, if we subtract x by 1 to get to x = 0, then we'll be subtracting y by 2.
By that logic, the answer must be (0, -1).
A math instructor claims that college women have more credit card debt than college men. She conducts a random sample of 38 college men and 32 college women, determines their average credit card debt, and obtains the following statistics:
women n1 =32 x1= 781 s1 = 1489 men n2 = 38 x2 = 435 s2 = 1026
Test the claim that college women have more credit card debt than college men at the a = .05 level of significance. Assume unequal variances.
Answer:
There is no significant evidence to support the claim that college women have more credit card debt than college men
Step-by-step explanation:
Given :
women n1 =32 x1= 781 s1 = 1489 men n2 = 38 x2 = 435 s2 = 1026
H0 : μ1 = μ2
H0 : μ1 > μ2
Assume unequal variance :
The test statistic :
(x1 - x2) / √(s1²/n1) + (s2²/n2)
T= (781 - 435) / √(1489²/32) + (1026²/38)
T = 346 / 311.42740
Test statistic = 1.111
Degree of freedom, df
(s1²/n1+s2²/n2)²÷1/(n1-1)*(s1²/n1)²+1/(n2-1)*(s2²/n2)²
The Pvalue :
(s1²/n1+s2²/n2)² = ((1489²/32) + (1026²/38))² = 9406484230.6884765625
1/(n1-1)*(s1²/n1)²+1/(n2-1)*(s2²/n2)²:
1/31(1489^2/32)^2 + 1/37(1026^2/38)^2 = 1.755926E8
df = 9406484230.6884765625 / 1.755926E8 = 53.569
df = 54
The Pvalue, from t score ;
Pvalue(1.111, 54) = 0.136
Pvalue > α ; Hence, we fail to reject the null ; There is no significant evidence to support the claim that college women have more credit card debt than college men
On planet Ghaap, two Gheeps are worth three Ghiips, two Ghiips are worth five Ghoops, and three Ghoops are worth two Ghuups. How many Ghuups are seven Gheeps worth?
Answer:
10 Ghuups I believe. I am sorry if this is wrong
Solve for y.
5y – 10 = 10
y = [?]
What is y?
Answer:
y = [ 4 ]
Step-by-step explanation:
5y - 10 = 10
+10 +10
5y = 20
/5 /5
y = 4
hope this helps ! ^^
Answer:
[tex]5y-10=10[/tex]
[tex]Add ~10[/tex]
[tex]5y=10+10[/tex]
[tex]5y=20[/tex]
[tex]divide ~by ~5[/tex]
[tex]y=4[/tex]
[tex]ANSWER: y=4[/tex]
-----------------------------
HOPE IT HELPS
HAVE A GREAT DAY!!
Find the perimeter of WXYZ. Round to the nearest tenth if necessary.
Answer:
C. 15.6
Step-by-step explanation:
Perimeter of WXYZ = WX + XY + YZ + ZW
Use the distance formula, [tex] d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex] to calculate the length of each segment.
✔️Distance between W(-1, 1) and X(1, 2):
Let,
[tex] W(-1, 1) = (x_1, y_1) [/tex]
[tex] X(1, 2) = (x_2, y_2) [/tex]
Plug in the values
[tex] WX = \sqrt{(1 - (-1))^2 + (2 - 1)^2} [/tex]
[tex] WX = \sqrt{(2)^2 + (1)^2} [/tex]
[tex] WX = \sqrt{4 + 1} [/tex]
[tex] WX = \sqrt{5} [/tex]
[tex] WX = 2.24 [/tex]
✔️Distance between X(1, 2) and Y(2, -4)
Let,
[tex] X(1, 2) = (x_1, y_1) [/tex]
[tex] Y(2, -4) = (x_2, y_2) [/tex]
Plug in the values
[tex] XY = \sqrt{(2 - 1)^2 + (-4 - 2)^2} [/tex]
[tex] XY = \sqrt{(1)^2 + (-6)^2} [/tex]
[tex] XY = \sqrt{1 + 36} [/tex]
[tex] XY = \sqrt{37} [/tex]
[tex] XY = 6.08 [/tex]
✔️Distance between Y(2, -4) and Z(-2, -1)
Let,
[tex] Y(2, -4) = (x_1, y_1) [/tex]
[tex] Z(-2, -1) = (x_2, y_2) [/tex]
Plug in the values
[tex] YZ = \sqrt{(-2 - 2)^2 + (-1 -(-4))^2} [/tex]
[tex] YZ = \sqrt{(-4)^2 + (3)^2} [/tex]
[tex] YZ = \sqrt{16 + 9} [/tex]
[tex] YZ = \sqrt{25} [/tex]
[tex] YZ = 5 [/tex]
✔️Distance between Z(-2, -1) and W(-1, 1)
Let,
[tex] Z(-2, -1) = (x_1, y_1) [/tex]
[tex] W(-1, 1) = (x_2, y_2) [/tex]
Plug in the values
[tex] ZW = \sqrt{(-1 -(-2))^2 + (1 - (-1))^2} [/tex]
[tex] ZW = \sqrt{(1)^2 + (2)^2} [/tex]
[tex] ZW = \sqrt{1 + 4} [/tex]
[tex] ZW = \sqrt{5} [/tex]
[tex] ZW = 2.24 [/tex]
✅Perimeter = 2.24 + 6.08 + 5 + 2.24 = 15.56
≈ 15.6
Answer:CCCCCCCCCCCCCCCCC
Step-by-step explanation:
Mark jogs 10 miles in 2 hours.
Come up with a ratio that shows the distance in miles to the time taken
in hours. Simplify your ratio if needed.
Give an example of a function with both a removable and a non-removable discontinuity.
Answer:
(x+5)(x-3) / (x+5)(x+1)
Step-by-step explanation:
A removeable discontinuity is always found in the denominator of a rational function and is one that can be reduced away with an identical term in the numerator. It is still, however, a problem because it causes the denominator to equal 0 if filled in with the necessary value of x. In my function above, the terms (x + 5) in the numerator and denominator can cancel each other out, leaving a hole in your graph at -5 since x doesn't exist at -5, but the x + 1 doesn't have anything to cancel out with, so this will present as a vertical asymptote in your graph at x = -1, a nonremoveable discontinuity.
Can someone please answer this
Answer:
Tisco: 12 for £5.16
Azda: 12 for £5.04
Azda has the better value.
Step-by-step explanation:
Tisco: 3 for £1.29
Multiply both numbers by 4.
12 for £5.16
Azda:
4 for £1.68
Multiply both numbers by 3.
12 for £5.04
Azda has the better value.
PLEASE HELP
The function in the table is quadratic:
TRUE
FALSE
Answer:
False
Step-by-step explanation:
Each f(x) increases by 8 therefore this equation is a linear function. If you where to graph it would be a straight line
Hope this helped :)
Answer:
False
Step-by-step explanation:
The slope is the same between all pounts which means the function is linear.
Hope this helps!
You buy a six pack of Gatorade for $9.00. What is the unit price or the price per bottle?
$1.50/bottle
$2/bottle
$1.75 per bottle
Answer:
The answer is $1.50/bottle.
Step-by-step explanation:
To get the unit price, you need to divide the total by the amount of bottles.
[tex]9.00/6=1.50[/tex]
HELP HELP HELP MATH I WILL GIVE U EXTRA POINTS⚠️⚠️⚠️⚠️⚠️
Find four consecutive integers with the sum of 2021
Answer:
503.75, 504.75, 505.75, 506.75
Step-by-step explanation:
x+(x+1)+(x+2)+(x+3)=2021
4x+6=2021
4x=2015
x=503.75
so it would be
503.75+504.75+505.75+506.75= 2021
A flashlight is projecting a triangle onto a wall, as shown below.
A picture shows a flashlight projecting a triangle onto a wall. The original triangle and its projection are similar. The original triangle has 2 sides labeled 15 and one side labeled 20. The projected triangle has two sides labeled 30 and one side labeled n. The triangles have congruent angles.
The original triangle and its projection are similar. What is the missing length n on the projection?
Answer:
Hence the correct option is 3rd option. 40
Step-by-step explanation:
If two figures are similar, then the ratio of the corresponding sides is proportional.
[tex]\frac{15}{30} =\frac{20}{n} \\\\n=\frac{30 \times 20}{15} \\\\n= 40.[/tex]
If F(x)=|x+2|+x+2, Find f(-7)
PLEASE HELP!!
Given that Q(x)=2x^2 +5x-3 find and simplify Q(a+h)-Q(a-h)
Answer:
[tex]Q(a+h)-Q(a-h)=8ah+10h[/tex]
Step-by-step explanation:
We are given the function:
[tex]Q(x)=2x^2+5x-3[/tex]
And we want to find and simplify:
[tex]Q(a+h)-Q(a-h)[/tex]
Substitute:
[tex]=[2(a+h)^2+5(a+h)-3]-[2(a-h)^2+5(a-h)-3][/tex]
Expand:
[tex]\displaystyle =[2(a^2+2ah+h^2)+5a+5h-3]-[2(a^2-2ah+h^2)+5a-5h-3][/tex]
Distribute:
[tex]=[2a^2+4ah+2h^2+5a+5h-3]-[2a^2-4ah+h^2+5a-5h-3][/tex]
Distribute:
[tex]=(2a^2+4ah+2h^2+5a+5h-3)+(-2a^2+4ah-2h^2-5a+5h+3)[/tex]
Rewrite:
[tex]=(2a^2-2a^2)+(4ah+4ah)+(2h^2-2h^2)+(5a-5a)+(5h+5h)+(-3+3)[/tex]
Combine like terms:
[tex]=8ah+10h[/tex]
Hence:
[tex]Q(a+h)-Q(a-h)=8ah+10h[/tex]
by what number should 2/9 be divided to obtain 8/3
Answer:
[tex] \frac{1}{12} [/tex]
Step-by-step explanation:
[tex] \frac{2}{9} \div \frac{8}{3} \\ = \: \frac{1}{12}[/tex]
So, if you divide 2/9 by 1/12, you'll get 8/3
Answered by GAUTHMATH
(a) What is the probability that a person who was polled prefers chocolate ice cream to vanilla? Round your answer to four decimal places.
Answer:
[tex]P(k)=0.2628[/tex]
Step-by-step explanation:
Given
[tex]n = 1693[/tex] --- sample size
[tex]k = 445[/tex] --- those that prefer chocolate ice cream to vanilla
Required
[tex]P(k)[/tex]
This is calculated as:
[tex]P(k)=\frac{k}{n}[/tex] --- probability formula
So, we have:
[tex]P(k)=\frac{445}{1693}[/tex]
[tex]P(k)=0.2628[/tex]
15 greater than y is at least 150 interval notation
Step-by-step explanation:
I think this is the ans and I have got this ans from brainly.
Necesito ayuda con esto
Answer:
La suma de las dos matrices cuadradas de dimensión 2 es [tex]\vec U = \left[\begin{array}{cc}-1&11\\2&5\end{array}\right][/tex].
Step-by-step explanation:
Considerando que se tratan de dos matrices de igual dimensión y cuyos elementos son números reales, conocemos que la adición entre dos matrices consiste en las sumas de los elementos de igual posición, esto es, los elementos que están localizados en las mismas filas y columnas, entonces, la suma es:
[tex]\vec A = \left[\begin{array}{cc}1&2\\-1&0\end{array} \right][/tex], [tex]\vec B = \left[\begin{array}{cc}-2&9\\3&5\end{array}\right][/tex]
[tex]\vec U = \vec A + \vec B = \left[\begin{array}{cc}1 + (-2)&2+9\\-1 + 3&0 + 5\end{array}\right][/tex]
[tex]\vec U = \left[\begin{array}{cc}-1&11\\2&5\end{array}\right][/tex]
La suma de las dos matrices cuadradas de dimensión 2 es [tex]\vec U = \left[\begin{array}{cc}-1&11\\2&5\end{array}\right][/tex].
HELP ASAP I WILL GIVE BRAINLIST
Find the length of an arc of a circle with a 8-cm radius associated with a central angle of 240 degrees. Give your answer in exact and approximate form to the nearest hundredth. Show and explain your work
Answer:
33.51 cm
Step-by-step explanation:
240/360 = 2/3 (Arc length is 2/3 of the total circumference)
C = 2[tex]\pi[/tex]r ( Calculate the total circumference)
C = 2(8)[tex]\pi[/tex]
C = 50.265
2/3(50.265) (Take 2/3 of the circumference. times 2 divide by 3)
33.51
Use a calculator and leave the answer to C and then multiply and divide. You get a more precise answer.
The exact arc length is [tex]\frac{32\pi}{3}[/tex] radians.
The arc length in approximate form is 33.49 radians.
What is the formula for arc length?[tex]s = r\times \theta[/tex]
where r is the radius of the circle and [tex]\theta[/tex] is the central angle in radians.
How to convert angle from degrees to radians?Radians = Degrees ×[tex]\frac{\pi}{180^{\circ}}[/tex]
For given question,
We have been given a circle with a 8-cm radius associated with a central angle of 240 degrees.
[tex]r=8~cm,~\theta=240^{\circ}[/tex]
First we convert angle in radians.
[tex]\theta=240^{\circ}\\\\\theta=240^{\circ} \times \frac{\pi}{180^{\circ}}\\\\ \theta=\frac{4\pi}{3}[/tex]
Using the formula of the arc length,
[tex]s=8\times \frac{4\pi}{3} \\\\s=\frac{32\pi}{3}[/tex]
The exact answer of the arc length is [tex]s=\frac{32\pi}{3}[/tex]
Substitute the value of [tex]\pi = 3.14[/tex]
So, the arc length would be,
[tex]\Rightarrow s=\frac{32\times \pi}{3}\\\\\Rightarrow s=\frac{32\times 3.14}{3}\\\\\Rightarrow s=33.49[/tex]radians
Therefore, the exact arc length is [tex]\frac{32\pi}{3}[/tex] radians.
the arc length in approximate form is 33.49 radians.
Learn more about the arc length here:
https://brainly.com/question/16403495
#SPJ2
I really need help with this thank you
Answer:
The photo is not clear post a clear photo then i will see that
Answer:
per = 28 units
area 32 sq units
Step-by-step explanation:
can someone help me solve this?
Answer:
[tex]\sqrt{x} -\frac{16}{\sqrt{x} }[/tex]
Step-by-step explanation:
20. (06.07 )
The graph below plots the values of y for different values of
20
15
10
5
5
Which correlation coefficient best matches the data plotted on the graph? (1 point)
-0.5
0
0.25
0.90
Assume that the breaking system of a train consists of two components connected in series with both of them following Weibull distributions. For the first component the shape parameter is 2.1 and the characteristic life is 100,000 breaking events. For the second component the shape parameter is 1.8 and characteristic life of 80,000. Find the reliability of the system after 2,000 breaking events:
Answer:
0.9984
Step-by-step explanation:
we have shape parameter for the first component as 2.1
characteristics life = 100000
for this component
we have
exp(-2000/100000)².¹
= e^-0.0002705
= 0.9997
for the second component
shape parameter = 1.8
characteristic life = 80000
= exp(-2000/80000)¹.⁸
= e^-0.001307
= 0.9987
the reliability oif the system after 2000 events
= 0.9987 * 0.9997
= 0.9984
An exterior angle of a regular convex polygon is 40°. What is the number of sides of the polygon?
A. 8
B. 9
C. 10
D.11
Answer:
option B
Step-by-step explanation:
Sum of interior angles of a polygon with n sides:
[tex]= (n - 2 )\times 180[/tex]
[tex]Therefore, Each \ interior \ angle = (\frac{n - 2}{n} )\times 180[/tex]
[tex]Sum \ of \ one \ of \ the \ interior \ angle \ with \ its \ exterior \ angle \ is \ 180^\circ[/tex]
[tex][ \ because \ straight \ line \ angle = 180^\circ \ ][/tex]
That is ,
[tex]Exterior \ angle + Interior \ angle = 180^\circ\\\\40^ \circ + (\frac{n-2}{n}) \times 180 = 180^\circ\\\\40 n + 180n - 360 = 180n\\\\40n = 180n - 180n + 360 \\\\40n = 360 \\\\n = 9[/tex]
OR
Sum of exterior angles of a regular polygon = 360
Given 1 exterior angle of the regular polygon is 40
Therefore ,
[tex]n \times 40 = 360\\\\n = \frac{360}{40} \\\\n = 9[/tex]
Answer:
9
Step-by-step explanation:
Type your answers into the boxes.
Without using a calculator, work out the following:
√121 = 11 √900 = ∛125 = ∛729 =
Answer:
Step-by-step explanation:
√121 = 11
√900 = √30^2 = 30
∛125 = ∛5^3 = 5
∛729 = ∛9^3 = 9