Answer:
25.08 grams of O₂ are needed to react with 8.15 g of C₂H₂.
Explanation:
The balanced reaction is:
2 C₂H₂ + 5 O₂ → 4 CO₂ + 2 H₂O
By reaction stoichiometry, the following amounts of moles of each compound participate in the reaction:
C₂H₂: 2 molesO₂: 5 molesCO₂: 4 molesH₂O: 2 molesThe molar mass of each compound is:
C₂H₂: 26 g/moleO₂: 32 g/moleCO₂: 44 g/moleH₂O: 18 g/moleThen, by reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
C₂H₂: 2 moles* 26 g/mole= 52 gO₂: 5 moles* 32 g/mole= 160 gCO₂: 4 moles* 44 g/mole= 176 gH₂O: 2 moles* 18 g/mole= 36 gThen you can apply the following rule of three: if by stoichiometry 52 grams of C₂H₂ react with 160 grams of O₂, 8.15 grams of C₂H₂ react with how much mass of O₂?
[tex]mass of O_{2} =\frac{8.15 grams of C_{2} H_{2}*160 grams of O_{2} }{52 grams of C_{2} H_{2}}[/tex]
mass of O₂= 25.08 grams
25.08 grams of O₂ are needed to react with 8.15 g of C₂H₂.
How many grams of h2o are needed to produce 45g of NO
g n the following three compounds(1,2,3) arrange their relative reactivity towards the reagent CH3Cl / AlCl3. Justify your order
Answer:
3 > 2> 1
Explanation:
Aromatic compounds undergo electrophilic substitution reaction which passes through a positively charged intermediate to yield the product.
Substituted benzenes may be more or less reactive towards electrophilic aromatic substitution than benzene molecule depending on the nature of the substituent.
Certain substituents increase the ease of reaction of benzene towards aromatic substitution.
If we look at the compounds closely, we will notice that toluene reacts readily with CH3Cl / AlCl3. This is because, the methyl group is electron donating hence it stabilizes the positively charged intermediate produced in the reaction.
Carbonyl compounds are electron withdrawing substituents hence they decrease the magnitude of the positive charge and hence decrease the rate of electrophilic aromatic substitution.
A chemistry grad student measures the performance of the new pump in his lab. The result is:Convert to
Answer:
The correct answer is - 0.0188 mJ*s^-1.
Explanation:
In order to convert the kPA value to PA value--
and then convert PA unit to 1 kgm^-1s^-2
And in finally convert mm to m
The value that come should be convert from kgm^2s^-2 to and then convert J to mJ or kJ by dividing 100 or 100 subsequently.
As no question given this method can be followed for the answer.
Which one of the following reactions is NOT balanced?
2 CO + O2 + 2 CO2
2 SO2 + O2 +2 SO3
2 KNO3 + 10 K 5 K20 + N2
SF4 + 3 H2O → H2SO3 + 4HF
Answer:
co+ o2+ 2co2 is not balanced reaction
Using the following reaction:
H2SO4 (aq) + 2NaOH (aq) → Na2SO4 (aq) + 2H2O (l)
Calculate the molarity of the H2SO4 solution if 14.92 mL of NaOH was necessary to reach the endpoint of a titration. The molarity of the NaOH solution was 0.83 M and 25.18 mL of H2SO4 was added to the Erlenmeyer flask.
Answer:
The molar concentration of the H₂SO₄ solution is 0.28 M
Explanation:
Molar concentration = number of moles / volume in litres
Number of moles = molar concentration × volume
From the equation of reaction, molar ratio of acid to base = 1 : 2
Using the formula; Na/Nb = CaVa/CbVb
Where Na is the number of moles of acid; Nb = number of moles of base; Ca = concentration of acid; Va = volume of acid; Cb = concentration of base; Vb = volume of base; Na/Nb = mole ratio of acid to base
Substituting the given values in the equation:
1/2 = Ca × 25.18 / 0.93 × 14.92
Ca = 0.93 × 14.92/ 25.18 × 2
Ca = 0.28M
Therefore, the molar concentration of the H₂SO₄ solution is 0.28 M
Classify each aqueous solution as acidic, basic, or neutral at 25 °C.
Acidic
Basic
Neutral
pH - 3.41
pH = 10.25
pH = 7.00
[H+] -3.5 x 10-5
[H+] - 6.7 x 10-9
[OH-]-5.8 x 10-4
[H0] -1.0 x 10-7
[OH-] - 4.5 x 10-13
Answer:
pH - 3.41 = acidic
pH = 10.25 = basic
pH = 7.00 = neutral
[H+] -3.5 x 10-5 = acidic
[H+] - 6.7 x 10-9 = basic
[OH-]-5.8 x 10-4 = basic
[H0] -1.0 x 10-7 = neutral
[OH-] - 4.5 x 10-13 = acidic
Explanation:
Let us note that from the pH scale, a pH of;
0 - 6.9 is acidic
7 is neutral
8 - 14 is basic
But pH= - log [H^+]
pOH = -log [OH^-]
Then;
pH + pOH = 14
Hence;
pH = 14 - pOH
For [H+] -3.5 x 10-5
pH = 4.46 hence it is acidic
For [H+] - 6.7 x 10-9
pH = 8.17 hence it is basic
[OH-]-5.8 x 10-4
pH= 10.76 hence it is basic
[H0] -1.0 x 10-7
pH = 7 hence it is neutral
[OH-] - 4.5 x 10-13
pH = 1.65 hence it is acidic
An unknown compound's 2,4-DNP product melting range is between 144-146'C. It does not give a silver mirror on the Tollens test and is slow to react to the chromic acid test. What would this compound be
Answer:
An unknown compound's 2,4-DNP product melting range is between 144-146'C. It does not give a silver mirror on the Tollens test and is slow to react to the chromic acid test. What would this compound be
Explanation:
From the given data it is clear that the unknown compound gives positive test with 2,4-DNP reagent.
That means it has a carbonyl group.Either aldehyde or ketone.
It does not give a silver mirror on the Tollens test and is slow to react to the chromic acid test.
That means aldehyde is absent.
So, the other carbonyl group that is ketone is present in the given unknown compound.
Name the following aldehyde PLEASE PLEASE HELP
Answer:
Explanation:
Answer is D 2,5-dimethylheptanal
You should accern the lowest possible number close to the parent name
Write the balanced dissociation equation for solid sulfur difluoride in aqueous solution. If it does not dissociate, simply write only NR.
Answer:
SF2(aq) → S²⁺(aq) + 2F-(aq)
Explanation:
The sulfur difluoride, SF2, dissolves in water because the differences in electronegativities are considerable (3.98 for Fluorine and 2.58 for S) doing the F-S bond polar. As water is a polar solvent will dissolve the SF2 as follows:
SF2(aq) → S²⁺(aq) + 2F-(aq)As Fluorine has a > electronegativity than S, the Fluorine will be negative and S will be positive. Also, all halogen ions has a charge of -1.
Many reactions involve a change in hybridization of one or more atoms in the starting material. In this reaction, determine the hybridization of the indicated atoms in the organic starting material, and determine if they have changed hybridization during the reaction.
Answer:
Please find the complete question and its solution file in the attachment.
Explanation:
Which of the following is the correct way to balance the following chemical question:
2SnO2 + 4H2 -> 2Sn + 4H2O
SnO2 + 2H2 -> Sn + 2H2O
a. Both equation I and II are balanced, but equation I is the correct way to write the balanced equation.
b. Can you divide equation II by another factor and still have it be correct? Why or why not?
c. In a complete sentence, write down a method you could use to determine if an equation is written in the correct way.
Answer:
i have no answer for part A
part B
the one that has a 4 can be divided by 2 because reducing
part c
you can determine if an equation is written in the correct way by balancing the equation as if it had not been done already.
The following statements either define or are closely related to the terms periodic law, period, or group. Match the terms to the appropriate statements.1. This is a vertical arrangement of elements in the periodic table. 2. This is a horizontal arrangement of elements in the periodic table. 3. The properties of the elements repeat in a regular way as the atomic numbers increase. 4. Element 19 begins this arrangement in the periodic table 5. The chemical properties of elements 12, 20, and 38 demonstrate this principle.
Answer:
Please find the complete solution in attached file.
Explanation:
Periodic law is the the properties of the elements that repeat in a regular way as the atomic numbers increase.
What is periodic table?Periodic chart organized collection of all chemical elements arranged roughly according to increasing atomic weight. The periodic recurrence of several features in the elements was originally identified by Dmitry I. Mendeleyev in 1869.
1. This is a vertical arrangement of elements in the periodic table group
2. This is a horizontal arrangement of elements in the periodic table period
3. The properties of the elements repeat in a regular way as the atomic numbers increase periodic law
4. Element 19 begins this arrangement in the periodic table period
5. The chemical properties of elements 12, 20, and 38 demonstrate this principle. periodic law
Therefore, periodic law is the the properties of the elements that repeat in a regular way as the atomic numbers increase.
To learn more about periodic table, here:
https://brainly.com/question/29766008
#SPJ6
The volume of a single tantalum atom is 1.20×10-23 cm3. What is the volume of a tantalum atom in microliters?
Answer:
1.20x10⁻²⁰μL
Explanation:
1cm³ is equal to 1milliliter. As we must know, 1milliliter = 1000 microliters, 1000μL. To convert the 1.20x10⁻²³mL we need to use the conversion factor: 1mL = 1000μL.
The volume of tantalum in μL is:
1.20x10⁻²³mL * (1000μL /1L) = 1.20x10⁻²⁰μL
A cylinder contains 3.1 L of oxygen at 300 K and 2.7 atm. The gas is heated, causing a piston in the cylinder to move outward. The heating causes the temperature to rise to 610 K and the volume of the cylinder to increase to 9.4 L.
How many moles of gas are in the cylinder?
Express your answer using two significant figures.
Answer: The moles of gas present in the cylinder is 0.34 moles.
Explanation:
Given: [tex]P_{1}[/tex] = 2.7 atm, [tex]V_{1}[/tex] = 3.1 L, [tex]T_{1}[/tex] = 300 K
[tex]P_{2}[/tex] = ?, [tex]V_{2}[/tex] = 9.4 L, [tex]T_{2}[/tex] = 610 K
Formula used to calculate the final temperature is as follows.
[tex]\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}[/tex]
Substitute the values into above formula as follows.
[tex]\frac{P_{1}V_{1}}{T_{1}} = \frac{P_{2}V_{2}}{T_{2}}\\\frac{2.7 atm \times 3.1 L}{300 K} = \frac{P_{2} \times 9.4 L}{610 K}\\P_{2} = \frac{5105.7}{2820} atm\\= 1.81 atm[/tex]
Now, moles present upon heating the cylinder are as follows.
[tex]P_{2}V_{2} = n_{2}RT_{2}\\1.81 atm \times 9.4 L = n_{2} \times 0.0821 L atm/mol K \times 610 K\\n_{2} = \frac{17.014}{50.081} mol\\= 0.34 mol[/tex]
Thus, we can conclude that moles of gas present in the cylinder is 0.34 moles.
How much energy is required to melt 2 kg of gold? Use the table below and this equation.
a. 125.6 kJ
b. 1729 kJ
c. 10.4 kJ
d. 3440kJ
The equation for the energy required to melt 2 kg of gold is 3440 kJ.
What is energy?Energy is the ability to do work or cause change. It is an essential part of everyday life and is present in many forms, such as thermal energy, electrical energy, chemical energy, and mechanical energy. Energy can be converted from one form to another in order to do work.
The equation for calculating the energy required to melt a certain mass of material is Q = m x Lf, where Q is the energy required (in joules), m is the mass of the material (in kilograms), and Lf is the latent heat of fusion (in joules per kilogram).
Using the table below, we can see that the latent heat of fusion for gold is 1760 kJ/kg. Therefore, the equation for the energy required to melt 2 kg of gold is: Q = 2 kg x 1760 kJ/kg = 3440 kJ.
To learn more about energy
https://brainly.com/question/19666326
#SPJ1
Trial 1: Heat 30.0 grams of water at 0 °C to a final temperature of 40.0 °C.
Trial 2: Heat 40.0 grams of water at 10.0 °C to a final temperature of 40.0 °C.
Which statement is true about the experiments? (5 points)
The same amount of heat is absorbed in both the experiments because the product of mass, specific heat capacity, and change in temperature are equal for both.
The same amount of heat is absorbed in both the experiments because the heat absorbed depends only on the final temperature.
The heat absorbed in Trial 2 is about 3,674 J greater than the heat absorbed in Trial 1.
The heat absorbed in Trial 2 is about 5,021 J greater than the heat absorbed in Trial 1.
Answer:
Explanation:
Using the formula below to calculate the heat absorbed in each trial:
Q = m × c × ∆T
Where;
Q = amount of heat absorbed (J)
m = mass of substance (g)
c = specific heat of water (4.184J/g°C)
∆T = change in temperature (°C)
Trial 1: Heat 30.0 grams of water at 0 °C to a final temperature of 40.0 °C.
Q = 30 × 4.184 × (40 - 0)
Q = 30 × 4.184 × 40
Q = 5,020.8J
Trial 2: Heat 40.0 grams of water at 10.0 °C to a final temperature of 40.0 °C.
Answer:
The same amount of heat is absorbed in both the experiments because the product of mass, specific heat capacity, and change in temperature are equal for both.
Explanation:
Explanation:
Using the formula below to calculate the heat absorbed in each trial:
Q = m × c × ∆T
Trial 1: Heat 30.0 grams of water at 0 °C to a final temperature of 40.0 °C.
Q = 30 × 4.184 × (40 - 0)
Q = 30 × 4.184 × 40
Q = 5,020.8J
Trial 2: Heat 40.0 grams of water at 10.0 °C to a final temperature of 40.0 °C.
Q=40*4.184*30
Q=5020.8J
define saturated and unsaturated fats
Answer:
unsaturated fats, which are liquid at room temperature,are different from saturated fat because they contain one or more double bonds and fewer hydrogen atoms on their carbon chain.
viagnesiumi anu
If I have 100g of Magnesium, how much Magnesium Nitride will I theoretically create?
O 24.3g Mg3 N2
O 138.4g Mg3 N2
415.2g Mg3 N2
O 200g Mg3 N2
Answer:
Theoretical yield is 138.4 g
Explanation:
In the first step we determine the reaction:
3Mg + N₂ → Mg₃N₂
Mass of reactant is 100 g. We assume the nitrogen is in excess, so we work with Mg. We convert mass to moles:
100 g . 1mol/ 24.3g = 4.11 moles of Mg.
Ratio is 3:1. 3 moles of Mg can produce 1 mol of nitride
Our 4.11 moles, may produce (4.11 . 1)/3 = 1.37 moles of Mg₃N₂
We convert mass to moles, to find the theoretical yield:
1.37 mol . 100.9 g/mol = 138.2 g
The majority of metals are found within
The majority of metals are found in ores.
But a few such as copper, gold, platinum, and silver frequently occur in the free state because they do not readily react with other elements.
Draw a sketch showing what osmotic pressure is. Label on the sketch solute, solvent, hypertonic, hypotonic and semi permeable membrane.
There are four containers: a 100-mL beaker, 250-mL Erlenmeyer flask, a 500-mL beaker, and a 1-L Florence flask. They contain coffee, tea, water, and milk, although not in that order. Use the following facts to identify the beverage in each container.
a. the 500-mL container has a beverage commonly associated with breakfast.
b. the largest container has a colorless liquid (i.e. neither yellow nor orange).
c. the beverage in the smallest container is opaque. (you cannot see through it).
d. One clear liquid is in a container half the volume of a colored liquid.
e. The only combustible liquid has exactly twice the volume of an opaque liquid.
Answer:
There are four containers: a 100-mL beaker, 250-mL Erlenmeyer flask, a 500-mL beaker, and a 1-L Florence flask. They contain coffee, tea, water, and milk, although not in that order. Use the following facts to identify the beverage in each container.
a. the 500-mL container has a beverage commonly associated with breakfast.
b. the largest container has a colorless liquid (i.e. neither yellow nor orange).
c. the beverage in the smallest container is opaque. (you cannot see through it).
d. One clear liquid is in a container half the volume of a colored liquid.
e. The only combustible liquid has exactly twice the volume of an opaque liquid.
Explanation:
a. The 500-mL container has a beverage commonly associated with breakfast is coffee.
b. The largest container has a colorless liquid (i.e. neither yellow nor orange) water.
c. The beverage in the smallest container is opaque. (you cannot see through it) milk.
d. One clear liquid is in a container half the volume of a colored liquid tea.
The 500-mL container has a beverage commonly associated with breakfast is coffee. (rest answers are as follows)
How to indentify beverages ?The Indentification of the beverages can be done by knowing the content and optical activity that uniquely identify the container.
The 500-mL container has a beverage commonly associated with breakfast is coffee.The largest container has a colorless liquid (i.e. neither yellow nor orange) water.The beverage in the smallest container is opaque. (you cannot see through it) milk.One clear liquid is in a container half the volume of a colored liquid tea.Learn more about optical activity here ;
https://brainly.com/question/15892094
#SPJ5
Give the following reaction: ammonium nitrate—> dinitrogen monoxide + water.
a.) Write a complete balanced chemical equation.
b.) Calculate the number of molecules of water produced by 11.2g of ammonium nitrate
Answer:
a) NH₄NO₃ ⇒ N₂O + 2 H₂O
b) 1.69 × 10²³ molecules
Explanation:
Step 1: Write the balanced equation
NH₄NO₃ ⇒ N₂O + 2 H₂O
Step 2: Convert 11.2 g of NH₄NO₃ to moles
The molar mass of NH₄NO₃ is 80.04 g/mol.
11.2 g × 1 mol/80.04 g = 0.140 mol
Step 3: Calculate the moles of H₂O produced
0.140 mol NH₄NO₃ × 2 mol H₂O/1 mol NH₄NO₃ = 0.280 mol H₂O
Step 4: Calculate the number of molecules in 0.280 moles of water
We will use Avogadro's number.
0.280 mol × 6.02 × 10²³ molecules/1 mol = 1.69 × 10²³ molecules
A student dropped a pea size amount of K2CO3 into a solution of HCl(aq). He observed the formation of gas bubbles and collected the gas into another test tube. The student performed a splint test and observed that the splint was extingished when he placed the splint into the test tube of the gas. What can be said about the results of this students experiment?
a. The student completed the experiment correctly and there were no errors in the experiment.
b. The experiment was performed incorrectly. K2CO3 doesn't react with HCl. Therefore, the student picked up the wrong compound when conducting the experiment.
c. The student performed the splint test incorrectly. He should of observed the splint flare up when the splint was placed in the test tube.
d. The student performed the splint test incorrectly. He should of observed a popping sound when the splint was placed in the test tube.
Answer:
The student completed the experiment correctly and there were no errors in the experiment.
Explanation:
When a pea size amount of K2CO3 is dropped into a solution of HCl, the following reaction occurs;
K2CO3(s) + 2HCl(aq) ----> 2KCl(aq) + CO2(g) + H2O(l)
The gas CO2 does not support burning hence, when the student performed a splint test and observed that the splint was extinguished when he placed the splint into the test tube of the gas.
Hence, the experiment was properly conducted and the student completed the experiment correctly and there were no errors in the experiment.
Which one of the following molecule is planer?
a. NF3 c. PH3
b. BH3 d. NCl3
Answer:
option a
hope helps you
have a great day
g Calculate the number of grams of aluminum that is produced in 1.00 h by the electrolysis of molten AlCl3 if the electrical current is 10.0A.
Answer:
3.36 grams Al°(s)
Explanation:
Given AlCl₃(s), determine the mass (grams) of Al°(s) produced from electrolysis of Aluminum Chloride at 10.0 amps for 1.00 hour.
AlCl₃(s) + 378.3°F (=192.4°C) => Al⁺³(l) + 3Cl⁻(l)
formula wt. Al° = 27g/mol
Faraday Constant (F°) = 96,500 amp·sec
? grams Al°(s) = 10.0amps x (1 mole e⁻/96,500amp-sec) x (1 mole Al°(s)/3 mole e⁻) x (27g Al°(s)/1 mole Al°(s)) x 3,600 sec = 3.36 grams Al°(s)
The 3.36 grams of aluminum are produced in 1 hour by the electrolysis of molten AlCl₃ when 10A current is passed.
What is electrolysis?Electrolysis is a process that uses an electrical current to break chemical compounds. The electric current is passed through the substance to bring the chemical change by gain or loss of electrons.
The electrolysis of the aluminum chloride in the molten state is represented as:
AlCl₃ → Al³⁺ + 3Cl⁻
At cathode: Al³⁺ + 3e⁻ → Al (s)
Given, the current. I = 10 A and t = 1 hr = 3600 s
We know that the current is calculated from the equation: I = q/t
q = I× t
q = (10A) × (3600s)
q = 36 × 10³ C
We know, 96500 C of the charge has electrons = 1 mol
36 × 10³ C of the charge has electrons = 0.373 mol
3 moles of electrons required to produce aluminum = 1 mol
0.373 mol of electrons will produce aluminum = 0.373/3 = 0.124 mol
We know that, the mass of one mole of Al = 27g
The mass of 0.124 mol of Al = 27 × 0.124 = 3.36 g
Therefore, the aluminum produced in 1 hour by the electrolysis of molten AlCl₃ is equal to 3.36 grams.
Learn more about electrolysis, here:
https://brainly.com/question/12054569
#SPJ5
Methanol has the formula CH3OH. What is the predominant intermolecular force between methanol molecules?
ANSWER:
dispersion forces
dipole forces
ionic bonds
hydrogen bonds
Answer:
hydrogen bonds
Explanation:
similarly CH3OH also has a OH group and H hydrogen thus it will also form h-bonding.
The speed of sound depends on the __?_____ and ____?____ of the medium through which it travels
Answer:
Density and rigidity
Select the missing words to complete the definition of buffer capacity. Buffer capacity is the _____________ of acid or base a buffer can handle before pushing the _____________ outside of the buffer range.
Answer:
amount, pH value.
Explanation:
The buffer range is the pH range in which the buffer performs optimally, i.e., neutralizes even when a strong acid or base is introduced to it and resists any major change in its pH value.
The buffer capacity is the amount of acid or base that can be added before the pH of the buffer solution changes significantly.
Thus, the final statement becomes,
Buffer capacity is the amount of acid or base a buffer can handle before pushing the pH value outside of the buffer range.
Answer:
Amount
pH value
Buffer capacity is the amount of acid or base a buffer can handle before pushing the pH outside of the buffer range.
A buffer however consists of a weak acid and its conjugate base.Its major advantage is the ability to resist changes in pH when an acid or a base is added to the solution.
The human blood is also an example of a buffer solution as it is able to resist changes in pH when we eat or drink certain types of food.
An example of a buffer include acetic acid (HC₂H₃O₂) which is a weak acid and sodium acetate (NaC₂H₃O₂) which is a salt derived from that acid).
Read more on https://brainly.com/question/24188850
100.0 mL of a 0.780 M solution of KBr is diluted to 500.0 mL. What is the new concentration of the solution?
I need help solving this!
For the reaction C + 2H2 → CH4, how many moles of hydrogen are needed to make 146.6 grams of methane, CH4 ?
Round your answer to the nearest tenth. If you answer is a whole number like 4, report the answer as 4.0
Use the following molar masses. If you do not use these masses, the computer will mark your answer incorrect.:
Element
Molar Mass
Hydrogen
1
Carbon
12
Answer: Moles of hydrogen required are 4.57 moles to make 146.6 grams of methane, [tex]CH_{4}[/tex].
Explanation:
Given: Mass of methane = 146.6 g
As moles is the mass of a substance divided by its molar mass. So, moles of methane (molar mass = 16.04 g/mol) are calculated as follows.
[tex]Moles = \frac{mass}{molar mass}\\= \frac{146.6 g}{16.04 g/mol}\\= 9.14 mol[/tex]
The given reaction equation is as follows.
[tex]C + 2H_{2} \rightarrow CH_{4}[/tex]
This shows that 2 moles of hydrogen gives 1 mole of methane. Hence, moles of hydrogen required to form 9.14 moles of methane is as follows.
[tex]Moles of H_{2} = \frac{9.14}{2}\\= 4.57 mol[/tex]
Thus, we can conclude that moles of hydrogen required are 4.57 moles to make 146.6 grams of methane, [tex]CH_{4}[/tex].