how much work (in joules) is done in moving a charge of 2.5 μc a distance of 33 cm along an equipotential at 12 v? do not include units with your answer.

Answers

Answer 1

the work done in moving a charge of 2.5 μC a distance of 33 cm along an equipotential at 12 V is 30 μJ (microjoules).

The work done (W) in moving a charge along an equipotential can be calculated using the formula: W = q * ΔV

Where:

W is the work done,

q is the charge, and

ΔV is the change in potential.

Given:q = 2.5 μC (convert to coulombs: 2.5 μC * 10^(-6) C/μC = 2.5 * 10^(-6) C)

ΔV = 12 V

(Note: Joules = Coulombs * Volts)
Substituting the values into the formula: W = (2.5 * 10^(-6) C) * (12 V)

Calculating the result:  W = 30 * 10^(-6) J.
Therefore, the work done in moving a charge of 2.5 μC a distance of 33 cm along an equipotential at 12 V is 30 μJ (microjoules).

To learn more about work done:

https://brainly.com/question/3902440

#SPJ11


Related Questions

The car can round a curve of 90ft radius on a level road if the coefficient of static friction between the tires and the road is 0.75. determine the maximum speed of the car. (10 points)

Answers

The maximum

speed

of the car while rounding the curve with a radius of 90 feet on a level road, with a coefficient of static friction of 0.75, is approximately 16.14 m/s.

To determine the maximum speed of the car while rounding a curve, we can use the concept of centripetal

force

and the maximum friction force.

The centripetal force required to keep the car moving in a curved path is provided by the friction force between the tires and the road. The maximum

friction

force can be calculated using the coefficient of static friction.

The formula for the maximum friction force is:

F_ max = μ * N

Where:

F_ max is the maximum friction force

μ is the coefficient of static friction

N is the normal force (equal to the weight of the car in this case)

To calculate the normal force, we can use the equation:

N = m * g

Where:

m is the mass of the car

g is the acceleration due to gravity (approximately 9.8 m/s²)

Now, let's plug in the values given in the problem:

Radius of the curve (r) = 90 ft = 27.43 m (converted to meters)

The

centripetal

force required to keep the car moving in a curved path is provided by the maximum friction force. Therefore, we can equate the maximum friction force with the centripetal force:

F_ max = F_ centripetal

The centripetal force (F_ centripetal) can be calculated using the formula:

F_ centripetal = (m * v²) / r

Where:

m is the mass of the car

v is the velocity of the car

Now, we can set up the equation:

F_ max = (m * v²) / r

Plugging in the values:

μ * N = (m * v²) / r

Since N = m * g, we can rewrite the equation as:

μ * m * g = (m * v²) / r

Canceling out the mass (m) on both sides of the equation:

μ * g = v² / r

Solving for v, the maximum speed of the car:

v² = μ * g * r

v = √(μ * g * r)

Plugging in the given values:

μ = 0.75

g = 9.8 m/s²

r = 27.43 m

v = √(0.75 * 9.8 * 27.43)

v ≈ 16.14 m/s

Therefore, the maximum speed of the car while rounding the curve with a radius of 90 feet on a level road, with a coefficient of

static

friction of 0.75, is approximately 16.14 m/s.

To know more about

speed

visit:

https://brainly.com/question/13943409

#SPJ11

A 4.0-cm-tall object is placed 50.0 cm from a diverging lens having a focal length of magnitude 25.0 cm. What is the nature and location of the image? A real image, 1.3 cm tall, 16.7 cm same side as the object A virtual image. 1.3 cm tall, 16.7 cm same side as the object A real image, 4.0 cm tall, 20 cm other side of the object A virtual image, 4.0 cm tall, 20 cm other side of the object A virtual image, 2.0 cm tall, 10 cm other side of the object

Answers

The height of the image produced is 1.3 cm. Therefore, the nature and location of the image is a virtual image, 1.3 cm tall, 16.7 cm same side as the object.

The correct option is A virtual image, 1.3 cm tall, 16.7 cm same side as the object.

Given,

Height of the object, h1 = 4.0 cm

Object distance, u = -50.0 cm

Focal length of the diverging lens, f = -25.0 cm

To determine the nature and location of the image, we can use the lens formula, which is given by

1/f = 1/v - 1/u

where:

f is the focal length of the lens

v is the distance of the image from the lens, and

u is the distance of the object from the lens.

The magnification produced by the lens is given by the ratio of the size of the image to the size of the object.

It is given by the formula m = -v/u

where; m is the magnification produced by the lens.

So,1/f

= 1/v - 1/u

On substituting the given values, we get,

1/-25.0

= 1/v - 1/-50.0

we can use the magnification formula. It is given by, m = -v/u On substituting the given values, we get, m = -(-16.7 cm)/(-50.0 cm) = 0.334So, the magnification produced by the lens is 0.334. The negative sign indicates that the image is inverted in nature. The height of the image can be calculated as follows,h2 = |m|h1On substituting the given values, we get,

h2 = 0.334 × 4.0 cm

≈ 1.3 cm

So, the height of the image produced is 1.3 cm. Therefore, the nature and location of the image is a virtual image, 1.3 cm tall, 16.7 cm same side as the object. The correct option is A virtual image, 1.3 cm tall, 16.7 cm same side as the object.

To know more about m = -v/u visit

https://brainly.com/question/17098264

#SPJ11

What is the instantaneous velocity of the bird when ttt = 8.00
ss?
A bird is flying due east. Its distance from a tall building is given by x (t) = 27.0 m+ (11.3 m/s) t – (0.0450 m/s³) t³.

Answers

The instantaneous velocity of the bird at t = 8.00 s is approximately 2.66 m/s east.

To find the instantaneous velocity of the bird, we need to take the derivative of the position function with respect to time. The derivative of the position function gives us the velocity function.

x(t) = 27.0 m + (11.3 m/s) t - (0.0450 m/s³) t³

To find the velocity function, we take the derivative of x(t) with respect to t:

v(t) = d(x(t))/dt

v(t) = d/dt [27.0 m + (11.3 m/s) t - (0.0450 m/s³) t³]

v(t) = (11.3 m/s) - (0.1350 m/s²) t²

Now we can substitute t = 8.00 s into the velocity function to find the instantaneous velocity:

v(8.00 s) = (11.3 m/s) - (0.1350 m/s²) (8.00 s)²

v(8.00 s) = 11.3 m/s - 0.1350 m/s² * 64.00 s²

v(8.00 s) = 11.3 m/s - 8.64 m/s

v(8.00 s) ≈ 2.66 m/s east

Therefore, the instantaneous velocity of the bird at t = 8.00 s is approximately 2.66 m/s east.

To know more about Velocity, visit

brainly.com/question/24445340

#SPJ11

A 5.3 -thick layer of oil (n=1.46) is sandwiched between a 1.1cm -thick sheet of glass and a 2.1cm -thick sheet of polystyrene plastic (n=1.59) (1)How long (in ns) does it take light incident perpendicular to the glass to pass through this 8.5 cm-thick sandwich?

Answers

The time taken by light incident perpendicular to the glass to pass through this 8.5 cm-thick sandwich is 27.8 ns.

Using Snell's law:

When light is incident from the glass side,Angle of incidence, i1 = 0°

Refractive index of air, n1 = 1

Refractive index of glass, n2 = 1.46

Refractive index of oil, n3 = 1.46

Angle of refraction, r1 = arcsin[(n1 sin i1)/n2] = arcsin[(1 × sin 0°)/1.46] = 0°

Angle of incidence, i2 = arcsin[(n1 sin r1)/n3] = arcsin[(1 × sin 0°)/1.46] = 0°

Angle of refraction, r2 = arcsin[(n2 sin i2)/n3] = arcsin[(1.46 × sin 0°)/1.46] = 0°

Total deviation, δ = i1 + r1 - r2 = 0°

Time taken by light to pass through the entire sandwich = (total path length of the sandwich / velocity of light) = (13.8 / (3 × 10^10)) s= 4.6 × 10^−10 s= 0.46 ns

Time taken by light incident perpendicular to the glass to pass through the given sandwich = 2 × time taken by light to pass through the oil + time taken by light to pass through the glass + time taken by light to pass through the polystyrene= 2 × (path length for the ray of light traveling through the oil / velocity of light) + (path length for the ray of light traveling through the glass / velocity of light) + (path length for the ray of light traveling through the polystyrene / velocity of light)= (2 × 5.3 / (3 × 10^10)) + (1.1 / (3 × 10^10)) + (2.1 / (3 × 10^10)) s= 27.8 × 10^−9 s= 27.8 ns

Thus, the time taken by light incident perpendicular to the glass to pass through this 8.5 cm-thick sandwich is 27.8 ns.

Learn more about refraction at:

https://brainly.com/question/32573190

#SPJ11

The time taken by light incident perpendicular to the glass to pass through this 8.5 cm-thick sandwich is approximately 1.481 × 10⁻⁰ s. Given: Thickness of Oil, t₁ = 5.3 μm, Thickness of Glass, t₂ = 1.1 cm. Thickness of Polystyrene Plastic, t₃ = 2.1 cm. Refractive index of Oil, n₁ = 1.46. Refractive index of Polystyrene Plastic, n₂ = 1.59, Speed of light, c = 3 × 10⁸ m/s.

Total distance = Thickness of Glass + Thickness of Polystyrene Plastic + Thickness of Oil

In order to add these distances, we need to first convert all the distances to meters.

Thickness of Glass in meters = 1.1 cm = 1.1 × 10⁻² m

Thickness of Polystyrene Plastic in meters = 2.1 cm = 2.1 × 10⁻²  m

Thickness of Oil in meters = 5.3 μm = 5.3 × 10⁻⁶ m

Now we can add these distances: Total distance = 1.1 × 10⁻²  m + 2.1 × 10⁻²  m + 5.3 × 10⁻⁶ m. Total distance = 0.0000345 m.

Now, we need to determine the speed of light in the oil and in the polystyrene plastic. We can use the formula : n = c/v where, n is the refractive index, c is the speed of light, and v is the speed of light in the given medium. Speed of light in oil :v₁  = c/n₁ v₁  = (3 × 10⁸ m/s) / 1.46v₁ = 2.054 × 10⁸  m/s. Speed of light in polystyrene plastic: v₂ = c/n₂v₂ = (3 × 10⁸  m/s) / 1.59v₂ = 1.887 × 10⁸ m/s. Now we can use the formula: v = d/t where, v is the speed of light in the given medium, d is the distance traveled by the light, and t is the time taken by the light. To calculate the time taken by the light to pass through the glass we can use: v = d/t.

Rearranging the formula we get: t = d/v. Now we need to determine the time taken by the light to pass through the glass, the oil, and the polystyrene plastic separately. Then we can add these times to get the total time taken by the light. Time taken by light to pass through the glass: t₂ = 1.1 × 10⁻² m / 2.998 × 10⁸ m/s t₂ = 3.668 × 10⁻¹¹ s.

Time taken by light to pass through the oil: t₁ = 5.3 × 10⁻⁶ m / 2.054 × 10⁸ m/s, t₁ = 2.579 × 10⁻¹⁴ s. Time taken by light to pass through the polystyrene plastic :t₃ = 2.1 × 10⁻² m / 1.887 × 10⁸ m/s, t₃ = 1.113 × 10⁻¹⁰  s. Total time taken by the light to pass through the sandwich: t = t₁ + t₂ + t₃ t = 2.579 × 10⁻¹⁴ s + 3.668 × 10⁻¹¹ s + 1.113 × 10⁻¹⁰  s. Adding the times we get: t = 1.481 × 10⁻¹⁰ s.

Therefore, the time taken by light incident perpendicular to the glass to pass through this 8.5 cm-thick sandwich is approximately 1.481 × 10⁻⁰ s.

To know more about light incident, refer

https://brainly.com/question/29728416

#SPJ11

vector a⃗ has a magnitude of 6.0 units and points in the negative x direction. vector b⃗ has a positive x component of 4.0 units and a positive y component of 8.0 units.
a) What is the angle between the vectors? b) Determine A⃗ ⋅B⃗ . (Dot product)

Answers

a) The angle between the vectors is 109.47 degrees b) The dot product A ⋅B is -12.0

Angle between the vectors: To determine the angle between the vectors, you need to use the dot product of the two vectors as follows: [tex]cosθ = \frac{a*b}{|a|*|b|}[/tex]

We know that vector a has a magnitude of 6.0 units and points in the negative x direction. Thus, we have a =−6î

Similarly, vector b has a positive x component of 4.0 units and a positive y component of 8.0 units. Thus, we have b=4î+8ĵ

Therefore, the angle between the vectors is given as:

[tex]cosθ = \frac{a*b}{|a|*|b|}[/tex]

=[tex]\frac{(-6i)*(4i+8j)}{(6)(10)}[/tex]

=[tex]\frac{-24}{60}[/tex]

=−0.4

Therefore, θ=cos−1(−0.4)

=109.47 degrees b) A ⋅B . (Dot product)

The dot product of two vectors A and Bis given as follows:

A⋅B=|A||B|cosθ

We have determined the value of cosθ in the previous part as -0.4, and also given that the magnitude of vector a is 6.0 units. Therefore, we have the following:

[tex]A.B=(6.0)\sqrt{(4.0^{2}+8.0^{2}))(-0.4) }[/tex]

=(-12.0)

The magnitude and direction of a vector can be represented by a directed line segment. The endpoint of this line segment represents the vector's position and the length of the segment represents the vector's magnitude.

The cosine of the angle between the vectors is calculated using the dot product formula. The dot product of two vectors is calculated by multiplying the x and y components of the vectors and adding the products.

For more information on vectors kindly visit to

https://brainly.com/question/1511269

#SPJ11

A 3.00 pF capacitor is connected in series with a 2.00 pF capacitor and a 360 V potential difference is applied across the pair. (a) What is the charge on each capacitor (in nc)? 3.00 pF capacitor 2.00 pF capacitor (b) What is the voltage across each capacitor (in V)? .00 pF capacitor 2.00 pF capacitor

Answers

The charge on the 3.00 pF capacitor is 1.08 nc and the charge on the 2.00 pF capacitor is 0.72 nc and the voltage across the 3.00 pF capacitor is 360 V and the voltage across the 2.00 pF capacitor is also 360 V.

(a) Charge stored on a capacitor is given by the equation Q=CV where Q is the charge, C is the capacitance, and V is the voltage. In this question, a 3.00 pF capacitor is connected in series with a 2.00 pF capacitor, therefore, their total capacitance will be C=1/[(1/3)+(1/2)] pF = 1.2 pF. Now, to find the charge on each capacitor, we will apply the formula Q=CV. For the 3.00 pF capacitor, the charge will be Q=3.00 × 10^-12 F × 360 V = 1.08 × 10^-9 C = 1.08 nc. Similarly, for the 2.00 pF capacitor, the charge will be Q=2.00 × 10^-12 F × 360 V = 7.20 × 10^-10 C = 0.72 nc. Therefore, the charge on the 3.00 pF capacitor is 1.08 nc and the charge on the 2.00 pF capacitor is 0.72 nc.

(b) In series combination, capacitors have the same charge on their plates, but different voltages across them. Voltage across each capacitor can be calculated by using the formula V=Q/C where Q is the charge on the capacitor and C is its capacitance. For the 3.00 pF capacitor, the voltage will be V=1.08 × 10^-9 C/3.00 × 10^-12 F = 360 V. For the 2.00 pF capacitor, the voltage will be V=0.72 × 10^-9 C/2.00 × 10^-12 F = 360 V. Therefore, the voltage across the 3.00 pF capacitor is 360 V and the voltage across the 2.00 pF capacitor is also 360 V.

To know more about capacitor visit :

https://brainly.com/question/31627158

#SPJ11

A box of 55kg sits on the floor. If someone pulls up with a force of 50N at an angle of 20degrees, what is the normal force? You have to show your calculations to find the answer to receive credit.

Answers

The normal force acting on the box is approximately 521.9 N.

To find the normal force acting on the box, we need to consider the forces acting on it. In this case, we have the weight of the box and the vertical component of the pulling force.

The weight of the box is given by the formula: weight = mass * gravitational acceleration.

Given:

Mass of the box (m) = 55 kg

Gravitational acceleration (g) = 9.8 m/s^2

Weight of the box (W) = m * g

                    = 55 kg * 9.8 m/s^2

                    = 539 N

The vertical component of the pulling force (F_vertical) can be calculated using the formula: F_vertical = Force * sin(angle).

Given:

Force (F) = 50 N

Angle (θ) = 20 degrees

F_vertical = 50 N * sin(20°)

          ≈ 50 N * 0.342

          ≈ 17.1 N

Since the normal force (N) acts in the opposite direction to the vertical component of the pulling force, the normal force can be calculated by subtracting F_vertical from the weight of the box:

N = W - F_vertical

 = 539 N - 17.1 N

 = 521.9 N

Therefore, the normal force acting on the box is approximately 521.9 N.

To know more about force, visit

https://brainly.com/question/25239010

#SPJ11

A series RIC circuit has a 100-82 resistor, a 0.100-uF
capacitor, and a 2.00-mH inductor connected across a 120-V rms ac
source operating at (1000/7) Hz. What is the max voltage across the
inductor?

Answers

In a series RLC circuit, maximum voltage across the inductor is 0.484 V. the maximum voltage across the inductor is the voltage that will result in the maximum current flowing through the circuit.

We can do this using the formula: I = V / Z, where V is the voltage of the source, and Z is the impedance of the circuit.Impedance is a combination of resistance, capacitance, and inductance, and is calculated

We can calculate the resistance, capacitance, and inductance using the given values:R = 100-82 = 17 ΩC = 0.100 uF = 100 nF = 1.00 x [tex]10^{-7}[/tex] F L = 2.00 mH = 2.00 x [tex]10^{-3}[/tex] H  We can then calculate the inductive and capacitive reactances using the formulas:Xl = 2πfL = 2π(1000/7)(2.00 x [tex]10^{-3}[/tex]) = 8.97 ΩXc = 1 / (2πfC) = 1 / (2π(1000/7)(1.00 x[tex]10^{-7}[/tex])) = 2230 Ω Using these values, we can calculate the impedance of the circuit:Z = sqrt(17 + (8.97 - 2230) = 2226 Ω

We can then calculate the current flowing through the circuit:I = V / Z = 120 / 2226 = 0.054 AFinally, we can calculate the maximum voltage across the inductor using the formula:VL = XlI = 8.97 x 0.054 = 0.484 V Therefore, the maximum voltage across the inductor is 0.484 V.'

Know more about voltage here:

https://brainly.com/question/29632226

#SPJ11

whenever energy is transformed from one form to another, and friction occurs, some of that energy is lost by being changed into heat .

Answers

Whenever energy is transformed from one form to another, and friction occurs, some of that energy is lost by being changed into heat. This is referred to as the loss of energy.

When energy is transferred, there is a fundamental law that dictates that energy cannot be destroyed but it can change from one form to another. Friction is the opposing force which resists the motion of a body on another surface. It opposes the energy or work input to be applied in the movement of the body. Therefore, when work is done, some energy is converted into heat energy.

                                This heat energy is transferred to the surroundings as a waste product.The change in energy of a system is referred to as internal energy. Frictional forces can lead to a change in internal energy in a system, as the mechanical energy in the system is transformed into thermal energy (heat).

                                      For example, when a car is moving on the road, there are frictional forces acting between the wheels and the road surface. These forces lead to the transformation of some of the kinetic energy of the car into thermal energy (heat) which is then dissipated into the environment.

                                     

Learn more about energy

brainly.com/question/1932868

#SPJ11

Constants Two equally charged particles start 3.5 mm from each other at rest. When they are released they accelerate away from each other. The initial acceleration of particle A is 8 m/s² and of particle B is 10 m/s². Part A Calculate the charge on either particle, if the mass of particle A is 9×10-7 kg. Enter your answer with appropriate units. μA ? q= Value Unit

Answers

The charge on either particle is approximately [tex]\pm 1.095\times10^{(-7)} C[/tex]. The calculation is based on Coulomb's law and the given acceleration values for the particles.

To calculate the charge on either particle, we can use Coulomb's law and the equation for acceleration.

Let's consider particle A first. The net force acting on particle A is given by Newton's second law as F = ma, where m is the mass of particle A and a is the acceleration. Using the given values, we have:

[tex]F_A = m_A * a_A[/tex]

[tex]F_A = (9\times 10^{(-7)} kg) * (8 m/s²)[/tex]

[tex]F_A = 7.2\times 10^{(-6)} N[/tex]

Now, according to Coulomb's law, the force between two charged particles is given by F = k * (q₁ * q₂) / r², where k is the electrostatic constant, q₁ and q₂ are the charges on the particles, and r is the distance between them.

Since the particles are equally charged, we can write q₁ = q₂ = q. Plugging in the known values, we have:

k * (q * q) / r² = F_A

[tex]k * (q^2) / r^2 = 7.2\times 10^{(-6)} N[/tex]

The distance between the particles is given as 3.5 mm, which is [tex]3.5\times 10^{(-3)} m[/tex]. Plugging in the values for k, r, and F_A, we can solve for q:

[tex](9\times 10^9 N m^2/C^2) * (q^2) / (3.5\times 10^{(-3)} m)^2 = 7.2\times 10^{(-6)} N[/tex]

[tex]q^2 = (7.2\times 10^{(-6)} N) * (3.5\times 10^{(-3)} m)^2 / (9\times 10^9 N m^2/C^2)[/tex]

[tex]q^2 = 1.2\times 10^{(-14)} C^2[/tex]

[tex]q = \pm\sqrt{(1.2\times10^{(-14)} C^2)}[/tex]

Therefore, the charge on either particle is approximately [tex]\pm 1.095\times10^{(-7)} C[/tex]

To know more about charge refer here:

https://brainly.com/question/32467208#

#SPJ11

Highlight the correct answer.

A.) An object with more mass has more/less gravitational force than an object with a smaller mass.

B.) Objects that are closer together have more/less of a gravitational force between them than objects that are further apart.

Answers

The correct answer is B. According to Newton's law of universal gravitation, the gravitational force between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers.

In simpler terms, as objects get closer together, the gravitational force between them increases.

When the distance between two objects decreases, the denominator of the equation (distance squared) becomes smaller, resulting in a larger force. Conversely, when the distance increases, the denominator becomes larger, resulting in a smaller force.

It is important to note that the mass of an object does not directly affect the strength of the gravitational force between two objects. However, a higher mass will lead to a greater gravitational force when compared to a lower mass, but only because the force is being exerted on a more massive object. The mass of an individual object doesn't directly affect the gravitational force it experiences from another object. option B

for more questions on gravitational force

https://brainly.com/question/27943482

#SPJ8

A 3.20-kg block starts from rest at the top of a 30.0° incline and slides a distance of 1.90 m down the incline in 2.00 s. (a) Find the magnitude of the acceleration of the block. .95 m/s² (b) Find the coefficient of kinetic friction between block and plane. .19 X Draw a careful free-body diagram of the forces acting on the block. (c) Find the friction force acting on the block. magnitude N direction up the incline (d) Find the speed of the block after it has slid 1.90 m. m/s

Answers

(a) The magnitude of the acceleration of the block is 0.95 m/s².

(b) The coefficient of kinetic friction between the block and the plane is 0.19.

(c) The friction force acting on the block has a magnitude of 5.33 N and is directed up the incline.

(d) The speed of the block after sliding 1.90 m is 2.69 m/s.

(a) To find the magnitude of the acceleration, we can use the kinematic equation:

distance = (initial velocity * time) + (0.5 * acceleration * time²)

Plugging in the given values of distance = 1.90 m and time = 2.00 s, and considering the block starts from rest, we can solve for acceleration:

1.90 m = (0 * 2.00 s) + (0.5 * acceleration * (2.00 s)²

Simplifying the equation, we find:

acceleration = (1.90 m) / (0.5 * (2.00 s)²)

acceleration ≈ 0.95 m/s²

(b) The coefficient of kinetic friction can be determined using the equation:

friction force = (coefficient of friction) * (normal force)

In this case, the only force acting on the block in the direction of motion is the friction force. Therefore, we can equate the friction force to the product of the coefficient of kinetic friction and the normal force, which is equal to the weight of the block:

friction force = (coefficient of friction) * (mass * acceleration due to gravity)

Using the given mass of the block (3.20 kg) and the acceleration due to gravity (9.8 m/s²), we can solve for the coefficient of kinetic friction:

friction force = (coefficient of friction) * (3.20 kg * 9.8 m/s²)

5.33 N = (coefficient of friction) * (31.36 N)

Solving for the coefficient of kinetic friction, we find:

coefficient of kinetic friction ≈ 0.19

(c) The friction force acting on the block has a magnitude of 5.33 N and is directed up the incline. This is determined from the previous calculation.

(d) To find the speed of the block after sliding 1.90 m, we can use the equation:

final velocity² = (initial velocity)² + 2 * acceleration * distance

Since the block starts from rest, the initial velocity is 0. Plugging in the given values of acceleration = 0.95 m/s² and distance = 1.90 m, we can solve for the final velocity:

final velocity² = 0 + 2 * 0.95 m/s² * 1.90 m

final velocity² ≈ 3.61 m²/s²

Taking the square root of both sides, we find:

final velocity ≈ 2.69 m/s

Therefore, the speed of the block after sliding 1.90 m is approximately 2.69 m/s.

To know more about kinetic friction refer here:

https://brainly.com/question/30886698#

#SPJ11

A fluorescent mineral absorbs "black light" from a mercury lamp. It then emits visible light with a wavelength 520 nm. The energy not converted to light is converted into heat. If the mineral has absorbed energy with a wavelength of 320 nm, how much energy (in kJ/mole) was converted to heat?

Answers

The amount of energy (in kJ/mole) that was converted to heat is 345 kJ/mol (rounded to three significant figures).

To find the energy that is converted to heat, we need to compare the energy of the absorbed light to the energy of the emitted light. The absorbed light has a wavelength of 320 nm = 320 × 10⁻⁹ m.

So:

E = hc/λ E = (6.626 × 10⁻³⁴ J·s) (3.00 × 10⁸ m/s) / (320 × 10⁻⁹ m) E = 1.85 × 10⁻¹⁸ J

The absorbed light has less energy than the emitted light. The difference in energy is converted to heat.

So:

ΔE = 3.81 × 10⁻¹⁷ J – 1.85 × 10⁻¹⁸ J

ΔE = 3.63 × 10⁻¹⁷ J

This is the energy that is converted to light. To convert this to energy per mole, we need to know the number of photons in one mole of the mineral. This can be calculated using Avogadro’s number:

N = 6.02 × 10²³ photons/mol

So the energy per mole is:

ΔE/mol = (3.63 × 10⁻¹⁷ J) (6.02 × 10²³ photons/mol) ΔE/mol = 2.19 × 10⁷ J/mol

To convert this to kJ/mol, we divide by 1000:

ΔE/mol = 2.19 × 10⁴ kJ/mol

Learn more about energy at:

https://brainly.com/question/28571352

#SPJ11

The energy that was not converted to light is converted to heat. If the mineral has absorbed energy with a wavelength of 320 nm, the amount of energy (in kJ/mole) that was converted to heat is 109 kJ/mole.

A fluorescent mineral absorbs "black light" from a mercury lamp. It then emits visible light with a wavelength 520 nm.

The energy not converted to light is converted into heat.

The energy absorbed by the mineral = 320 nm

We know that the frequency of the energy absorbed by the mineral is given by the formula: c = λv

Where:

c = speed of light (3.0 × 10⁸ m/s)

λ = wavelength of energy (in meters)

v = frequency of energy (in Hertz)

Therefore:

v = c/λ = 3.0 × 10⁸ m/s / 320 × 10⁻⁹ m = 9.375 × 10¹⁴ Hz

Now, the energy absorbed by the mineral (E) is given by the formula: E = hv

Where:

h = Planck's constant (6.626 × 10⁻³⁴ J s)v = frequency of energy (in Hertz)

Therefore:

E = hv = 6.626 × 10⁻³⁴ J s × 9.375 × 10¹⁴ Hz = 6.22 × 10⁻¹⁸ J/molecule

The mineral then emits visible light with a wavelength of 520 nm. The frequency of the emitted light is given by the formula: v = c/λ = 3.0 × 10⁸ m/s / 520 × 10⁻⁹ m = 5.769 × 10¹⁴ Hz

The energy emitted as light is given by the formula: E = hv = 6.626 × 10⁻³⁴ J s × 5.769 × 10¹⁴ Hz = 3.82 × 10⁻¹⁸ J/molecule

Therefore, the energy converted to heat is:ΔE = Energy absorbed - Energy emitted

ΔE = (6.22 - 3.82) × 10⁻¹⁸ J/moleculeΔE = 2.4 × 10⁻¹⁸ J/molecule

Now, to calculate the energy converted to heat in kJ/mol:2.4 × 10⁻¹⁸ J/molecule × (6.02 × 10²³ molecules/mol) / (1000 J/kJ) = 1.44 × 10⁻⁴ kJ/mole

Therefore, the amount of energy (in kJ/mole) that was converted to heat is 109 kJ/mole.

Learn more about the energy absorbed: https://brainly.com/question/32225615

#SPJ11

If you hold a heavy weight over your head, the work you do...
a. is greater than zero
b. is zero
c. is less than zero
d. is covered into chemical energy
e. is converted into potential energy

Answers

The work you do, if you hold a heavy weight over your head, is converted into potential energy. Thus, option E, is the answer.

The amount of work done on an object is equal to the amount of force applied to the object multiplied by the distance the object moves in the direction of the applied force. For work to be done, an object must move in the direction of the force being applied.

The work you do when you hold a heavy weight over your head is called isometric work or isometric exercise. In this scenario, work is done, but the weight doesn't move, hence the object is stationary. As a result, work done is stored as potential energy in your muscles because the potential energy of an object depends on its position relative to the ground. The higher the weight is lifted, the more potential energy it has, and the more work is done. Thus, the answer to the question is option E, "is converted into potential energy."

Learn more about potential energy: https://brainly.com/question/24284560

#SPJ11

Which of the following is the smallest object? A Neutron Star OA Red Drawf OA White Dwarf OA G-type Main-Sequence Star O The Earth

Answers

The smallest object among the options given is a White Dwarf.Among the given options, the smallest object is a White Dwarf. White dwarfs have a size comparable to that of Earth but with a much higher mass, making them incredibly dense and compact objects.

To determine the smallest object among the options, we need to understand the nature and size of each object.

A Neutron Star: Neutron stars are incredibly dense and compact objects that result from the collapse of massive stars. They have a very small radius, typically around 10 kilometers.

A Red Dwarf: Red dwarfs are small and relatively cool stars. They are the smallest type of main-sequence stars and have sizes ranging from about 0.1 to 0.5 times the radius of the Sun.

A White Dwarf: White dwarfs are the remnants of stars that have exhausted their nuclear fuel. They are extremely dense, with a size comparable to that of Earth but with a much higher mass.

A G-type Main-Sequence Star: G-type main-sequence stars, like our Sun, have sizes ranging from about 0.8 to 1.2 times the radius of the Sun.

The Earth: The Earth is a rocky planet with a radius of about 6,371 kilometers.

From the given options, the smallest object is a White Dwarf. While neutron stars are incredibly dense, their radius is still larger than that of a typical white dwarf. Red dwarfs and G-type main-sequence stars are larger than white dwarfs. The Earth, being a planet, is significantly larger than all the other options.

Among the given options, the smallest object is a White Dwarf. White dwarfs have a size comparable to that of Earth but with a much higher mass, making them incredibly dense and compact objects. This comparison is based on the known sizes and nature of each object, with neutron stars, red dwarfs, G-type main-sequence stars, and the Earth being relatively larger than white dwarfs.

To know more about White Dwarf ,visit:

https://brainly.com/question/31593675

#SPJ11

What is the correct order, beginning with the highest frequency and extending to the lowest frequency, of the following colors in the visible light spectrum: blue, green, orange, red, violet, and yellow? red, orange, yellow, green, blue, violet O violet, blue, green, yellow, orange, red red, blue, violet, green, yellow, orange red, yellow, orange, blue, green, violet violet, blue, yellow, red, green, orange

Answers

The correct order, beginning with the highest frequency and extending to the lowest frequency, of the following colors in the visible light spectrum is: Violet, blue, green, yellow, orange, red.

Visible light is the portion of the electromagnetic spectrum that can be seen by the human eye. The visible light spectrum is composed of the colors red, orange, yellow, green, blue, indigo, and violet, arranged in order of increasing wavelength and decreasing frequency.

Each color corresponds to a different wavelength of light, and therefore a different frequency. Violet light has the shortest wavelength and highest frequency, while red light has the longest wavelength and lowest frequency. The correct order of the colors, beginning with the highest frequency and extending to the lowest frequency, is:Violet Blue Green Yellow Orange Red

Therefore, the correct order of the following colors in the visible light spectrum is: Violet, blue, green, yellow, orange, red.

To know more about light spectrum, visit:

https://brainly.com/question/27937348

#SPJ11

1_a : An object with mass 3.1 kg is pulled along a horizontal
surface by a force 5.2 N acting 37 degree above the horizontal.
Calculate the work done by this force when the object moves 1.6
m.
1_d: A

Answers

The work done by the force when the object moves 1.6 m is approximately 7.12 Joules

(a) To calculate the work done by a force on an object, we can use the formula:

Work = Force * Distance * cos(theta),

where Work is the work done, Force is the magnitude of the force, Distance is the distance over which the force acts, and theta is the angle between the force and the direction of motion.

Force (F): 5.2 N

Angle (theta): 37 degrees

Distance (d): 1.6 m

We need to convert the angle from degrees to radians to use it in the cosine function:

theta_radians = 37 degrees * (pi / 180 degrees).

Substituting the values into the formula, we have:

Work = 5.2 N * 1.6 m * cos(37 degrees * (pi / 180 degrees)).

Evaluating the expression, we find:

Work ≈ 7.12 J.

Therefore, the work done by the force when the object moves 1.6 m is approximately 7.12 Joules.

To know more about force visit:

https://brainly.com/question/25239010

#SPJ11

A 50 kg cylinder with diameter of ,12 m has a cable wrapped around it with a force F of 9 newtons applied to the cable so that a point on the horizontal part of the cable accelerates to the left at 0.60 m/s2. What is the magnitude of the angular acceleration of the cylinder? What is the magnitude of the torque that the cable exerts on the cylinder? What is the magnitude of the force that you exert on the cable?

Answers

The magnitude of the force that you exert on the cable is 21 N.

Given Data:Diameter of cylinder, D = 12 m

Mass of cylinder, m = 50 kg

Force applied on cable, F = 9 N

Acceleration of point on the cable, a = 0.60 m/s²

To find:Angular acceleration, αTorque exerted on cylinder, τMagnitude of force that you exert on cable, F'

Formula Used:α = a/rWhere, r is the radius of cylinderτ = Fr Where, F is the force exerted on cylinderr = D/2 = 6 m [Diameter of cylinder, D = 12 m]

Substituting the given values in above formula,α = a/r= 0.60/6= 0.10 rad/s²

Therefore, the magnitude of the angular acceleration of the cylinder is 0.10 rad/s².

Torque exerted on cylinder,τ = Fr= 9 × 6= 54 Nm

Therefore, the magnitude of the torque that the cable exerts on the cylinder is 54 Nm.

Magnitude of force that you exert on cable, F'

From the free body diagram, we can write the following equation of motion:F - F' = maWhere, F is the force applied on the cable by you.Substituting the given values in above equation,9 - F' = 50 × 0.60= 30F' = 9 - 30= -21 N

Therefore, the magnitude of the force that you exert on the cable is 21 N.

Learn more about magnitude

brainly.com/question/28714281

#SPJ11

Vmax 14. Is the particle ever stopped and if so, when? 15. Does the particle ever turn around and reverse direction at any point and if so, when? 16. Describe the complete motion of the particle in ea

Answers

The complete motion of the particle is linear in all the quadrants of the coordinate plane.

Given Vmax is the maximum speed, the particle is never stopped. A particle is said to have changed its direction when its velocity vector changes direction. Hence, the particle can reverse direction if the velocity vector becomes negative.

Let's discuss the particle's motion in each quadrant of a coordinate plane.

1. Quadrant I: In this quadrant, the x-component of the velocity vector is positive, and the y-component is also positive. Hence, the velocity vector lies in this quadrant. Therefore, the particle moves in this direction. Hence, the particle's motion is linear in this quadrant.

2. Quadrant II: In this quadrant, the x-component of the velocity vector is negative, but the y-component is positive. The velocity vector lies in this quadrant. Therefore, the particle moves in this direction. Hence, the particle's motion is linear in this quadrant.

3. Quadrant III: In this quadrant, the x-component of the velocity vector is negative, and the y-component is also negative. The velocity vector lies in this quadrant. Therefore, the particle moves in this direction. Hence, the particle's motion is linear in this quadrant.

4. Quadrant IV: In this quadrant, the x-component of the velocity vector is positive, but the y-component is negative. The velocity vector lies in this quadrant. Therefore, the particle moves in this direction. Hence, the particle's motion is linear in this quadrant.

To know more about coordinate plane, refer to the link below:

https://brainly.com/question/28471473#

#SPJ11

use the definition of kinetic energy (½ mv2) to plot the magnitude of the velocity as a function of the work applied. Use a spreadsheet program to display your data. Insert a polynomial trend line of order 2 into your plot. How well does the trend line match the form ½ m v2? There exist numerous online tutorials for working with spreadsheets, graphs, and trend lines.

Answers

The plot of velocity magnitude against work done using ½ mv2 has a polynomial trend line of order 2.

Kinetic energy is the energy of motion. It is calculated using the formula ½ mv2 where m is mass and v is velocity. Velocity is the rate of change of displacement. Velocity and work done have a direct relationship: as work done on an object increases, its velocity increases.

A spreadsheet program can be used to plot the magnitude of velocity against the work applied. A polynomial trend line of order 2 can be inserted into the plot. The trend line will match the form of ½ m v2. If the trend line matches the form of ½ m v2, it is a good fit and the model can be used to predict future results. If it does not match, the model may need to be adjusted.

Therefore, the plot of velocity magnitude against work done using ½ mv2 has a polynomial trend line of order 2.

Learn more about kinetic energy here:

https://brainly.com/question/30107920

#SPJ11

a sound wave with an intensity level of 60 db is incident on a circle with a 0.3 cm diameter for 10 hours. how many joules of energy is delivered to this circle over this time period?

Answers

The energy delivered by a sound wave with an intensity level of 60 dB incident on a circle with a 0.3 cm diameter for 10 hours is 4.97×10⁻⁷ J.

The sound intensity (I) is the sound power (P) per unit area (A). It is given by the formula,`I=P/A`where `I` is in watts/m². We have to convert dB to watts/m² to use this formula.The formula for sound intensity level (L) in dB is`L=10log(I/I₀)`where `I₀` is the threshold of hearing = 1.0 × 10⁻¹² W/m².For `L=60 dB` we get,I = `I₀ 10^(L/10)`= 1.0 × 10⁻¹² × 10⁶ = 1.0 × 10⁻⁶ W/m².Area of the circle,`A= π r²`where `r = d/2` = 0.3/2 cm = 0.015 m.Area A = π (0.015 m)² = 7.07 × 10⁻⁴ m²The energy delivered E is given by the formula,`E = I × A × t`where `t = 10 hours` = 10 × 60 × 60 s = 36000 s.Substituting the values,`E = 1.0 × 10⁻⁶ × 7.07 × 10⁻⁴ × 36000 J`≈ 4.97×10⁻⁷ J.

To calculate the energy delivered by a sound wave with an intensity level of 60 dB incident on a circle with a 0.3 cm diameter for 10 hours, we use the formula`E = I × A × t`where`I = P/A``L = 10log(I/I₀)`and`A = π r²``r = d/2`We are given that the sound wave has an intensity level of 60 dB. We know that sound intensity level is given by the formula`L = 10log(I/I₀)`where `I₀` is the threshold of hearing, which is `1.0 × 10⁻¹² W/m²`. Rearranging the formula, we get`I = I₀ 10^(L/10)`Substituting the given values, we get`I = 1.0 × 10⁻¹² × 10^(60/10)`= 1.0 × 10⁻⁶ W/m²We are also given that the diameter of the circle is 0.3 cm. We can find the radius of the circle using the formula`r = d/2`which gives `r = 0.015 m`. Using the radius, we can find the area of the circle using the formula`A = π r²`which gives `A = 7.07 × 10⁻⁴ m²`.We are given that the time for which the sound wave is incident on the circle is 10 hours. We convert this to seconds by multiplying by 60 (minutes) and 60 (seconds) to get`t = 10 hours` = 10 × 60 × 60 s = 36000 sNow we can substitute the values in the formula`E = I × A × t`to get the energy delivered by the sound wave.`E = 1.0 × 10⁻⁶ × 7.07 × 10⁻⁴ × 36000 J`≈ 4.97×10⁻⁷ J.

To know more about intensity level  visit :-

https://brainly.com/question/30101270

#SPJ11

how far apart are an object and an image formed by an 90 −cm -focal-length converging lens of the image is 3.50 × larger than the object and is real?

Answers

Therefore, the actual distance between the image and the lens is: 1417.5 cm - 90 cm = 1327.5 cm . Therefore, the object and the image are 405 cm and 1327.5 cm, respectively, apart from the lens.

A converging lens is a type of lens that refracts light inwards or converges it to a single point on the other side of the lens. This type of lens is also known as a convex lens. The focal length of a lens is defined as the distance between the lens and the image plane when the object is at infinity. The focal length of a converging lens is positive since the lens bends light inwards.

In the given problem, the focal length of the converging lens is 90 cm. Let the distance between the object and the lens be u, and the distance between the image and the lens be v. The magnification of the lens is given as: Magnification = size of image/size of object .

Given that the image is 3.50 times larger than the object. Therefore, Magnification = size of image/size of object = 3.50Let the size of the object be y. Then, the size of the image is 3.50y. Therefore, the magnification is given as: Magnification = size of image/size of object = 3.50y/y = 3.50Since the image is real, the focal length is positive. Therefore, we can use the lens formula as follows:1/f = 1/v - 1/u

Where f is the focal length of the lens. Substituting the values, we get:1/90 = 1/v - 1/u1/v = 1/90 + 1/uWe also know that: Magnification = -v/u

Therefore, substituting the value of magnification in terms of v and u, we get:-v/u = 3.50v = -3.50uSubstituting this value of v in the lens formula, we get:1/90 = 1/(-3.50u) - 1/u1/90 = -4.50/u- u/90 = 4.50u = -405 cm

Therefore, the distance between the object and the lens is u = -405 cm. However, the negative sign indicates that the object is located on the opposite side of the lens as compared to the side where the light is incident. Therefore, the actual distance between the object and the lens is 405 cm.

The distance between the image and the lens is given by:v = -3.50u = -3.50 × 405 cm = -1417.5 cm . Since the image is real, it is formed on the same side of the lens as the object. Therefore, the actual distance between the image and the lens is: 1417.5 cm - 90 cm = 1327.5 cm . Therefore, the object and the image are 405 cm and 1327.5 cm, respectively, apart from the lens.

To know more about Lens  visit :

https://brainly.com/question/32317994

#SPJ11

find the cosine of the angle between the vectors ⟨1,1,1⟩ and ⟨6,−10,11⟩.

Answers

The cosine of the angle between the vectors ⟨1, 1, 1⟩ and ⟨6, -10, 11⟩ is 7 / (√3)(√257). we can use the dot product formula.

To find the cosine of the angle between two vectors, we can use the dot product formula.

The dot product of two vectors A and B is given by:

A · B = |A| |B| cos(θ)

Where A · B represents the dot product, |A| and |B| are the magnitudes of the vectors A and B respectively, and θ is the angle between the two vectors.

Given the vectors A = ⟨1, 1, 1⟩ and B = ⟨6, -10, 11⟩, we can calculate their dot product as follows:

A · B = (1)(6) + (1)(-10) + (1)(11) = 6 - 10 + 11 = 7

Now, we need to calculate the magnitudes of vectors A and B:

|A| = √(1^2 + 1^2 + 1^2) = √3

|B| = √(6^2 + (-10)^2 + 11^2) = √(36 + 100 + 121) = √257

Now, we can substitute the values into the formula:

A · B = |A| |B| cos(θ)

7 = (√3) (√257) cos(θ)

Dividing both sides by (√3)(√257), we get:

cos(θ) = 7 / (√3)(√257)

Therefore, the cosine of the angle between the vectors ⟨1, 1, 1⟩ and ⟨6, -10, 11⟩ is 7 / (√3)(√257).

To learn more about dot product click here

https://brainly.com/question/29097076

#SPJ11

Three small lamps, R1 = 4.8 ,
R2 = 3.1 , and R3 =
2.4 are connected to a 9.0 V battery, as shown
below.
(a) What is the equivalent resistance of the circuit?
(b) What is the current in the battery?

Answers

(a) The equivalent resistance of the circuit is approximately 1.06 Ω.

(b) The current in the battery is approximately 8.49 A.

To find the equivalent resistance of the circuit, we can use the formula for resistors connected in parallel:

1/Req = 1/R1 + 1/R2 + 1/R3

R1 = 4.8 Ω

R2 = 3.1 Ω

R3 = 2.4 Ω

(a) Calculating the equivalent resistance:

1/Req = 1/4.8 Ω + 1/3.1 Ω + 1/2.4 Ω

To add the fractions, we need a common denominator:

1/Req = (3.1 * 2.4 + 4.8 * 2.4 + 4.8 * 3.1) / (4.8 * 3.1 * 2.4) Ω

1/Req = (7.44 + 11.52 + 14.88) / (4.8 * 3.1 * 2.4) Ω

1/Req = 33.84 / 35.904 Ω

Taking the reciprocal of both sides:

Req = 35.904 / 33.84 Ω

Req ≈ 1.06 Ω (rounded to two decimal places)

Therefore, the equivalent resistance of the circuit is approximately 1.06 Ω.

(b) To find the current in the battery, we can use Ohm's Law:

I = V / Req

V (battery voltage) = 9.0 V

I = 9.0 V / 1.06 Ω

I ≈ 8.49 A (rounded to two decimal places)

Therefore, the current in the battery is approximately 8.49 A.

(a) The equivalent resistance of the circuit is approximately 1.06 Ω.

(b) The current in the battery is approximately 8.49 A.

To know more about Resistance, visit

brainly.com/question/17563681

#SPJ11

A Super Ball (an extremely elastic ball with a high coefficient of restitution) is dropped on the ground from a height of 1.35 mm . The elastic nature of the ball means it bounces to 0.90 of its original height. The mass of the ball is 24 g .

a)

When the ball hits the ground, the floor exerts an impulse on it. What are the magnitude and direction of this impulse? (in kgm/s)

b)

What is the direction of the impulse?

(upwards or downwards)

Answers

a) The magnitude of impulse is 0.9mv and the direction of impulse is upwards When the ball hits the ground. b) Since the ball is bouncing upwards, the direction of impulse is upwards.

The magnitude and direction of impulse experienced by a ball can be determined using the law of conservation of momentum. According to this law, in the absence of any external force, the momentum of a system is conserved. The momentum of an object is defined as the product of its mass and velocity.

In this case, the ball is dropped from a height of 1.35 m, so its initial velocity is zero. When the ball hits the ground, it rebounds with a velocity of 0.9 times its original velocity. The change in momentum of the ball is therefore (m * 0.9v) - (m * 0) = 0.9mv, where m is the mass of the ball and v is its velocity.

The impulse experienced by the ball is equal to the change in momentum, so the magnitude of impulse is 0.9mv. Since the ball is bouncing upwards, the direction of impulse is upwards.b) As the ball is upward-bouncing, so direction of impulse is also upwards.

Know more about momentum here:

https://brainly.com/question/30677308

#SPJ11

A partly-full paint can has 0.887 U.S. gallons of paint left in it. (a) What is the volume of the paint, in cubic meters? (b) If all the remaining paint is used to coat a wall evenly (wall area = 15.4

Answers

The volume of (a) the paint in cubic meters is approximately 0.00335 m³. (b) the remaining paint is used to coat the wall evenly, the thickness of the paint layer will be approximately 0.22 millimeters.

To convert the volume of the paint from gallons to cubic meters, we need to use the conversion factor: 1 U.S. gallon = 0.00378541 cubic meters.

Given that the paint can has 0.887 U.S. gallons of paint left, we can calculate the volume in cubic meters by multiplying the number of gallons by the conversion factor:

0.887 gallons * 0.00378541 m³/gallon ≈ 0.00335 m³.

Therefore, the volume of the paint in cubic meters is approximately 0.00335 m³.

(b) If all the remaining paint is used to coat a wall evenly with a wall area of 15.4 m², the thickness of the paint layer will be approximately 0.00022 meters or 0.22 millimeters.

To find the thickness of the paint layer, we divide the volume of the paint (0.00335 m³) by the wall area (15.4 m²):

Thickness = Volume / Area = 0.00335 m³ / 15.4 m² ≈ 0.000217 meters ≈ 0.22 millimeters.

Therefore, if all the remaining paint is used to coat the wall evenly, the thickness of the paint layer will be approximately 0.22 millimeters.

To know more about volume, refer here:

https://brainly.com/question/30681924#

#SPJ11

how much heat must be removed from 1.96 kg of water at 0 ∘c to make ice cubes at 0 ∘c ?

Answers

The heat required would be 658.24 kJ.

Q = mL, where Q = heat required to change the state of matter, m = mass of substance, L = specific latent heat of fusion of substance. For water, the specific latent heat of fusion is 334 kJ/kg. Therefore, Q = 1.96 kg × 334 kJ/kg = 658.24 kJ. This means that 658.24 kJ of heat must be removed from 1.96 kg of water at 0°C to make ice cubes at 0°C.

To make ice cubes from water, the heat must be removed. This is because of the latent heat of fusion. The latent heat of fusion is the amount of energy needed to change a solid to a liquid or vice versa without a temperature change. So, when water is cooled from 0°C to 0°C, the energy needs to be removed to allow the water to freeze. The energy required is the product of the specific latent heat of the fusion of water and the mass of water.The latent heat of fusion is a characteristic property of a substance.

For water, the specific latent heat of fusion is 334 kJ/kg. Therefore, to make ice cubes, 334 kJ of heat needs to be removed from every kilogram of water. For 1.96 kg of water, the heat required would be 1.96 kg × 334 kJ/kg = 658.24 kJ.

To know more about state of matter visit:

https://brainly.com/question/9402776

#SPJ11

the wave model can correctly provide all of these, but the bohr model fails for one. which of the following is evidence that the bohr model is incorrect because it fails?

Answers

The Bohr model of an atom failed to explain the spectral lines of more complex atoms. Therefore, the wave model can correctly provide all of these, but the Bohr model fails for one. The spectral lines are one of the key pieces of evidence that the Bohr model is incorrect because it fails to describe them.

explanation to support the above statement: The Bohr model of the atom is no longer an accurate representation of an atom. Although it works for simple atoms such as hydrogen, more complex atoms cannot be described by the Bohr model. Electrons in atoms have wave-like and particle-like characteristics. This implies that they have both energy and momentum. To locate an electron within an atom, scientists must employ mathematical functions that describe the electron's probability of being in a particular region of the atom. The Bohr model fails to explain the spectral lines of more complex atoms. The Bohr model is unable to explain the phenomenon of spectral lines in more complex atoms, which is one of the most important reasons for its failure. When elements are exposed to energy, such as light or electricity, their atoms emit light at particular wavelengths. These wavelengths create the atom's unique spectral lines. Electrons emit energy when they move from a higher energy level to a lower one. The wavelengths of the emitted radiation can be used to determine the difference in energy between the two energy levels. The Bohr model was unable to clarify these spectral lines because it did not include the possibility of energy transitions from other energy levels.

to know more about wave model visit:

https://brainly.com/question/31965738

#SPJ11

A charge -5.5 nC is placed at (-3.1.-3) m and another charge 9.3 nC is placed at (-2,3,-2) m. What is the electric field at (1,0,0)m?

Answers

The electric field at (1,0,0) m due to the given charges is -1.2 x 10^5 N/C, directed towards the left.

Let's first calculate the electric field at point P due to the first charge:q1 = -5.5 nC, r1 = (-3.1, -3, 0) m and r = (1, 0, 0) m

The distance between charge 1 and point P is:r = √((x2 - x1)² + (y2 - y1)² + (z2 - z1)²)r = √((1 - (-3.1))² + (0 - (-3))² + (0 - 0)²)r = √(4.1² + 3² + 0²)r = 5.068 m

Therefore, the electric field at point P due to charge 1 is:

E1 = kq1 / r1²E1 = (9 x 10^9 Nm²/C²) x (-5.5 x 10^-9 C) / (5.068 m)²E1 = -4.3 x 10^5 N/C (towards left, as the charge is negative)

Now, let's calculate the electric field at point P due to the second charge:

q2 = 9.3 nC, r2 = (-2, 3, -2) m and r = (1, 0, 0) m

The distance between charge 2 and point P is:

r = √((x2 - x1)² + (y2 - y1)² + (z2 - z1)²)

r = √((1 - (-2))² + (0 - 3)² + (0 - (-2))²)

r = √(3² + 3² + 2²)r = √22 m

Therefore, the electric field at point P due to charge 2 is:

E2 = kq2 / r2²

E2 = (9 x 10^9 Nm²/C²) x (9.3 x 10^-9 C) / (√22 m)²

E2 = 3.1 x 10^5 N/C (towards right, as the charge is positive)

Now, the total electric field at point P due to both charges is:

E = E1 + E2

E = -4.3 x 10^5 N/C + 3.1 x 10^5 N/C

E = -1.2 x 10^5 N/C

Therefore, the electric field at (1,0,0) m due to the given charges is -1.2 x 10^5 N/C, directed towards the left.

Learn more about electric field at:

https://brainly.com/question/15906502

#SPJ11

The electric field at point P (1, 0, 0)m is (-2.42 × 10⁶) î + 6.91 × 10⁶ ĵ N/C.

The given charges are -5.5 nC and 9.3 nC. The position vectors of these charges are (-3.1, -3, 0)m and (-2, 3, -2)m. We need to find the electric field at (1, 0, 0)m.

Let's consider charge q1 (-5.5 nC) and charge q2 (9.3 nC) respectively with position vectors r1 and r2. Electric field due to q1 at point P (1,0,0)m is given by:r1 = (-3.1, -3, 0)mq1 = -5.5 nC

Position vector r from q1 to P = rP - r1 = (1, 0, 0)m - (-3.1, -3, 0)m = (4.1, 3, 0)m

Using the formula of electric field, the electric field due to q1 at point P will be given by:

E1 = kq1 / r²

where k is the Coulomb constantk = 9 × 10⁹ N m² C⁻²

Electric field due to q1 at point P isE1 = 9 × 10⁹ × (-5.5) / (4.1² + 3²) = -2.42 × 10⁶ N/C

Now, let's consider charge q2. The position vector of q2 is given by:r2 = (-2, 3, -2)mq2 = 9.3 nC

Position vector r from q2 to P = rP - r2 = (1, 0, 0)m - (-2, 3, -2)m = (3, -3, 2)m

Electric field due to q2 at point P will be given by:

E2 = kq2 / r²

Electric field due to q2 at point P is

E2 = 9 × 10⁹ × 9.3 / (3² + (-3)² + 2²) = 6.91 × 10⁶ N/C

Now, we can get the total electric field due to the given charges by adding the electric fields due to q1 and q2 vectorially.

The vector addition of electric fields E1 and E2 is given by the formula:

E = E1 + E2

Let's consider charge q1 (-5.5 nC) and charge q2 (9.3 nC) respectively with position vectors r1 and r2. Electric field due to q1 at point P (1,0,0)m is given by:r1 = (-3.1, -3, 0)mq1 = -5.5 nC

Position vector r from q1 to P = rP - r1 = (1, 0, 0)m - (-3.1, -3, 0)m = (4.1, 3, 0)m

Using the formula of electric field, the electric field due to q1 at point P will be given by:E1 = kq1 / r²

where k is the Coulomb constant

k = 9 × 10⁹ N m² C⁻²

The magnitude of the electric field due to q1 at point P is given by|E1| = 9 × 10⁹ × |q1| / r²= 9 × 10⁹ × 5.5 / (4.1² + 3²) N/C= 2.42 × 10⁶ N/C

The direction of the electric field due to q1 at point P is towards the charge q1.

Now, let's consider charge q2. The position vector of q2 is given by:r2 = (-2, 3, -2)mq2 = 9.3 nC

Position vector r from q2 to P = rP - r2 = (1, 0, 0)m - (-2, 3, -2)m = (3, -3, 2)m

The magnitude of the electric field due to q2 at point P will be given by:

E2 = kq2 / r²= 9 × 10⁹ × 9.3 / (3² + (-3)² + 2²) N/C= 6.91 × 10⁶ N/C

The direction of the electric field due to q2 at point P is away from the charge q2.

Now, we can get the total electric field due to the given charges by adding the electric fields due to q1 and q2 vectorially. The vector addition of electric fields E1 and E2 is given by the formula:E = E1 + E2E = (-2.42 × 10⁶) î + 6.91 × 10⁶ ĵ N/C

Learn more about electric field: https://brainly.com/question/30544719

#SPJ11

To make a secure fit, rivets that are larger than the rivet hole are often used and the rivet is cooled (usually in dry ice) before it is placed in the hole. A steel rivet 1.873 cm in diameter is to be placed in a hole 1.871 cm in diameter. To what temperature must the rivet be cooled if it is to fit in the hole (at 20°C)?
_____degrees celsius

Answers

To make a secure fit, rivets that are larger than the rivet hole are often used and the rivet is cooled (usually in dry ice) before it is placed in the hole.  Thus, the rivet must be cooled to approximately 19°C to fit in the hole.

A steel rivet 1.873 cm in diameter is to be placed in a hole 1.871 cm in diameter. To what temperature must the rivet be cooled if it is to fit in the hole (at 20°C)?If the diameter of the rivet is larger than the diameter of the hole, then to make a secure fit, the rivet must be cooled before being placed in the hole.

To make sure that the rivet is fitted properly in the hole, the following formula can be used;

d = d1 + α(t)

where,

d = diameter of the rivet

d1 = diameter of the hole

t = the change in the temperature

α = coefficient of linear expansion of steel

Given that:

d = 1.873 cm

d1 = 1.871 cm

α = 1.20 × 10−5 K−1

We can find out the change in the temperature using the formula,

d − d1 = α

d1t => t

= (d − d1)/(αd1)t

= (1.873 − 1.871)/(1.20 × 10−5 × 1.871)

≈ 0.8917 × 105°C−1

Now we can calculate the temperature at which the rivet must be cooled, taking into account the fact that the current temperature is 20°C.

Temperature = 20°C − t

Temperature = 20°C − 0.8917 × 105°C−1

≈ 19.107°C≈ 19°C

Thus, the rivet must be cooled to approximately 19°C to fit in the hole.

To know more about diameter visit

https://brainly.com/question/31445584

#SPJ11

Other Questions
A metallic sphere with radius R=4cm and charge q = 9*10-9 C is placed inside a hollow metallic sphere with internal radius R1=6cm and external radius R2=8cm and total positive charge Q= 9*10-9 C.1. Using Gauss theorem, what happens to the charge on the hollow sphere? What will be the charge on its surface?2. Calculate the potential difference between the hollow sphere and the internal sphere. which of the following is true regarding the relationship between stimulant drugs and performance? You are a Morgan Stanley portfolio manager of a risky portfolio with an expected rate of return of 17% and a standard deviation of 28%. The T-bill rate is 4%. Suppose your client decides to invest in your risky portfolio a proportion (y) of his total investment budget so that his overall portfolio will have an expected return of 10%.Please choose all correct answers related to the following questions.a. What is the proportion y?b. What will be the standard deviation of your clients portfolio?c. What is the Sharpe ratio of your portfolio?d) Suppose your client is wondering if he should switch his money in your fund to a passive portfolio invested to mimic the S&P 500 stock index yields an expected rate of return of 9% with a standard deviation of 25%. Show your client the maximum fee you could charge (as a percent of the investment in your fund deducted at the end of the year) that would still leave him at least as well off investing in your fund as in the passive one. (Hint: The fee will lower the slope of your clients CAL by reducing the expected return net of the fee.) at is the minimum-variance portfolio proportion in stock fund?Please choose all correct answers. Please note that each incorrect answer will reduce the score by 10%.1.The answer to part b is 14%2.The answer to part a is 46.15%3.The answer to part d is 8.4%4.The answer to part b is 14.92%5.The answer to part a is 50%6.the answer to part c is 46.43%7.The answer to part b is 12.92%8.the answer to part c is 42.8%9.The answer to part d is 6.4%10.The answer to part d is 7.4%11.the answer to part c is 56.43%12.The answer to part a is 66.15% Explain the Mergers and Acquisitions process between two banks. Try to utilize the information in the attached pictures as possible.Explain how the Mergers and Acquisitions process shall be between two tourism companies (in one page, try to utilize the information through the below attached)There Are a Number of Rules to Achieving Successful Company Mergers and Acquisitions. What Are They? Maintain ongoing communication: In this process, senior management should do more than simply express data in numbers. They need to use all kinds of communication methods to strengthen relationships, to build trust, to bring people together and to create a commitment to a common future. Set the structure correctly: The structure has always been a challenging issue in the stages of merging or acquiring companies. Therefore, it is necessary to start working on the structure of the new company before finalizing the deal. Address cultural issues: Cultural mismatches often create problems when mergers or acquisitions are being carried out. The degree of cultural integration required depends on the reason for merger or acquisition. Integration is crucial if key processes are to be combined for economies of scale; time should be spent, and attention should be given. However, if the company receives a portfolio of different businesses, corporate cultural integration is perhaps considered a requirement only at the senior management level. Retain existing customers: The way to avoid losing customers is to make a series of visits with high-level salespeople from both companies once the merger is realized. This is a very useful indicator to the customers that it is now a single company, and that the mergers or acquisitions were well managed. In this process: a. Companies make all their information, including all balance sheets, profit and loss account statements, employee productivity, status and plans and stocks of the organization, available in the Data Room. b. All questions, discussions and analyses are done at the Data Room. A due-diligence evaluation process is carried out. The situation is assessed and any debts due are determined. Negotiations on the value of the company's banking relations are held. c. After the valuation process of the companies, plans are discussed. The status of employees, compensation, and debt structure are examined. d. Legal status is addressed. If the companies have pending fines, legal servitudes, restrictions and penal status are determined, and all public debts, including taxes are examined. e. Sales-purchase and management process agreements are entered. A roadmap for change is prepared. Analyses of organizational-administrative and financial structure for the next period are performed. A change process is initiated within the framework of the agreement conditions. Over the subsequent three years, studies are carried out according to this road map. (Program and actualizations are analyzed quarterly.) Founded more than 170 years ago in Brooklyn, New York, Pfizer is one of the largest pharmaceutical companies in the world. It produces some of the best-known brand-name drugs, including Lipitor, Lyrica, Viagra, Xeljanz, Celebrex, EpiPen, and even Advil, Robitussin, and ChapStick. Despite its long-term international success, the firm has struggled in recent decades.The legal, political, and socioeconomic segments of the external environment have combined to pose serious threats for Pfizer and other big pharma companies. Bringing a new drug to market can cost billions of dollars in R&D, and Pfizers biggest successes have averaged close to $8 billion, largely due to the extensive testing required by the Food and Drug Administration. When a drug is finally approved, the firm only has about 10 years left on the patent, which means it must recoup its R&D costs in a relatively short amount of time. Thus, the cost of prescription drugs is quite high. Added to that, firms such as Pfizer and others need to continue to drive revenue, so they often boost drug prices even higher. These practices have the vast majority of consumers up in arms, and even President Trump has spoken out against this situation.As an alternative route to securing new drugs and other medical technologies, Pfizer has made a number of important acquisitions, on average every 18 months or so. These acquisitions have enabled the firm to move into growth areas in the pharmaceutical field, although some analysts predict that there are no truly breakthrough categories of drugs left to be developed. Pfizer has also made two attempts to merge with competitorsAstraZeneca and Allerganwith the intention of relocating Pfizer headquarters in a foreign country where it will be subject to lower taxes. However, both attempts have fallen through.When Ian Read, a Pfizer "lifer," assumed the position of CEO in 2010, he made some significant changes. He restructured the firm into two main divisions: Established Products and Innovative Products. The Innovative Products category was further subdivided into the Global Innovative Pharma and Global Vaccines, Oncology, and Consumer Healthcare businesses. He also undertook a change in organizational culture with a strong emphasis on accountability. To communicate this message, he had cold coins made with the words "Straight Talk" on one side and "OWNIT!" on the other. OWNIT! has since become an empowering aspect of Pfizers culture.Pfizer seems to be challenged on all sides, pressured to produce innovative products, please shareholders, meet legislative demands, and assuage consumers who are outraged at the high cost of prescription medication.Describe two ways in which Pfizer has gained access to innovative drugs and other medical technologies. What challenges do you suppose the firm has faced in pursuing each of these strategies? why a throat culture stain gram positive in chains was alpha hemolytic to the pathogenic Find the global min and max of the function f(x, y) = 3y - 2x, on the region bounded by y = x+x-1 and the line y=x. 6 The regression model Y=1.4+1.6*X is obtained for the variables Y="monthly consumption of veal meat (kg)" and X="monthly monetary household income (thousand EUR)" using data for a random sample of 80 households.Which of the following is true for 1 th.EUR increase of the monthly income?Average increase of consumption by 1.4 kgAverage increase of consumption by 1.6 kgAverage increase of consumption by 0.80 kgAverage increase of consumption by 3.0 kg What is your opinion on the rising protectionism imposed by food exportingcountries? What should net food importing countries do to minimise the impact of such policies in the future? Include examples from recent real-world cases in your answer. find all solutions of the equation cos x sin x 2 cos x = 0 . the answer is a b k where k is any integer and 0 < a < , A hot piece of charcoal emits a thermal (continuous) radiationspectrum. What is the peak wavelength if the temperature is 1.22e+3K? what is the only possible value of m for an electron in an s orbital? the neutralization reaction of potassium hydrogen carbonate and hi produces what gas? 1. 2020, Q1 data:Consumption = $13.18 b GDPI = 3.27 bExports = 2.48 b Imports = 3.29 bGovernment expenditure: 3.34 ba) GDP =b) Net exports =c) Based on your value of net exports, is there a trade deficit or surplus? how did frederick douglass see the postcivil war south? In IKEA Case. Partner selection, alliance design, and post-formation alliance management are essential to a successful alliance. Many alliances fail due to problems in post-formation management. IKEA is the world's largest furniture retailer. It has many non-equity alliances with suppliers and manufacturers around the world. IKEA also makes strategic use of non-equity alliances and stakeholder partnerships to participate in finding solutions to social and environmental challenges. As a Strategy Consultant, you want to find more information and data about IKEA. Search the following sources of data; The Wall Street Journal, The Economist, Business Week, Fortune, The New York Times, theepochtimes.com, Inc.com, Forbes.com, PRNewswire.com, Bloomberg.com, Reuters.com, Fastcompany.com for more data (qualitative and quantitative) about IKEA's active partnerships (strategic alliances) and acquisitions. Search what IKEA has done in the past ten years. Your data collection will provide you insights to answer the following questions: 2- What non-equity alliances have shown success? 3- How do these partnerships relate to maintaining IKEA's competitive advantage as the world's largest furniture retailer? As you have learned about CSR- Corporate Social Responsibility and firm value creation earlier in the course, answer the following questions: 4- Define what constitutes success for IKEA and success for the nonprofit partner. 5- What resources and capabilities does each party bring to the alliance? Refer to Exhibit 9.4- How to Make Alliances Work to consider which of these governance considerations would be most relevant to this particular type of non-equity alliance.6- With M&A in mind, find out if IKEA has acquired other companies in the past ten years? Explain why IKEA has decided to acquire other companies. Does the acquisition bring a Competitive Advantage to IKEA? Explain how all erp systems are really data management systems that enable the user to look at organized data. TRUE OR FALSE Fid the present value at t = 0 of the cash flow which is an annual receipt of alternate $50 and $100 respectively over the next 20 years. Assume an interest rate of 4% commanded annually (answer to 3 dp). a. 1096.536 b. 1254.329. c. 1435.567 d. 1025.936 e. None of the above how many strings of eight english letters are there that use only two letters Explain the benefits and the costs of free trade. Does the idea of free trade, guided by neoliberal economic principles, improve or threaten global welfare? Your contribution should be two paragraphs. Please respond to at least two of your peers. Responses should be at least two sentences and demonstrate you've read the material and the post.