Answer:
[tex]\frac{y^{6} }{ x^{2} }[/tex]
Step-by-step explanation:
[tex]y^{6} x^{-2}[/tex]
Answer and Step-by-step explanation:
When there is a set of values within parenthesis, and an exponents on the values and on the parenthesis, you multiply the outer exponent with the inner exponent.
When a value has a negative exponent, the value that has the negative exponent will become a fraction and go to the denominator of the fraction (or go immediately to the denominator), or if it is already a fraction, goes to the denominator. If the value that has the negative exponent is in the denominator, the value will go to the numerator. In both instances, the negative exponent will then change to positive.
First, we need to simplify the expression inside the parenthesis.
[tex]y^{\frac{3}{2} } x^{-\frac{1}{2} } --> \frac{y^{\frac{3}{2} } }{x^{\frac{1}{2}} }[/tex]
Now we multiply the 4 to the exponents.
[tex]\frac{y^{\frac{3}{2} *\frac{x4}{1} } }{x^{\frac{1}{2}}*\frac{4}{1} } = \frac{y^{\frac{12}{2}} }{x^{\frac{4}{2}}} = \frac{y^6}{x^2}[/tex]
[tex]\frac{y^6}{x^2}[/tex] is the answer.
#teamtrees #PAW (Plant And Water)
There are two points of the form (x,-4) that have a distance of 10 units from the point (3,2). Give the x value for one of those points.
Answer:
x = - 5
Step-by-step explanation:
[tex]Let \ (x _ 1 , y _ 1 ) \ and \ (x _ 2 , y _ 2 ) \ be \ the \ points. \\\\The \ distance \ between \ the \ points \ be ,\ d = \sqrt{(x_2 - x_1)^2 + ( y _ 2 - y_1)^2}[/tex]
Given : d = 10 units
And the points are ( x , - 4) and ( 3 , 2 ).
Find x
[tex]d = \sqrt{( 3 - x)^2 + ( -4 - 2)^2} \\\\10 = \sqrt{( 3 - x)^2 + ( -6)^2} \\\\10^2 = [ \ \sqrt{( 3 - x)^2 + 36} \ ]^2 \ \ \ \ \ \ \ \ \ [ \ squaring \ both \ sides \ ] \\\\100 = ( 3 - x )^2 + 36\\\\100 - 36 = ( 3 - x )^ 2\\\\( 3 - x ) = \sqrt{64}\\\\3 - x = \pm 8\\\\3 - x = 8 \ and \ 3 - x = - 8\\\\-x = 8 - 3 \ and \ -x = - 8 - 3\\\\-x = 5 \ and \ -x = - 11\\\\x = - 5 \ and \ x = 11\\\\[/tex]
Check which value of x satisfies the distance between the points.
x = 11
[tex]d = \sqrt{(3-11)^2 + (-2--4)^2} = \sqrt{(-8)^2 + (-2+4)^2}= \sqrt{64+4} = \sqrt {68} \ units[/tex]
does not satisfy.
x = - 5:
[tex]d = \sqrt{ (3 -- 5)^2 + ( - 4 - 2)^2} = \sqrt{8^2 + 6^2} = \sqrt{100} =10 \ units[/tex]
Therefore , x = - 5
A rectangular field 50 meters in width and 120 meters in length is divided into two fields by a diagonal line. What is the length of fence (in meters) required to enclosed one of these fields?
A-130
B-170
C-180
D-200
E-300
Answer:
E. 300
Step-by-step explanation:
A rectangle split in half diagonally yields 2 right triangles.
((For this problem, you are probably supposed to use the pythagorean theorem to find the diagonal length, and then calculate perimeter (length of fence around triangular field). In other words:
(sqrt( (50m)^2 + (120m)^2 )) + 50m + 120m)
))
By definition, the hypotenuse (diagonal) is the longest side.
This means that it must be longer than 120m.
If you add the 2 sides (50m + 120m), you get 170m.
Since the third side has to be longer than 120m, the answer _must_ be over 290m (170m + 120m).
300m is the only answer that fits.
What do you know to be true about the values of p and ?
p"
q
601
454
45
A. p> 9
B. p<9
C. p= 9
D. Can't be determined
The mean of 19 numbers is 1600. If 2000 is added in the number. Find the new mean
Answer:
Here's your answer .
hope it helps you
Pls answer this question
Answer:
x = 100 degree
Step-by-step explanation:
EF//GC => NF // OC
∠ANE=∠ONF [Vertically opposite angles]
∠ONF=80
In Quadrilateral OCFN,
NF // OC
∠ ONF + x = 180 [Linear Pair]
=> 80 + x = 180
=> x = 180-80
=> x = 100
Answer:
x=100°
Step-by-step explanation:
corresponding angles
Which answers describe the shape below? Check all that apply.
A. Trapezoid
B. Parallelogram
C. Rhombus
D. Rectangle
E. Quadrilateral
F. Square
Answer:
B, C, and E
Step-by-step explanation:
may y’all help me please and thank you?
Answer:
F
Step-by-step explanation:
4.85-4.15=0.7 divided by 2 = 0.35+4.15=4.5*25 cause 30-20=10 divided by 2=5+20=25*4.5=112. closest to that is 120
The mean temperature for the first 4 days in January was 1°C.
The mean temperature for the first 5 days in January was -1°C.
What was the temperature on the 5th day?
Answer:
The temperature on the 5th day was of -9ºC.
Step-by-step explanation:
Mean of a data-set
The mean of a data-set is the sum of all values in the data-set divided by the number of values.
The mean temperature for the first 4 days in January was 1°C.
This means that during the first 4 days, the sum of the temperatures was 4*1 = 4ºC.
The mean temperature for the first 5 days in January was -1°C.
First 4 days: Sum of 4º
5th day: Temperature of x.
The mean is -1, so:
[tex]-1 = \frac{4 + x}{5}[/tex]
[tex]x + 4 = -5[/tex]
[tex]x = -9[/tex]
The temperature on the 5th day was of -9ºC.
I don’t think I got the right answer?
Answer:
it's third option the one who says 10 units up
Olivia rides her scooter 3/4 mile in
1/3 hour. How fast, in miles per hour,
does she ride her scooter?
Answer:
2.25 miles per hr
Answer:
2.25 miles per hour
Step-by-step explanation:
speed = distance / time
speed = [tex]\frac{3}{4} / \frac{1}{3}[/tex] (take the reciprocal of [tex]\frac{1}{3}[/tex])
= [tex]\frac{3}{4} * 3[/tex]
= [tex]\frac{9}{4}[/tex] = 2.25 miles per hour
Given sets X, Y, Z, and U, find the set Xn(X - Y) using the listing method.
X = {d, c, f, a}
Y = {d, e, c}
Z ={e, c, b, f, g}
U = {a, b, c, d, e, f, g}
Answer:
{f, a}
Step-by-step explanation:
Given the sets:
X = {d, c, f, a}
Y = {d, e, c}
Z ={e, c, b, f, g}
U = {a, b, c, d, e, f, g}
To obtain the set X n (X - Y)
We first obtain :
(X - Y) :
The elements in X that are not in Y
(X - Y) = {f, a}
X n (X - Y) :
X = {d, c, f, a} intersection
(X - Y) = {f, a}
X n (X - Y) = elements in X and (X - Y)
X n (X - Y) = {f, a}
7 women can bake 100 cookies in 14 days. How many would it take for 4 women to bake 240 cookies?
Answer:
it would take 30 and a half days to make 240 cookies
A display case of disposable tablecloths are marked 5 for $3. If Peter has $21, how many plastic tablecloths can Peter get?
Answer:
35
Step-by-step explanation:
3x7=35
There are 60 students and 13 teachers on a bus .what is the ratio of students to teachers.
sec x tanx( 1- sin^2 x) = __x
Answer:
sin(x)
Step-by-step explanation:
sec x tanx(1 - sin^2 x)
1 - sin^2 x = cos^2 x
sec(x)tan(x)cos^2(x)
[tex]\frac{1}{cos(x)}[/tex] * [tex]\frac{sin(x)}{cos(x)}[/tex] * cos^2(x)
[tex]\frac{sin(x)cos^2(x)}{cos^2(x)}[/tex]
sin(x)
A river is 212 mile long. What is the length of the river on a map, if the scale is 1 inch : 50 miles?
Answer:
4.24 inches
Step-by-step explanation:
1 inch / 50 miles = x / 212 miles Cross multiply
1 inch * 212 miles = 50 miles * x Divide by 50 miles
1 inch * 212 miles / 50 miles = x
x = 4.24 inches.
How much is 0.24 of an inch?
0.24 * 50 = 12
So 0.24 inches represents 12 miles.
Help please. Need to get this right to get 100%
Answer:
Step-by-step explanation:
[tex]f(x) = \frac{4}{x}\\\\f(a) = \frac{4}{a}\\\\f(a+h) = \frac{4}{a+h}\\\\\frac{f(a+h) - f(a)}{h} = \frac{\frac{4}{a+h} - \frac{4}{a}}{h}[/tex]
[tex]=\frac{\frac{4(a)}{(a+h)a} - \frac{4(a+h)}{a(a+h)}}{h}\\\\=\frac{\frac{4a - 4a - 4h}{a(a+h)}}{h}\\\\=\frac{\frac{ - 4h}{a(a+h)}}{h}\\\\= \frac{-4h}{a(a+h) \times h}\\\\= -\frac{4}{a(a+h)}\\\\[/tex]
Find a power series representation for the function. (Give your power series representation centered at x = 0.)
f(x) = x2 x 4 + 81
f(x) = [infinity] n = 0.
Answer:
attached below
Step-by-step explanation:
The Function; F(x) = x^2 / (x^4 + 81 )
power series representation
F(x) = x^2 / ( 81 + x^4 )
= ( x^2/81 ) / 1 - ( -x^4/81 )
attached below is the remaining part of solution
Write an equation that represents the line.
Use exact numbers
A claim is made that the proportion of 6-10 year-old children who play sports is not equal to 0.5. A
random sample of 551 children aged 6-10 showed that 48% of them play a sport.
For each part below, enter only a numeric value in the answer box. For example, do not type "z =" or "t="
before your answers. Round each of your answers to 3 places after the decimal point.
(a) Calculate the value of the test statistic used in this test.
Test statistic's value
(b) Use your calculator to find the P-value of this test.
P-value =
(c) Use your calculator to find the critical value(s) used to test this claim at the 0.02 significance level. If
there are two critical values, then list them both with a comma between them.
Critical value(s) -
Answer:
a) -0.94
b) 0.3472
c) -2.327, 2.327
Step-by-step explanation:
A claim is made that the proportion of 6-10 year-old children who play sports is not equal to 0.5.
At the null hypothesis, we test if the proportion is of 0.5, that is:
[tex]H_0: p = 0.5[/tex]
At the alternative hypothesis, we test if the proportion is different from 0.5, that is:
[tex]H_1: p \neq 0.5[/tex]
The test statistic is:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.
0.5 is tested at the null hypothesis:
This means that [tex]\mu = 0.5, \sigma = \sqrt{0.5*(1-0.5)} = 0.5[/tex]
A random sample of 551 children aged 6-10 showed that 48% of them play a sport.
This means that [tex]n = 551, X = 0.48[/tex]
(a) Calculate the value of the test statistic used in this test.
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]z = \frac{0.48 - 0.5}{\frac{0.5}{\sqrt{551}}}[/tex]
[tex]z = -0.94[/tex]
So the answer is -0.94.
(b) Use your calculator to find the P-value of this test.
The p-value of the test is the probability that the sample proportion differs from 0.5 by at least 0.02, which is P(|z| > 0.94), which is 2 multiplied by the p-value of Z = -0.94.
Looking at the z-table, z = -0.94 has a p-value of 0.1736.
2*0.1736 = 0.3472, so 0.3472 is the answer to option b.
(c) Use your calculator to find the critical value(s) used to test this claim at the 0.02 significance level.
Two-tailed test(test if the mean differs from a value), Z with a p-value of 0.02/2 = 0.01 or 1 - 0.01 = 0.99.
Looking at the z-table, this is z = -2.327 or z = 2.327.
What's the lateral area of the following cone?
11 cm
10 cm
511.23 cm
55 cm?
110.02 cm?
189.75 cm?
Answer:189.75
Step-by-step explanation:
The lateral area of the cone for the height of 11 cm and diameter 10 cm is given by option D. 189.75 cm²
To calculate the lateral area of a cone, find the curved surface area.
The lateral area of a cone can be calculated using the formula:
Lateral Area = π × r × l
where:
π is the mathematical constant pi (approximately 3.14159)
r is the radius of the base of the cone
l is the slant height of the cone
Height (h) = 11 cm
Diameter (d) = 10 cm
First, we need to find the radius (r) and the slant height (l).
The radius (r) is half of the diameter:
r
= d / 2
= 10 cm / 2
= 5 cm
The slant height (l) can be found using the Pythagorean theorem:
l² = r² + h²
l² = 5² + 11²
l² = 25 + 121
l² = 146
l = √146
≈ 12.083 cm
Now, calculate the lateral area:
Lateral Area = π × r × l
Lateral Area = 3.14159 × 5 cm × 12.083 cm
Lateral Area ≈ 189.75 cm²
Therefore, the lateral area of the cone is approximately 189.75 cm². The correct answer is C) 189.75 cm²
learn more about lateral area here
brainly.com/question/30196078
#SPJ2
On Friday Evelyn sold 9 dresses and 20 pairs of pants. On Saturday she sold twice as many dresses and 10 more pants than Friday. How many dresses did Evelyn sell on Friday and Saturday?
Answer: 27 Dresses and 50 Pants
Step-by-step explanation:
If she sold 9 pairs of pants and
9 x 2 = 18
18 + 9 = 27
20 + 10 = 30
30 + 20 = 50
Evelyn sold 9 dresses and 20 pairs of pants on Friday, and on Saturday, she sold 18 dresses and 30 pairs of pants.
Evelyn's sales of dresses and pants over two days, Friday and Saturday. We'll use some mathematical expressions and reasoning to find out how many dresses Evelyn sold on each day.
Let's start by assigning some variables to represent the number of dresses and pants Evelyn sold on Friday and Saturday. We'll use "F" for Friday and "S" for Saturday. So, let [tex]D_F[/tex] be the number of dresses sold on Friday, [tex]D_S[/tex] be the number of dresses sold on Saturday, [tex]P_F[/tex] be the number of pants sold on Friday, and [tex]P_S[/tex] be the number of pants sold on Saturday.
According to the problem, on Friday, Evelyn sold 9 dresses, which can be expressed as:
[tex]D_F[/tex] = 9
She also sold 20 pairs of pants on Friday:
[tex]P_F[/tex] = 20
Now, let's move on to Saturday's sales. It says she sold twice as many dresses as Friday, which means the number of dresses on Saturday is double that of Friday's sales:
[tex]D_S = 2 * D_F[/tex]
Additionally, she sold 10 more pairs of pants on Saturday compared to Friday:
[tex]P_S = P_F + 10[/tex]
We already know that [tex]D_F = 9[/tex], so we can find the number of dresses sold on Saturday by substituting this value into the equation for [tex]D_S[/tex]:
[tex]D_S = 2 * 9 = 18[/tex]
Next, we'll calculate the number of pants sold on Saturday using the given information. Since [tex]P_F = 20[/tex], we can find [tex]P_S[/tex]:
[tex]P_S = 20 + 10 = 30[/tex]
So, to summarize, Evelyn sold 9 dresses and 20 pairs of pants on Friday, and on Saturday, she sold 18 dresses and 30 pairs of pants.
To know more about Equation here
https://brainly.com/question/15977368
#SPJ2
please help me solve this math
Answer:
d
Step-by-step explanation:
Can someone help me with this problem
9514 1404 393
Answer:
x = 30°
Step-by-step explanation:
The lines will be parallel if and only if the sum of the marked angles is 180°:
4x +2x = 180°
6x = 180° . . . . . collect terms
x = 30° . . . . . . . divide by 6
Which problem has a greater (bigger) answer? Solve both, choose the one that has the bigger answer and explain (1-2 sentences) how you found your
answer.
1) (2 + 3) (5 + 5)
2)2 + 3 x 5 + 5 =
3.
Salary: A sales clerk receives a monthly
salary of $500 plus a commission of 6% on all
sales over $3500. What did the clerk earn the
month she sold $8000 in merchandise?
Answer:
Step-by-step explanation:
I might be wrong but it 1900 in merchandise
The clerk earned a total of $770 for the month she sold $8000 in merchandise.
To calculate the clerk's earnings for the month she sold $8000 in merchandise, we need to consider her monthly salary and commission.
The clerk's monthly salary is $500, which is a fixed amount.
For the commission, we need to calculate the sales amount that exceeds $3500. In this case, the sales amount exceeding $3500 is $8000 - $3500 = $4500.
The commission is calculated as 6% of the sales amount exceeding $3500. Therefore, the commission earned by the clerk is 6% of $4500.
Commission = 6/100 * $4500
Commission = $270
Adding the monthly salary and commission, we can calculate the clerk's total earnings for the month:
Total earnings = Monthly salary + Commission
Total earnings = $500 + $270
Total earnings = $770
Therefore, the clerk earned a total of $770 for the month she sold $8000 in merchandise.
To know more about merchandise. here
https://brainly.com/question/27046371
#SPJ2
The weight gain of beef steers were measured over a 140 day test period. the average daily gains (lb/day) of 10 steers on the same diet were as follows. The tenth steer had a weight gain of 4.02 lb/day.
3.89 3.51 3.97 3.31 3.21 3.36 3.67 3.24 3.27
determine the mean and median.
Answer:
[tex]\bar x = 3.545[/tex]
[tex]Median = 3.435[/tex]
Step-by-step explanation:
Given
[tex]x:3.89, 3.51, 3.97, 3.31, 3.21, 3.36, 3.67, 3.24, 3.27[/tex]
[tex]10th: 4.02[/tex]
Solving (a): The mean
This is calculated as:
[tex]\bar x = \frac{\sum x}{n}[/tex]
So, we have:
[tex]\bar x = \frac{3.89 +3.51 +3.97 +3.31 +3.21 +3.36 +3.67 +3.24 +3.27+4.02}{10}[/tex]
[tex]\bar x = \frac{35.45}{10}[/tex]
[tex]\bar x = 3.545[/tex]
Solving (b): The median
First, we sort the data; as follows:
[tex]3.21, 3.24, 3.27, 3.31, 3.36, 3.51, 3.67, 3.89, 3.97, 4.02[/tex]
[tex]n = 10[/tex]
So, the median position is:
[tex]Median = \frac{n + 1}{2}th[/tex]
[tex]Median = \frac{10 + 1}{2}th[/tex]
[tex]Median = \frac{11}{2}th[/tex]
[tex]Median = 5.5th[/tex]
This means that the median is the average of the 5th and 6th item
[tex]Median = \frac{3.36 + 3.51}{2}[/tex]
[tex]Median = \frac{6.87}{2}[/tex]
[tex]Median = 3.435[/tex]
Put -3.0-3.45, -15, and -3.15 in order from least to greatest.
Answer:
-15 -3.45 -3.15 -3.0
Step-by-step explanation:
Suppose that two teams play a series of games that end when one of them has won i games. Suppose that each game played is, independently, won by team A with probability p. Find the expected number of games that are played when i = 2. Also show that this number is maximized when p= 21.
Answer:
a) E(x) = -2p^2 + 2p + 2
b) Number is maximized when p = 1/2
Step-by-step explanation:
Determine the Expected number of games when ( i ) = 2
The number of possible combinations that both teams win two games :
AA, BB, ABB, ABA, BAA, BAB = 6 combinations
P( team A winning ) = p
P( team B wins ) = 1 - p
Attached below is the detailed solution on the expected number of games
expected number of games ; E(x) = -2p^2 + 2p + 2
ii) Number is maximized when p = 1/2
In this exercise we will use the knowledge of probability and combination, so we have what will be:
a)[tex]E(x) = -2p^2 + 2p + 2[/tex]
b)[tex]p = 1/2[/tex]
Organizing the information given in the statement as:
Expected number of games when ( i ) = 2A)The number of possible combinations that both teams win two games :
[tex]AA, BB, ABB, ABA, BAA, BAB = 6 \ combinations\\P( team\ A \ winning ) = p\\P( team \ B \ wins ) = 1 - p\\E(x) = -2p^2 + 2p + 2[/tex]
B) To calculate the maximum number we must solve the quadratic equation, like this:
[tex]p=1/2[/tex]
See more about probability at brainly.com/question/795909
question:
A sequence is defined by the recursive function f(n + 1) = –10f(n).
If f(1) = 1, what is f(3)?
3
–30
100
–1,000
the answer is 100
Answer:
100
Step-by-step explanation:
f(1) = 1
f(2) = -10×f(1) = -10 × 1 = -10
f(3) = -10×f(2) = -10 × -10 × f(1) = -10 × -10 × 1 = 100
f(n) = -10 to the power of n-1
Answer:
c - 100
Step-by-step explanation:
Matthew participates in a study that is looking at how confident students at SUNY Albany are. The mean score on the scale is 50. The distribution has a standard deviation of 10 and is normally distributed. Matthew scores a 65. What percentage of people could be expected to score the same as Matthew or higher on this scale
Answer:
The percentage of people that could be expected to score the same as Matthew or higher on this scale is:
= 93.3%.
Step-by-step explanation:
a) Data and Calculations:
Mean score on the scale, μ = 50
Distribution's standard deviation, σ = 10
Matthew scores, x = 65
Calculating the Z-score:
Z-score = (x – μ) / σ
= (65-50)/10
= 1.5
The probability based on a Z-score of 1.5 is 0.93319
Therefore, the percentage of people that could be expected to score the same as Matthew or higher on this scale is 93.3%.