how many degrees do the interior angles of a triangle sum up to?

Answers

Answer 1

Answer:

180°

Step-by-step explanation:

You can find the sum of interior angles in a shape by the formula (n-2)*180°, n being the number of sides. By substituting we get (3-2)*180°=1*180°=180°.


Related Questions

6. Which is the total cost of 3.5 pounds of grapes at $2.10 a pound? a. $5.60 b. $6.35 c. $7.04 d. \$7.35 7. Which is the product of $31×101 ? a. \$1313 b. $3,131 c. $3,100 d. $7.35 8. Ryan bought a phone with an original price of $145.80. He received a 25% discount off the phone, which amounted to $36.45. How much did he pay for the phone? * a. $109.35 b. $119.45 c. $171.25 d. $182.25

Answers

6. The total cost of 3.5 pounds of grapes at $2.10 a pound is $7.04.

7. The product of $31 and 101 is $3,131.

8. Ryan paid $109.35 for the phone with a 25% discount.

6. To find the total cost of 3.5 pounds of grapes at $2.10 a pound, we multiply the weight by the price per pound:

Total cost = 3.5 pounds * $2.10/pound = $7.35. Therefore, the answer is option (d) $7.35.

7. To calculate the product of $31 and 101, we simply multiply the two numbers:

Product = $31 * 101 = $3,131. Hence, the answer is option (b) $3,131.

8. Ryan received a 25% discount off the original price of $145.80. To calculate the amount he paid, we subtract the discount from the original price:

Discount = 25% * $145.80 = $36.45.

Amount paid = $145.80 - $36.45 = $109.35. Therefore, the answer is option (a) $109.35.

Learn more about multiply : brainly.com/question/620034?

#SPJ11

"Radon: The Problem No One Wants to Face" is the title of an article appearing in Consumer Reports. Radon is a gas emitted from the ground that can collect in houses and buildings. At 10 certain levels, it can cause lung cancer. Radon concentrations are measured in picocuries per liter (pCi/L). A radon level of 4 pCi/L is considered "acceptable." Radon levels in a house vary from week to week. In one house, a sample of 8 weeks had the following readings for radon level (in pCi/L):

1.9 , 2.8 , 5.7 , 4.2 , 1.9 , 8.6 , 3.9 , 7.2

The mean is::

The median is:

Calculate the mode:

The sample standard deviation is:

The coefficient of variation is

Calculate the range.

Based on the data and since 4 is considered as acceptable, ....

I would recommend radon mitigation in this house.

I would not recommend radon mitigation in this house.

Answers

The range is 6.7 pCi/L, indicating a substantial difference between the highest and lowest values.

To calculate the mean, median, mode, sample standard deviation, coefficient of variation, and range, let's first organize the data in ascending order:

1.9, 1.9, 2.8, 3.9, 4.2, 5.7, 7.2, 8.6

Mean:

The mean is the average of the data points. We sum up all the values and divide by the total number of values:

Mean = (1.9 + 1.9 + 2.8 + 3.9 + 4.2 + 5.7 + 7.2 + 8.6) / 8 = 35.2 / 8 = 4.4 pCi/L

Median:

The median is the middle value of a dataset. In this case, since we have an even number of data points, we take the average of the two middle values:

Median = (3.9 + 4.2) / 2 = 8.1 / 2 = 4.05 pCi/L

Mode:

The mode is the value that appears most frequently in the dataset. In this case, there is no value that appears more than once, so there is no mode.

Sample Standard Deviation:

The sample standard deviation measures the variability or spread of the data points. It is calculated using the formula:

Standard Deviation = √[(∑(x - μ)²) / (n - 1)]

where x is each data point, μ is the mean, and n is the number of data points.

Standard Deviation = √[(∑(1.9-4.4)² + (1.9-4.4)² + (2.8-4.4)² + (3.9-4.4)² + (4.2-4.4)² + (5.7-4.4)² + (7.2-4.4)² + (8.6-4.4)²) / (8 - 1)]

Standard Deviation = √[(13.53 + 13.53 + 2.89 + 0.25 + 0.04 + 2.89 + 5.29 + 17.29) / 7] = √(55.71 / 7) = √7.96 ≈ 2.82 pCi/L

Coefficient of Variation:

The coefficient of variation is a measure of relative variability and is calculated by dividing the sample standard deviation by the mean and multiplying by 100 to express it as a percentage:

Coefficient of Variation = (Standard Deviation / Mean) * 100

Coefficient of Variation = (2.82 / 4.4) * 100 ≈ 64.09%

Range:

The range is the difference between the highest and lowest values in the dataset:

Range = 8.6 - 1.9 = 6.7 pCi/L

Based on the data and the fact that an acceptable radon level is 4 pCi/L, the mean radon level in this house is 4.4 pCi/L, which is slightly above the acceptable level.

Additionally, the median radon level is 4.05 pCi/L, also above the acceptable level. The sample standard deviation is 2.82 pCi/L, indicating a moderate spread of values.

The coefficient of variation is 64.09%, suggesting a relatively high relative variability. Finally, the range is 6.7 pCi/L, indicating a substantial difference between the highest and lowest values.

To know more about Standard Deviation, visit:

https://brainly.com/question/13498201

#SPJ11

Find the solution of the following initial value proble g′(x)= 4x(x^3−1/4​);g(1)=3

Answers

Given function is g′(x)=4x(x³−1/4)g(1)=3

To solve the initial value problem of the given function we need to solve the differential equation using an integration method and after that we will find out the value of 'C' by substituting the value of x and g(x) in the differential equation. We will use the following steps to solve the given problem.

Steps of the solution:Here we need to integrate the given function by applying the following formula ∫x^n dx=(x^(n+1))/(n+1)+C where C is a constant of integration

So, ∫g′(x) dx=∫4x(x³−1/4) dx∫g′(x) dx

= [tex]\int4x^4 dx - \int x/4 dx[/tex]

=[tex]x^5-x^2/8 + C[/tex]

Now, by applying the initial condition

g(1) = 3,

we get3 = [tex]1^5-1^2/8 + C3[/tex]

= 1−1/8+C25/8 = C

So, the solution of the initial value problem of the given function g′(x) = 4x(x³−1/4);

g(1) = 3 is g(x)

= [tex]x^5-x^2/8 + 25/8[/tex]

To know more about constant of integration visit:

https://brainly.com/question/29166386

#SPJ11

The number of cars washed in a certain car wash station is a Poisson random variable with mean of 6 cars per hour. a) What is the probability that next car arriving to this station will wait less than 45 ninutes? b) What is the probability that at least 1 cars will be washed in 30 minutes period?

Answers

a) Let X be the number of cars washed in a car wash station. The probability distribution of X is a Poisson distribution with mean μ = 6 cars per hour.The Poisson probability distribution function is given by:P(X = x) = ((μ^x)*e^-μ)/x!The waiting time T between the arrival of two consecutive cars follows an exponential distribution with parameter λ = 6 cars per hour.

The probability distribution of T is given by:P(T ≤ t) = 1 - e^(-λ*t)The waiting time between consecutive cars arriving at the station follows an exponential distribution with mean 1/λ = 1/6 hour. To find the probability that the next car will arrive at the station less than 45 minutes, we will calculate the probability that the waiting time is less than 45 minutes or 0.75 hour.P(T ≤ 0.75) = 1 - e^(-6*0.75) = 0.8256So the probability that the next car arriving at the station will wait less than 45 minutes is approximately 0.8256.

b) Let Y be the number of cars washed in a 30 minute period. The probability distribution of Y is a Poisson distribution with mean μ = (6/2) = 3 cars. We will use the Poisson probability distribution function to find the probability of at least one car being washed in a 30 minute period.P(Y ≥ 1) = 1 - P(Y = 0) = 1 - ((μ^0)*e^-μ)/0! = 1 - e^-3 ≈ 0.9502So the probability of at least one car being washed in a 30 minute period is approximately 0.9502.

Learn more about Probability here,https://brainly.com/question/13604758

#SPJ11

Q
1

=74
Q
2

=111
Q
3

=172

(Type integers or decimals.) Interpret the quartiles. Choose the correct answer below. A. The quartiles suggest that all the samples contain between 74 and 172 units. B. The quartiles suggest that 33% of the samples contain less than 74 units, 33% contain between 74 and 172 units, and 33% contain greater than 172 units. The quartiles suggest that the average sample contains 111 units V. The quartiles suggest that 25% of the samples contain less than 74 units, 25% contain between 74 and 111 units, 25% contain between 111 and 172 units, and 25% contain greater than 172 units. b. Determine and interpret the interquartile range (IQR). 1QR= (Simplify your answer. Type an integer or decimal)

Answers

The interquartile range (IQR), calculated as the difference between the third quartile (Q3) and the first quartile (Q1), provides a measure of the spread in the middle 50% of the data. In this case, the IQR is 98 units.

Interpretation of quartiles: The quartiles are the values that split a dataset into four equal parts. The first quartile (Q1) splits the bottom 25% of the data from the rest. The second quartile (Q2) splits the data set in half, while the third quartile (Q3) splits the top 25% from the rest.

Given, Q1 = 74, Q2 = 111, and Q3 = 172.

We need to interpret the quartiles.

According to the given values, 25% of the samples contain less than 74 units.25% of the samples contain between 74 and 111 units. 25% of the samples contain between 111 and 172 units.25% of the samples contain greater than 172 units. Thus, the correct option is V. The quartiles suggest that 25% of the samples contain less than 74 units, 25% contain between 74 and 111 units, 25% contain between 111 and 172 units, and 25% contain greater than 172 units. (Option V).

Determination of IQR: The interquartile range (IQR) is the range of the middle 50% of the data set. The IQR is calculated as follows:IQR = Q3 − Q1IQR = 172 − 74 = 98Thus, the value of IQR is 98.

Hence, the Main Answer is IQR = 98. The Explanation is: The interquartile range (IQR) is the range of the middle 50% of the data set. The IQR is calculated as follows: IQR = Q3 − Q1. Thus, IQR = 172 − 74 = 98 units.

The Solution is 1QR = 98. Thus, the interquartile range (IQR) is 98.

To Know more about IQR visit:

brainly.com/question/13871342

#SPJ11

]find the midpoint m of ab a=[2,1] b=[-4,7

Answers

The coordinates of the midpoint M are (-1, 4).

To find the midpoint M of the line segment AB with endpoints A(2, 1) and B(-4, 7), we can use the midpoint formula.

The midpoint formula states that the coordinates of the midpoint M(x, y) of two points A(x₁, y₁) and B(x₂, y₂) can be found by taking the average of their respective x-coordinates and y-coordinates:

x = (x₁ + x₂) / 2

y = (y₁ + y₂) / 2

Let's apply the formula to find the midpoint M of AB:

x = (2 + (-4)) / 2

= -2 / 2

= -1

y = (1 + 7) / 2

= 8 / 2

= 4

Therefore, the coordinates of the midpoint M are (-1, 4).

For such more question on coordinates:

https://brainly.com/question/31293074

#SPJ8

[tex]{\huge{\fbox{\tt{\green{Answer}}}}}[/tex]

______________________________________

To find the midpoint of a line segment, we take the average of the x-coordinates and the average of the y-coordinates. So, for the line segment AB with endpoints A = (2, 1) and B = (-4, 7), the midpoint M is:

→ M = ((2 + (-4)) / 2, (1 + 7) / 2)

M = (-1, 4)

Therefore, the midpoint of the line segment AB is M = (-1, 4).

______________________________________

A small grocery store had 10 cartons of milk, 1 of which was sour. You are going to buy the 9th carton of milk sold that day at random. What is the probability that the one you buy will be sour milk? A: 0 B: 0.1 C: 0.2 D: 0.25 E: 0.5 D

Answers

The probability of buying a sour carton of milk is 0.1.The correct answer is B.

To determine the probability of buying a sour carton of milk, we need to consider the number of favorable outcomes (buying the sour milk) and the total number of possible outcomes (buying any carton of milk).

Initially, there are 10 cartons of milk, 1 of which is sour. As you are going to buy the 9th carton of milk sold that day, there are 9 cartons left. Since we are assuming a random selection, each carton has an equal chance of being chosen.

Therefore, the total number of possible outcomes is 9 because there are 9 remaining cartons.

The number of favorable outcomes is 1 since there is only 1 sour carton among the 9 remaining.

The probability is calculated by dividing the number of favorable outcomes by the total number of possible outcomes:

Probability = (Number of Favorable Outcomes) / (Total Number of Possible Outcomes)

Probability = 1 / 9

Thus, the probability of buying a sour carton of milk is approximately 0.1111, which can be rounded to 0.1.

Therefore, the correct answer is B: 0.1.

Know more about probability here,

https://brainly.com/question/31828911

#SPJ11

Suppose you estimate the parameters B0 and B1 of a single linear regression model, Y = B0 + B1 X + u, and obtain estimates B0hat=5.29 and B1hat=0.81. What residual corresponds to the data point (Y, X) = (8, -2)?

choice 4.33

-3.67

1.09

Not enough information provided

Answers

The correct answer is 4.33.

To find the residual corresponding to the data point (Y, X) = (8, -2), we can use the estimated regression equation:

Yhat = B0hat + B1hat * X

Substituting the values B0hat = 5.29, B1hat = 0.81, and X = -2 into the equation, we have:

Yhat = 5.29 + 0.81 * (-2) = 5.29 - 1.62 = 3.67

The residual is calculated as the difference between the observed value (Y) and the predicted value (Yhat):

Residual = Y - Yhat = 8 - 3.67 = 4.33Therefore, the correct answer is 4.33.

Learn more about statistics here:

https://brainly.com/question/30915447

#SPJ11

The distance between home plate and first base on a baseball diamond is 90 ft.

Answers

Home plate to second base is located at a distance of 90√2 feet.

A square is a rectangle in which each side is the same length. The distance separating the square's opposing vertices is known as the diagonal. The Pythagoras Theorem can be used to compute the diagonals:

Diagonal² = Side² + Side²

Diagonal² = 2 Side²

Diagonal = √2 Side

The answer to the question is that it is 90 feet from home plate to first base.

This is the length of the side that makes up the baseball diamond's square shape. The diagonal of the square is the distance from home plate to second base.

Diagonal = √2 Side

Diagonal = 90√2

Hence, home plate to second base is located at a distance of 90√2 feet.

To know more about Pythagoras Theorem here

https://brainly.com/question/21926466

#SPJ4

The question is incomplete. The complete question will be -

"A baseball diamond is square. The distance from home plate to first base is 90 feet. In feet, what is the distance from home plate to second base?"

A total of 36 members of a club play tennis, 28 play squash, and 18 play badminton. Furthermore, 22 of the members play both tennis and squash, 12 play both tennis and badminton, 9 play both squash and badminton, and 4 play all three sports. How many members of this club play at least one of these sports?

Answers

To determine the number of members who play at least one of the three sports (tennis, squash, or badminton), we need to calculate the total number of unique members across all three sports, taking into account those who play multiple sports.

Given that 36 members play tennis, 28 play squash, and 18 play badminton, we can start by summing up these three values: 36 + 28 + 18 = 82. However, this count includes some members who play multiple sports, so we need to adjust for the overlaps.

We know that 22 members play both tennis and squash, 12 play both tennis and badminton, and 9 play both squash and badminton. Additionally, 4 members play all three sports.

To find the total number of members who play at least one sport, we can subtract the number of overlaps from the initial count: 82 - (22 + 12 + 9 - 4) = 82 - 39 = 43.

Therefore, there are 43 members in the club who play at least one of the three sports.

Learn more about number here: brainly.com/question/10547079

#SPJ11

Pumpkins are on sale for $4 each, but customers can buy no more than 3 at this price. For pumpkins bought at the sale price, the total cost, y, is directly proportional to the number bought, x. This function can be modeled by y = 4x. What is the domain of the function in this situation?

A. (0, 1, 2, 3)
B. (0, 4, 8, 12)
C. (0, 1, 2, 3, 4, ...)
D. All positive numbers, x>0​

Answers

Option C, (0, 1, 2, 3, 4, ...), is the correct domain of the function in this situation.

In this situation, the domain of the function represents the possible values for the number of pumpkins, x, that can be bought at the sale price. We are given that customers can buy no more than 3 pumpkins at the sale price of $4 each.

Since the customers cannot buy more than 3 pumpkins, the domain is limited to the values of x that are less than or equal to 3. Therefore, we can eliminate option D (All positive numbers, x > 0) as it includes values greater than 3.

Now let's evaluate the remaining options:

A. (0, 1, 2, 3): This option includes values from 0 to 3, which satisfies the condition of buying no more than 3 pumpkins. However, it does not consider the possibility of buying more pumpkins if they are not restricted to the sale price. Thus, option A is not the correct domain.

B. (0, 4, 8, 12): This option includes values that are multiples of 4. While customers can buy pumpkins at the sale price of $4 each, they are limited to a maximum of 3 pumpkins. Therefore, this option allows for more than 3 pumpkins to be purchased, making it an invalid domain.

C. (0, 1, 2, 3, 4, ...): This option includes all non-negative integers starting from 0. It satisfies the condition that customers can buy no more than 3 pumpkins, as well as allows for the possibility of buying fewer than 3 pumpkins. Therefore, option C, (0, 1, 2, 3, 4, ...), is the correct domain of the function in this situation.

For more such questions on domain

https://brainly.com/question/26098895

#SPJ8

Consider the general series: n=1∑[infinity]​ 9n+4(−1)n​ Determine whether the series converges absolutely, conditionally, or diverges. diverges converges conditionally converges absolutely Justify any and all claims to receive full credit on this problem. You are welcome to use any test to determine convergence (or show divergence). Make sure that you show all conditions are met before applying a specific test.

Answers

The original series ∑[infinity] (9n + 4)(-1)n converges absolutely because both the alternating series and the corresponding series without the alternating signs converge the series ∑[infinity] (9n + 4)(-1)n converges absolutely.

To determine the convergence of the series ∑[infinity] (9n + 4)(-1)n, use the alternating series test. The alternating series test states that if a series has the form ∑[infinity] (-1)n+1 bn, where bn is a positive sequence that decreases monotonically to 0 as n approaches infinity, then the series converges.

examine the terms of the series: bn = (9n + 4). that bn is a positive sequence because both 9n and 4 are positive for all n to show that bn is a decreasing sequence.

To do this,  consider the ratio of successive terms:

(bn+1 / bn) = [(9n+1 + 4) / (9n + 4)]

By simplifying the ratio,

(bn+1 / bn) = [(9n + 9 + 4) / (9n + 4)] = [(9n + 13) / (9n + 4)]

Since the numerator (9n + 13) is always greater than the denominator (9n + 4) for all positive n, the ratio is always greater than 1. Therefore, the terms of bn form a decreasing sequence.

Since bn is a positive sequence that decreases monotonically to 0 as n approaches infinity,  the alternating series test. Consequently, the series ∑[infinity] (9n + 4)(-1)n converges.

However to determine whether it converges absolutely or conditionally.

To investigate the absolute convergence consider the series without the alternating signs: ∑[infinity] (9n + 4).

use the ratio test to examine the convergence of this series:

lim[n→∞] [(9n+1 + 4) / (9n + 4)] = lim[n→∞] (9 + 4/n) = 9.

Since the limit of the ratio is less than 1, the series ∑[infinity] (9n + 4) converges absolutely.

To know more about infinity here

https://brainly.com/question/22443880

#SPJ4

Find all points on the curve x2y2+xy=2 where the slope of the tangent line is −1. Use the linear approximation to estimate the given number (a) (1.999)4 (b) √100.5​ (c) tan2∘

Answers

The points on the curve [tex]x^2y^2[/tex] + xy = 2 where the slope of the tangent line is -1 can be found using the linear approximation. The linear approximation is then used to estimate (a) [tex](1.999)^4[/tex], (b) √100.5, and (c) [tex]tan(2 \circ)[/tex].

To find the points on the curve where the slope of the tangent line is -1, we need to differentiate the equation [tex]x^2y^2[/tex] + xy = 2 implicitly with respect to x. Differentiating the equation yields 2[tex]xy^2[/tex] + x^2(2y)(dy/dx) + y + x(dy/dx) = 0. Rearranging terms, we get (2[tex]xy^2[/tex] + y) + ([tex]x^2[/tex](2y) + x)(dy/dx) = 0.

Setting the expression in the parentheses equal to zero gives us two equations: 2[tex]xy^2[/tex] + y = 0 and[tex]x^2[/tex](2y) + x = 0. Solving these equations simultaneously, we find two critical points: (0, 0) and (-1/2, 1).

Next, we use the linear approximation to estimate the given numbers. The linear approximation is given by the equation Δy ≈ f'([tex]x_0[/tex]) Δx, where f'([tex]x_0[/tex]) is the derivative of the function at the point [tex]x_0[/tex], Δx is the change in x, and Δy is the corresponding change in y.

(a) For [tex](1.999)^4[/tex], we use the linear approximation with Δx = 0.001 (a small change around 2). Calculating f'(x) at x = 2, we get 32. Plugging these values into the linear approximation equation, we find Δy ≈ 32 * 0.001 = 0.032. Therefore, [tex](1.999)^4[/tex] ≈ 2 - 0.032 ≈ 1.968.

(b) For √100.5, we use the linear approximation with Δx = 0.5 (a small change around 100). Calculating f'(x) at x = 100, we get 0.01. Plugging these values into the linear approximation equation, we find Δy ≈ 0.01 * 0.5 = 0.005. Therefore, √100.5 ≈ 10 - 0.005 ≈ 9.995.

(c) For tan2°, we use the linear approximation with Δx = 1° (a small change around 0°). Calculating f'(x) at x = 0°, we get 1. Plugging these values into the linear approximation equation, we find Δy ≈ 1 * 1° = 1°. Therefore, tan2° ≈ 0° + 1° ≈ 1°.

the points on the given curve with a slope of -1 are (0, 0) and (-1/2, 1). Using the linear approximation, we estimate (a) [tex](1.999)^4[/tex] ≈ 1.968, (b) √100.5 ≈ 9.995, and (c) tan2° ≈ 1°.

Learn more about tangent line here:

https://brainly.com/question/33065876

#SPJ11

Which choice is the solution to the inequality below?
X/13>1

A. x> 13
B. x > 0.08
C. x< 13
D. x> 1

Answers

The answer is:

x > 13

Work/explanation:

To solve the inequality, multiply each side by 13.

This is done to clear the fraction on the left side and isolate x.

[tex]\bullet\phantom{333}\bf{\dfrac{x}{13} > 1}[/tex]

[tex]\bullet\phantom{333}\bf{x > 1\times13}[/tex]

[tex]\bullet\phantom{333}\bf{x > 13}[/tex]

Therefore, the answer is x > 13.

Which of the following estimates at a 95% confidence level most likely comes from a small sample? 53% (plusminus3%) 59% (plusminus5%) 67% (plusminus7%) 48% (plusminus21%)

Answers

The estimate that most likely comes from a small sample at a 95% confidence level is 48% (plusminus21%).When taking a random sample of data from a population, there is always some degree of sampling error.

Confidence intervals are used to quantify the range of values within which the actual population parameter is expected to lie with a certain degree of confidence. These intervals have a margin of error that represents the degree of uncertainty about the population parameter's true value. The width of a confidence interval is determined by the sample size and the level of confidence required. The level of confidence expresses the likelihood of the population parameter's true value being within the interval.

A smaller sample size leads to a wider margin of error, which means that the confidence interval will be wider and less precise. A larger sample size, on the other hand, results in a narrower confidence interval and a more accurate estimate. For a small sample size, the confidence interval for the percentage of the population with a certain characteristic is larger. A larger interval implies a greater degree of uncertainty in the estimate.48% (plusminus21%) is the estimate that is most likely to have come from a small sample. Because the margin of error is large, it implies that the sample size was tiny.

Learn more about Value here,

https://brainly.com/question/11546044

#SPJ11

formula for volume of a pyramid with a square base

Answers

The formula for finding the volume of a pyramid with a square base is :

(1/3) * side length squared * height.

The formula for the volume of a pyramid with a square base is:

Volume = (1/3) * Base Area * Height

Where:

Base Area is the area of the square base of the pyramid (length of one side squared: A = s^2, where "s" is the length of one side of the square base)

Height is the perpendicular distance from the base to the apex (top) of the pyramid.

Combining these values, the formula becomes:

Volume = (1/3) * s^2 * Height

So, the volume of a pyramid with a square base can be calculated by multiplying one-third of the base area by the height of the pyramid.

To learn more about volume of a pyramid visit : https://brainly.com/question/18994842

#SPJ11

Plot the vector field (1,cos2x) in the range 0

Answers

To plot the vector field (1, cos(2x)) in the range 0 <= x <= 2π, we can evaluate the vector components for different values of x within the given range.

Each vector will have a magnitude of 1 and its direction will be determined by the value of cos(2x).

In the range 0 <= x <= 2π, we can choose a set of x-values, calculate the corresponding y-values using cos(2x), and plot the vectors (1, cos(2x)) at each point (x, y).

For example, if we choose x = 0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4, 2π, we can calculate the corresponding y-values as follows:

y = cos(2x):

y = cos(2 * 0) = cos(0) = 1

y = cos(2 * π/4) = cos(π/2) = 0

y = cos(2 * π/2) = cos(π) = -1

y = cos(2 * 3π/4) = cos(3π/2) = 0

y = cos(2 * π) = cos(2π) = 1

y = cos(2 * 5π/4) = cos(5π/2) = 0

y = cos(2 * 3π/2) = cos(3π) = -1

y = cos(2 * 7π/4) = cos(7π/2) = 0

y = cos(2 * 2π) = cos(4π) = 1

Now we can plot the vectors (1, 1), (1, 0), (1, -1), (1, 0), (1, 1), (1, 0), (1, -1), (1, 0), (1, 1) at the corresponding x-values.

The resulting vector field will consist of vectors of length 1 pointing in different directions based on the values of cos(2x).

To know more about vector fields click here: brainly.com/question/33362809

#SPJ11

Find the indefinite integral and check the result by differentiation. (Use C for the constant of integration.) ∫
x^6/(7+x^7)^2 dx

Answers

The indefinite integral of the function is:

[tex]\[\int \frac{{x^6}}{{(7+x^7)^2}} \, dx\][/tex]

To evaluate this integral, we can make the substitution [tex]\( u = 7 + x^7 \)[/tex].

Differentiating both sides with respect to [tex]\( x \)[/tex] gives [tex]\( du/dx = 7x^6 \)[/tex]. Rearranging this equation, we have [tex]\( dx = \frac{{du}}{{7x^6}} \).[/tex]

Now, we can rewrite the integral using the substitution:

[tex]\[\int \frac{{x^6}}{{(7+x^7)^2}} \, dx = \int \frac{{x^6}}{{u^2}} \cdot \frac{{du}}{{7x^6}}\][/tex]

Simplifying, we get:

[tex]\[\frac{1}{7} \int \frac{{1}}{{u^2}} \, du\][/tex]

Integrating this expression with respect to [tex]\( u \)[/tex], we obtain:

[tex]\[\frac{1}{7} \left( -\frac{1}{{u}} \right) + C = -\frac{1}{{7u}} + C\][/tex]

Finally, substituting back [tex]\( u = 7 + x^7 \),[/tex] we get the final result:

[tex]\[\int \frac{{x^6}}{{(7+x^7)^2}} \, dx = -\frac{1}{{7(7+x^7)}} + C\][/tex]

To know more about indefinite integration, refer here:

https://brainly.com/question/31617899#

#SPJ11

A gas station sells regular gas for $2.10 per gallon and premium gas for $2.60 a gallon. At the end of a business day 350galis. 9 of gas nad been sold, and receipts totaled $795. How many gallons of each type of gas had been sold? regular gas gal preminum gas gal

Answers

The number of gallons of regular gas sold is 230 gallons, and the number of gallons of premium gas sold is 120 gallons.

Let's assume the number of gallons of regular gas sold is represented by the variable "R" and the number of gallons of premium gas sold is represented by the variable "P".

According to the information, we have two equations:

1) R + P = 350 (the total gallons sold is 350 gallons)

2) 2.10R + 2.60P = 795 (the total receipts from selling gas is $795)

We can solve this system of equations to find the values of R and P.

From equation 1), we can express R in terms of P: R = 350 - P.

Substituting this value of R into equation 2), we get: 2.10(350 - P) + 2.60P = 795.

Expanding and simplifying, we have: 735 - 2.10P + 2.60P = 795.

Combining like terms, we get: 0.50P = 795 - 735.

Simplifying further, we have: 0.50P = 60.

Dividing both sides of the equation by 0.50, we find: P = 120.

Substituting this value of P into equation 1), we find: R = 350 - 120 = 230.

Therefore, 230 gallons of regular gas and 120 gallons of premium gas had been sold.

To know more about system of equations refer here:

https://brainly.com/question/21620502#

#SPJ11

Suppose that 6 J of work is needed to stretch a spring from its natural length of 32 cm to a length of 50 cm. (a) How much work (in J) is needed to stretch the spring from 37 cm to 45 cm ? (Round your answer to two decimal places.) J (b) How far beyond its natural length (in cm ) will a force of 25 N keep the spring stretched? (Round your answer one decimal place).

Answers

A. The work needed to stretch the spring from 37 cm to 45 cm is approximately 0.63 J.

B. A force of 25 N will keep the spring stretched approximately 37.5 cm beyond its natural length.

The formula for the potential energy stored in a spring is given by:

U = (1/2)kx^2

Where U is the potential energy, k is the spring constant, and x is the displacement from the natural length.

We are given that 6 J of work is needed to stretch the spring from 32 cm to 50 cm. Let's calculate the spring constant (k) using this information:

6 J = (1/2)k(0.18 m)^2

k = (2 * 6 J) / (0.18 m)^2

k ≈ 66.67 N/m

Now let's solve the problems:

To find the work, we need to calculate the potential energy difference between the two positions. Let's calculate the potential energy at each position:

For x1 = 37 cm:

U1 = (1/2)(66.67 N/m)(0.05 m)^2

For x2 = 45 cm:

U2 = (1/2)(66.67 N/m)(0.13 m)^2

The work done to stretch the spring from x1 to x2 is the difference in potential energy:

Work = U2 - U1

Substituting the values:

Work = [(1/2)(66.67 N/m)(0.13 m)^2] - [(1/2)(66.67 N/m)(0.05 m)^2]

Simplifying and calculating the value:

Work ≈ 0.63 J

Therefore, the work needed to stretch the spring from 37 cm to 45 cm is approximately 0.63 J.

To find the displacement, we can rearrange Hooke's Law formula:

F = kx

Where F is the force, k is the spring constant, and x is the displacement.

We can solve this equation for x:

x = F / k

Substituting the values:

x = 25 N / 66.67 N/m

Calculating the value:

x ≈ 0.375 m ≈ 37.5 cm

Therefore, a force of 25 N will keep the spring stretched approximately 37.5 cm beyond its natural length.

Learn more about Natural Length here :

https://brainly.com/question/32456085

#SPJ11

The demand for product Q is given by Q=100−.25P and the total cost of Q by: STC=3000+40Q−5Q ^2 + 1/3Q ^3 g. At what positive level of Q is marginal profit maximized? You found the profit function in (e) above. Marginal profit is the first derivative of the profit function (e). Next, find the derivative of marginal profit, set it equal to zero, and solve for Q. This is the Q that maximizes marginal profit. h. What price per unit should be charged for each unit of Q found in (g)? Simply plug the Q you got in (g) into the same price function you found in (a) and also used in (d).

Answers

a) To find the profit function, we must first determine the revenue and cost functions and then subtract the cost from the revenue.

Given that the demand function is Q = 100 - 0.25P, we can determine the revenue function by multiplying this by P. R(Q) = PQ

= P(100 - 0.25P)

L= 100P - 0.25P² The total cost of Q is given by: STC

= 3000 + 40Q - 5Q² + (1/3)Q³g. We can find the cost function by taking the derivative of STC with respect to Q. C(Q)

= 40 - 10Q + (1/3)Q² Marginal profit is the derivative of the profit function.

The profit function is given by P(Q) = R(Q) - C(Q). P(Q)

= 100P - 0.25P² - (40 - 10Q + (1/3)Q²) Marginal profit is the first derivative of the profit function. MP(Q)

= dP/dQ MP(Q)

= 100 - 0.5P - (10 + (2/3)Q) Setting the marginal profit equal to zero and solving for Q: 100 - 0.5P - (10 + (2/3)Q)

= 0 90 - 0.5P

= (2/3)Q Q

= (135/2) - (3/4)P To find the price per unit, we can plug the value of Q into the demand function: Q

= 100 - 0.25P (135/2) - (3/4)P

= 100 - 0.25P (7/4)P

= 65 P

= 260/7

(g) Marginal profit is maximized at Q = (135/2) - (3/4)P, and price per unit should be $260/7.

To know more about function, visit:

https://brainly.com/question/21145944

#SPJ11

The number of bacteria in a refrigerated food product is given by N(T)=22T^2−58T+6, 3
When the food is removed from the refrigerator, the temperature is given by T(t)=8t+1.4, where t is the time in hours.

Find the composite function N(T(t)):
N(T(t))=

Find the time when the bacteria count reaches 9197.
Time Needed = hours

Answers

The composite function N(T(t)) is given by N(T(t)) = 22(8t+1.4)^2 - 58(8t+1.4) + 6.

To find the composite function N(T(t)), we substitute the expression for T(t) into the equation for N(T).

N(T(t)) = 22T^2 - 58T + 6 [Substitute T(t) = 8t+1.4]

N(T(t)) = 22(8t+1.4)^2 - 58(8t+1.4) + 6 [Expand and simplify]

N(T(t)) = 22(64t^2 + 22.4t + 1.96) - 58(8t+1.4) + 6 [Expand further]

N(T(t)) = 1408t^2 + 387.2t + 43.12 - 464t - 81.2 + 6 [Combine like terms]

N(T(t)) = 1408t^2 - 76.8t - 31.08 [Simplify]

Now, to find the time when the bacteria count reaches 9197, we set N(T(t)) equal to 9197 and solve for t.

1408t^2 - 76.8t - 31.08 = 9197 [Set N(T(t)) = 9197]

1408t^2 - 76.8t - 9218.08 = 0 [Rearrange equation]

Solving this quadratic equation will give us the value(s) of t when the bacteria count reaches 9197.

For more questions like Function click the link below:

https://brainly.com/question/21145944

#SPJ11

Watney needs to grow 1000 calories per day, how many potatoes (lbs.) does he need to grow for 1400 days? Potatoes have about 1690 calories per pound. (Scientist do believe that growing potatoes on Mars as shown in The Martian is possible.)

Answers

To calculate the number of potatoes Mark Watney would need to grow for 1400 days in order to obtain 1000 calories per day, we first need to determine the total calorie requirement for that duration.

Since Watney needs 1000 calories per day, the total calorie requirement for 1400 days would be 1000 calories/day × 1400 days = 1,400,000 calories.  Next, we need to find out how many pounds of potatoes are required to obtain 1,400,000 calories. Given that potatoes contain approximately 1690 calories per pound, we can divide the total calorie requirement by the calories per pound to get the weight of potatoes needed.

Therefore, 1,400,000 calories ÷ 1690 calories/pound ≈ 828.4 pounds of potatoes. Hence, Mark Watney would need to grow approximately 828.4 pounds of potatoes in order to meet his calorie requirement of 1000 calories per day for 1400 days on Mars.

To find out the number of potatoes Mark Watney needs to grow for 1400 days, we first calculate the total calorie requirement for that duration, which is 1,400,000 calories (1000 calories/day × 1400 days). We then divide the total calorie requirement by the number of calories per pound of potatoes, which is approximately 1690 calories/pound. This gives us the weight of potatoes needed, which is approximately 828.4 pounds. Therefore, Mark Watney would need to grow around 828.4 pounds of potatoes to meet his daily calorie intake of 1000 calories for 1400 days on Mars. It is worth noting that this calculation assumes a constant calorie requirement and that all potatoes grown are able to provide the specified number of calories.

Learn more about calorie here: brainly.com/question/19240191

#SPJ11

Testion 10 The numbers 17,711 and 46,368 are the 18 th and 20th Fibonacci numbers. What is the 19 th Fibonacci number? Select one: 64,079 75,025 28,657 32,040

Answers

Therefore, the 19th Fibonacci number is 20,295.

The 19th Fibonacci number can be calculated by finding the sum of the previous two numbers.

Therefore, to find the 19th Fibonacci number we will have to add the 18th and 17th Fibonacci numbers.

If the 18th and 20th Fibonacci numbers are 17,711 and 46,368 respectively, we can first calculate the 17th Fibonacci number.

Then, we can calculate the 19th Fibonacci number by adding the 17th and 18th Fibonacci numbers.

First, we can use the formula for the nth Fibonacci number, which is given as Fn = Fn-1 + Fn-2.

Using this formula, we can calculate the 17th Fibonacci number:

F17 = F16 + F15

= 1597 + 987

= 2584

Now we can calculate the 19th Fibonacci number:

F19 = F18 + F17

= 17,711 + 2,584

= 20,295

To know more about number visit:

https://brainly.com/question/24908711

#SPJ11

Use v=2i+5j−2k and w=9i+8j+8k to calculate the following.
(v×w)×w
Use the drop-down menus to indicate if the second and third terms are negative and enter a positive number in both answer areas. In the case of a zero coefficient, select "+" and enter 0 . Enter a numeric value in each answer area.
(v×w)×w=

Answers

The expression (v×w)×w on simplification results  458i - 434j + 242k

To calculate (v×w)×w, where v = 2i + 5j − 2k and w = 9i + 8j + 8k, we first need to find the cross product of v and w, denoted as (v×w). Then, we take the cross product of (v×w) with w. The result will be a vector expression.

The cross product of two vectors, u and v, is given by the formula u×v = (u2v3 - u3v2)i + (u3v1 - u1v3)j + (u1v2 - u2v1)k.

Using this formula, we can find v×w as follows:

v×w = (2 * 8 - 5 * 8)i + (−2 * 9 - 2 * 8)j + (2 * 8 - 5 * 9)k

       = 16i - 34j - 17k.

Now, we take the cross product of (v×w) with w:

(v×w)×w = (16 * 9 - (-34) * 8)i + ((-34) * 9 - 16 * 8)j + (16 * 8 - (-34) * 9)k

              = 458i - 434j + 242k.

Therefore, the expression (v×w)×w simplifies to 458i - 434j + 242k. The second and third terms are positive in this vector expression.

Learn more about Cross Product here:

brainly.com/question/29097076

#SPJ11

The following hypotheses are tested by a researcher:
H0:P = 0.2 H1:P > 0.2 11
The sample of size 500 gives 125 successes. Which of the following is the correct statement for the p-value? Here the test statistic
is X ~Bin (500, p).
O P(X >125 | p = 0.2)
OP(X ≥125 | p = 0.2)
OP(X ≥120 | p = 0.25)
OP(X ≤120 | p = 0.2)


Answers

The correct statement for the p-value is O P(X >125 | p = 0.2).

The hypotheses H0: P = 0.2 and H1: P > 0.2 are tested by the researcher. A sample of size 500 has 125 successes. For the p-value, the correct statement is O P(X >125 | p = 0.2).Explanation:Given that the hypotheses tested are H0: P = 0.2 and H1: P > 0.2A sample of size 500 has 125 successes.The test statistic is X ~ Bin (500, p).The researcher wants to test if the population proportion is greater than 0.2. That is a one-tailed test. The researcher wants to know the p-value for this test.

Since it is a one-tailed test, the p-value is the area under the binomial probability density function from the observed value of X to the right tail.Suppose we assume the null hypothesis to be true i.e. P = 0.2, then X ~ Bin (500, 0.2)The p-value for the given hypothesis can be calculated as shown below;P-value = P(X > 125 | p = 0.2)= 1 - P(X ≤ 125 | p = 0.2)= 1 - binom.cdf(k=125, n=500, p=0.2)= 0.0032P-value is calculated to be 0.0032. Therefore, the correct statement for the p-value is O P(X >125 | p = 0.2).

Learn more about Hypothesis

here,https://brainly.com/question/606806

#SPJ11

Let f(x)=2√x−x
a. Find all points on the graph of f at which the tangent line is horizontal.
b. Find all points on the graph of f at which the tangent line has slope −1/2

Answers

a) The point on the graph of f(x) where the tangent line is horizontal is (1, f(1)). b) The point on the graph of f(x) where the tangent line has a slope of -1/2 is (9/4, f(9/4)).

To find the points on the graph of f(x) = 2√x - x where the tangent line is horizontal, we need to find the values of x where the derivative of f(x) is equal to zero. The derivative of f(x) can be found using the power rule and the chain rule:

f'(x) = d/dx [2√x - x]

      = 2(1/2)(x^(-1/2)) - 1

      = x^(-1/2) - 1.

a. Tangent line is horizontal when the derivative is equal to zero:

x^(-1/2) - 1 = 0.

To solve this equation, we add 1 to both sides:

x^(-1/2) = 1.

Now, we raise both sides to the power of -2:

(x^(-1/2))^(-2) = 1^(-2),

x = 1.

Therefore, the point on the graph of f(x) where the tangent line is horizontal is (1, f(1)).

b. To find the points on the graph of f(x) where the tangent line has a slope of -1/2, we need to find the values of x where the derivative of f(x) is equal to -1/2:

x^(-1/2) - 1 = -1/2.

We can add 1/2 to both sides:

x^(-1/2) = 1/2 + 1,

x^(-1/2) = 3/2.

Taking the square of both sides:

(x^(-1/2))^2 = (3/2)^2,

x^(-1) = 9/4.

Now, we take the reciprocal of both sides:

1/x = 4/9.

Solving for x:

x = 9/4.

Therefore, the point on the graph of f(x) where the tangent line has a slope of -1/2 is (9/4, f(9/4)).

Please note that the function f(x) is only defined for x ≥ 0, so the points (1, f(1)) and (9/4, f(9/4)) lie within the domain of f(x).

Learn more about tangent line here:

brainly.com/question/23416900

#SPJ11

The ____ statement is useful when you need to test a single variable against a series of exact integer, character, or string values.

Answers

The "switch" statement is useful when you need to test a single variable against a series of exact integer, character, or string values.

The switch statement is a control structure found in many programming languages, including C++, Java, and JavaScript. It allows you to evaluate a variable or expression and compare it against multiple cases.

Each case represents a specific value that the variable or expression is tested against. When a match is found, the corresponding block of code associated with that case is executed.

The switch statement is particularly useful when you have a variable that can take on different values and you want to perform different actions based on those values. Instead of writing multiple if-else statements, the switch statement provides a more concise and efficient way to handle such scenarios.

Learn more about Switch Statement here:

brainly.com/question/30763180

#SPJ11

HOW DO I FIND THE AREA PLEASE I HAVE EXAM IN 10 MINUTES

Answers

To find the area of a shape, you need to know its dimensions and use the appropriate formula. The formula for finding the area of a square is A = s² (where s is the length of one side), while the formula for finding the area of a rectangle is A = l x w (where l is the length and w is the width).

For a triangle, the formula is A = 1/2 x b x h (where b is the length of the base and h is the height). For a circle, the formula is A = πr² (where π is pi and r is the radius).
Once you know the dimensions of your shape and which formula to use, plug in the values and simplify the equation to find the area.

Remember to include units of measurement in your final answer, such as square units or π units squared.
It's important to practice solving problems using these formulas before your exam so you can become comfortable with the process. Good luck on your exam!

For more such questions on appropriate formula

https://brainly.com/question/29572587

#SPJ8

what is the standard error of the sample mean, x-bar?

Answers

The standard error of the sample mean, [tex]\bar{x}[/tex] , is the standard deviation of the distribution of sample means.

The standard error is a measure of the amount of variability in the mean of a population. It is also defined as the standard deviation of the sampling distribution of the mean. This value is used to create confidence intervals or to test hypotheses. The formula to find the standard error is SE = s/√n, where s is the sample standard deviation and n is the sample size. This estimate shows the degree to which the sample mean is anticipated to vary from the actual population mean.

Learn more about standard error:

brainly.com/question/29037921

#SPJ11

Other Questions
How can different forms of customer insight be used to informcampaign execution? what will be the quality of research (ie accuracy , details use ofthe structure outlines in class )of the topic york entrepreneurship development institute (YEDI) Unpolarized light of intensity 8.4 mW/m2 is sent into a polarizing sheet as in the figure. What are (a) the amplitude of the electric field component of the transmitted light and (b) the radiation pressure on the sheet due to its absorbing some of the light? 10. List and define 4 kinds of rotational motion. how to tell the difference between compression and exhaust stroke (ii) Calculate the net profit (in AUD) for the covered interest arbitrage (CIA). (8 marks) (a) Assume that you may borrow or invest up to AUD1,000,000. Currently, the spot exchange rate is AUD1.4500/1.4520/USD and the four-months forward exchange rate is AUD1.4661/1.4668/USD. One-year interest is 4.2% in the United States and 3.5% in Australia. For her son's tuition fee, Maria borrowed 10,000 pesos from a lending company with annual simple interest rate of 8.4%. If she had not given any interest before, how much should she pay the company to pay off her debt after 2 years? Write only the numerical value of the amount. Example: If your answer is 100 pesos, just write 100 . If your answer exceeds thousand pesos write a comma say 1,000 According to the central forecast, UK real GDP is set to decline by 11.3% in 2020. Unemployment will rise from 3.9% in 2019 to a peak of 7.5% in mid-2021, after the furlough scheme and other support for employers is withdrawn. Government expenditure during the pandemic has risen sharply through measures such as the furlough scheme, the Self-Employment Income Support Scheme and various business loans, combined with falling tax revenue, as income and consumer expenditure have declined. Source: Deeper in debt, 28 November 2020 (a) Based on the statement above, explain the relationship between growth rate and unemployment (2 marks) (b) With reference to the decline of UK real GDP in 2020, describe any FOUR (4) consequences to the country. ( 8 marks) (c) Discuss FIVE (5) ways how Central Bank can minimize the impact of rising government expenditures. (10 marks) A perpendicular bisector intersects line segment A C at point B. The bisector also contains points E and D. Line segment A B is 3 x minus 2. Line sector A D is 8 x minus 1. Line sector D C is 6 x + 9.What is the measure of AC?5 units13 units26 units 1. Part A: What can you infer from these lines of dialogue in The Diary Of Anne Frank, Act I?MRS. FRANK: But I'd like to stay with you... very much. Really.ANNE: I'd rather you didn't.A: There are problems in Anne's relationship with her mother.B: Anne and her mother haven't lived together for a long time.C: Anne's mother is always angry at Anne.D: Anne and her mother do not love eachother at all. A proton entered a uniform magnetic field that had a magnitude of 0.80 T. The initial velocity of the proton was 3.310^6 m s^1 perpendicular to the magnetic field. (a) Explain why the proton travelled in a circular path at a constant speed after entering the magnetic field. (b) Determine the radius of the circular path taken by the proton. Please answer the question given below after reading this mini-case study:Mini- Case Study: BC Hydro and Determining HR DemandBC Hydro (BC Hydro) is a very large Canadian power company, with a generating capacity of more than 16 000 megawatts. BC Hyrdo provides power to more than half of all BC homes and businesses. With just over 10 000 employees, BC Hydro produces electricity using a combination of hydroelectric, thermal, nuclear, biomass, and wind-powered stations. Roughly 95 percent of the power produced by BC Hydro in 2015 came from hydroelectric and nuclear sources, which produce zero emissions that contribute to smog and climate change. The power-producing industry is characterized as having fairly stable demand, although the regulatory and social environment in which power companies operate is going through a period of change. For example, BC Hydro is ahead of the BC Ministry of Energymandated schedule to close its coal-fired generating stations. These stations have been shuttered, but not sold, and may one day be converted to natural gasfired stations. BC Hydros nuclear power stations will be shut down by 2024, while phasing in greater use of wind, solar, bio-energy, and hydroelectric power over roughly the same period. Consumer demand for power is dynamic, with daily, weekly, and monthly peaks, as well as seasonal differences in demand. BC Hydro must anticipate power demand and determine how to satisfy its total power demand with power from different stations. Each type of power station has its own unique operating requirements for technicians, and so the HR demand for technicians depends not only on total power needs, but also the mix of power stations in use at any given time. Because the company has varying skill requirements for its technicians, BC Hydro seeks to hire technicians with the basic engineering skills qualifications, and then provides extensive training. The training period lasts up to five years, which indicates how strategically important technicians are to BC Hydro. The forecasting of demand for technicians must account for these cyclical differences in power demand in order to prevent over- or understaffing. In addition to these demand requirements, the utility must plan for future requirements given the expected growth in the demand for electricity over time, and its own strategic initiative to reduce total full-time employment levels by roughly 20 percent from its 2011 levels over a five-year period. Organizational planners have many years of prior sales and consumption data from which to draw forecasts. The utility also has a management team that has deep knowledge of the regulatory and political landscape, the energy sector in general, and the electricity market in the province. Other 2 attributes that may influence the demand for energy and therefore the demand for technicians include the extent to which third-party (consultant) services are utilized, the total capital budget of the company, the total number of kilowatt hours generated, the kilowatt hours produced by each station, the type of power stations available for use, and sales revenues. Assuming that BC Hydro wishes to improve its HR demand forecasts for technicians over a three-year period.Question3: What specific form of qualitative model do you think BC Hydro should use and why Which of the following would be a reconciling item on the bank side of the reconciliation? A. bank recorded a $2,000 deposit as $200 B. service fee of $20 C. collection of note receivable for $1,000 D. non-sufficient funds cheque for $75 Calculate the answer to the appropriate number of significant figures. (Show actual answer, then express answer to the correct number of sig, figs.). 0.005 - 0.00074, Calculate the answer to the appropriate number of significant figures. (Show actual answer, then express answer to the correct number of sig, figs.). 0.005 - 0.0007 Small particulates can be removed from the emissions of a coal-fired power plant by a process known as electrostatic precipitation. The particles are given a small electric charge that results in them being drawn toward oppositely charged plates, where they stick. The electric force on a spherical particle with a diameter of 1.0 micrometer is 2.0 x 10-13 N. What is the speed of such a particle as it is drawn toward a plate? (The weight of the particle can be ignored since the electric force is much greater than the weight.) that is 13.0 cm behlind the enirror. (a) What is the mimror's ridius of eurvature (in om)? (b) What magnificatien describes the image descrbed in this partage? if an object is visible in the unconscious patient's airway, you should Provide a detailed analysis of any 1 ethical topic. The 2 topics are 1. Gun Control, 2. Vaccinations, 3. Immigration. In order to analyze the ethical issue, use an appropriate theory (Natural law, AU, Virtue ethics, etc.). Make sure to show both sides of the argument (for, against) and finally state your own position on the issue giving reasons as to why you hold this particular view. which period of piagets theory explains self-consciousness in an adolescent? rousseau believed that the source of all social ills was