Hypothesis Testing: One population z-test for µ when σ is known.
How does the average hair length of a University of Maryland student today compare to the US average 20 years ago of 2.7 inches? You sample 40 students and get a sample average of 3.7 inches. Somehow you know the population standard deviation for U of MD student hair lengths is 0.5 inches. Are hair lengths longer today than 20 years ago?
a. What question is being asked – ID the population and be sure to include a direction of interest if one exists.
b. State your null and alternative hypotheses. If you use symbols (not required) be sure to define the symbol and give statements in terms of population inference.
c. Set up the equation to analyze these data. Solve to a z* value.
d. Assume the critical value is 1.96 for a 2 tailed (or nondirectional) test and 1.65 for a 1 tailed (or directional) test. The value could be positive or negative depending on your question and hypotheses. What conclusion do you make about the null hypothesis?
e. Provide a statement of conclusion that includes the 3 pieces of statistical evidence and makes inference back to the population

Answers

Answer 1

We can conclude with 95% confidence that the average hair length of University of Maryland students today is significantly longer than the US average 20 years ago.

a. The question being asked is whether the average hair length of University of Maryland students today is longer than the US average 20 years ago, with a direction of interest being "longer than".

b. Null hypothesis: The average hair length of University of Maryland students today is not significantly different from the US average 20 years ago (µ = 2.7 inches).

Alternative hypothesis: The average hair length of University of Maryland students today is significantly greater than the US average 20 years ago (µ > 2.7 inches).

Symbolically, H0: µ = 2.7 and Ha: µ > 2.7

c. The equation to analyze these data is: z = (x - µ) / (σ / √n), where x is the sample mean (3.7 inches), µ is the hypothesized population mean (2.7 inches), σ is the population standard deviation (0.5 inches), and n is the sample size (40).

Substituting the values, we get:

z = (3.7 - 2.7) / (0.5 / √40) = 4.47

d. The calculated z-value of 4.47 is much greater than the critical value of 1.96 for a two-tailed test or 1.65 for a one-tailed test at the 5% significance level. Therefore, we reject the null hypothesis and conclude that the average hair length of University of Maryland students today is significantly greater than the US average 20 years ago.

e. Based on the calculated z-value, the rejection of the null hypothesis, and the chosen level of significance, we can conclude with 95% confidence that the average hair length of University of Maryland students today is significantly longer than the US average 20 years ago.

To learn more about  confidence visit:

https://brainly.com/question/28969535

#SPJ11


Related Questions

Which inequality has the graph shown below?
y≤ x-3
Oy2x-3
O y ≥ 2x-3
O y ≤ 2x-3

Answers

Answer:

y ≥ 2x - 3

Step-by-step explanation:

The equation is y = mx + b

m = the slope

b = y-intercept

Slope = rise/run or (y2 - y1) / (x2 - x1)

Pick 2 points (0, -3) (2,1)

We see the y increase by 4 and the x increase by 2, so the slope is

m = 4/2 = 2

Y-intercept is located at (0, -3)

Because the graph is on top left, so the equation will be y ≥ 2x - 3

a lake initially contains 3500 fish. suppose that in the absence of predators or other causes of removal, the fish population increases by 6% each month. however, factoring in all causes, 500 fish are lost each month. how many fish will be in the pond after 7 months? (don't round until the very end.)

Answers

There will be approximately 4621 fish in the lake after 7 months

How to calculate fishes in the pond after 7 months?

To solve this problem, we can use the formula for exponential growth:

[tex]N = N0 * (1 + r)^t[/tex]

where N is the final population size, N0 is the initial population size, r is the monthly growth rate (in decimal form), and t is the number of m

onths.

In this case, the monthly growth rate is 6% or 0.06, and the monthly loss rate is 500 fish. So the net monthly growth rate is:

[tex]r_{net}[/tex] = 0.06 - 500/N0

Plugging in the given values, we have:

[tex]r_{net}[/tex]= 0.06 - 500/3500

= 0.0457

Now we can use the formula above to find the population size after 7 months:

[tex]N = 3500 * (1 + 0.0457)^7[/tex]

= 4621.42

So the final population size after 7 months, rounded to the nearest whole number, is:

N ≈ 4621

Therefore, there will be approximately 4621 fish in the lake after 7 months, taking into account both the monthly growth rate and the monthly loss rate.

Learn more about exponential growth

brainly.com/question/12490064

#SPJ11

In a tennis tournament, each player wins k hundreds of dollars, where k is the number of people in the subtournament won by the player (the subsection of the tournament including the player, the player's victims, and their victims, and so forth; a player who loses in the first round gets $100). If the tournament has n contestants, where n is a power of 2, find and solve a recurrence relation for the total prize money in the tournament

Answers

The recurrence relation for the total prize money in the tournament is T(n) = 2T(n/2) + 100n, under the condition that tournament has n contestants, where n is a power of 2.



Let's us consider there are n players in the tournament where n is a power of 2. Each player wins k hundreds of dollars, where k is the number of people in the sub-tournament won by the player.

Let us present T(n) as the total prize money in a tournament with n players. We observe that  T(1) = 100 since there is only one player who loses in the first round and gets $100.

For n > 1, we can divide the tournament into two sub-tournaments each with n/2 players. Let's denote k as the number of people in a sub-tournament won by a player. Then we can see that k = n/2 for each player since each player wins one of two sub-tournaments.

Therefore, each player wins k hundreds of dollars where k = n/2. The total prize money for each sub-tournament is T(n/2). Therefore, we can write:

T(n) = 2T(n/2) + 100n

To learn more about recurrence relation

https://brainly.com/question/29586596

#SPJ4

Jax came to your bank to borrow 8,500 to start a new business. Your bank offers him a 30-month loan with an annual simple interest rate of 4.35%

Answers

a) The simple interest for the loan is $927.19.

b) The total amount that Jax will have to pay at the end of 30 months is $9,427.19.

a) To calculate the simple interest for the loan, we can use the formula:

Simple Interest = Principal x Rate x Time

where Principal is the amount borrowed, Rate is the annual interest rate, and Time is the duration of the loan in years.

Since the loan is for 30 months, which is equivalent to 2.5 years, we can substitute the given values:

Simple Interest = 8,500 x 0.0435 x 2.5 = $927.19

b) To determine the total amount that Jax will have to pay at the end of 30 months, we need to add the simple interest to the original amount borrowed. The total amount can be calculated using the formula:

Total Amount = Principal + Simple Interest

Substituting the given values:

Total Amount = 8,500 + 927.19 = $9,427.19

In summary, Jax will have to pay $927.19 in simple interest and a total of $9,427.19 at the end of 30 months to repay the 8,500 loan with an annual simple interest rate of 4.35%.

To learn more about interest click on,

https://brainly.com/question/31709159

#SPJ1

4. Find maximum/minimum / Inflection points for the function y = 5 sin x + 3x Show all work including your tests for max/min. (0 < x < 2phi )

Answers

The points of inflection are (0, 3π), (π, 4π), and (2π, 9π).

To find the maximum/minimum and inflection points of the function y = 5 sin x + 3x, we need to take the first and second derivatives of the function with respect to x, and then find the critical points and points of inflection by setting these derivatives equal to zero.

First derivative:

y' = 5 cos x + 3

Setting y' = 0 to find critical points:

5 cos x + 3 = 0

cos x = -3/5

Using a calculator or reference table, we can find the two values of x between 0 and 2π that satisfy this equation: x ≈ 2.300 and x ≈ 3.840.

Second derivative:

y'' = -5 sin x

At x = 2.300, y'' < 0, so we have a local maximum.

At x = 3.840, y'' > 0, so we have a local

To check whether these are global maxima/minima, we need to examine the behavior of the function near the endpoints of the interval 0 < x < 2π.

When x = 0, y = 0 + 0 = 0.

When x = 2π, y = 5 sin (2π) + 6π = 6π, since sin(2π) = 0.

So the function is increasing on the interval [0, 2.300], reaches a local maximum at x = 2.300, is decreasing on the interval [2.300, 3.840], reaches a local minimum at x = 3.840, and then is increasing on the interval [3.840, 2π]. Therefore, the maximum value of the function occurs at x = 2π, where y = 6π, and the minimum value of the function occurs at x = 3.840, where y ≈ 1.221.

To find the points of inflection, we set y'' = 0:

-5 sin x = 0

This equation is satisfied when x = 0, π, and 2π. We can use the second derivative test to determine whether these are points of inflection or not.

At x = 0, y'' = 0, so we need to examine the behavior of the function near x = 0.

When x is close to 0 from the right, y is positive and increasing, so we have a point of inflection at x = 0.

At x = π, y'' = 0, so we need to examine the behavior of the function near x = π.

When x is close to π from the left, y is negative and decreasing, so we have a point of inflection at x = π.

At x = 2π, y'' = 0, so we need to examine the behavior of the function near x = 2π.

When x is close to 2π from the right, y is positive and increasing, so we have a point of inflection at x = 2π.

Therefore, the points of inflection are (0, 3π), (π, 4π), and (2π, 9π).

To learn more about minimum visit:

https://brainly.com/question/21426575

#SPJ11

P(-8,6) Q(-4,8) R(0,6) S-4,4: in the line Y=2

Answers

The graph of the reflected rhombus P'Q'R'S' is shown below.

We know that the formula for the reflection of point (a,b) with respect to line y = k is point (a, 2k-b)

i.e., the coordinates of point A(x, y) changes to (x, 2k - y)

Here, the rhombus PQRS with vertices P(-8, 6), Q(-4, 8), R(0, 6), and S(-4, 4) reflected over the line y = 2.

This means that the value of k = 2

P(-8,6) ⇒ P′(-8,2⋅2-6)

            = P′(-8,-2)

Q(-4, 8)⇒ Q′(-4,2⋅2-8)

            = Q′(-4,-4)

R(0, 6) ⇒ R′(0, 2⋅2-6)

             = R′(0,-2)

S(-4,4) ⇒ S′(-4,2⋅2-4)

           = S′(-4,0)

Therefore, the coordintes of reflected rhombus P'Q'R'S' are:

P′(-8,-2), Q′(-4,-4), R′(0,-2), S′(-4,0)

Learn more about the reflection here:

https://brainly.com/question/30270479

#SPJ1

The complete question is:

Rhombus PQRS with vertices P(-8, 6), Q(-4, 8), R(0, 6), and S(-4, 4) REFLECTED over the line y = 2.

Graph the reflected rhombus.

Evaluate the indefinite integral as a power series. X 4 ln(1 x) dx f(x) = c [infinity] n = 1 what is the radius of convergence r? r =

Answers

The radius of convergence is r = 1 in the given case.

We can start by using the power series expansion of ln(1+x):

[tex]ln(1+x) = x - x^2/2 + x^3/3 - x^4/4 + ...[/tex]

Now we can substitute this into the integral and use the linearity of integration to obtain:

[tex]∫ x^4 ln(1+x) dx = ∫ x^5 - x^6/2 + x^7/3 - x^8/4 + ... dx[/tex]

We can integrate each term separately to get:

∫ [tex]x^5 dx - ∫ x^6/2 dx + ∫ x^7/3 dx - ∫ x^8/4 dx[/tex]+ ...

Using the power rule for integration, we can simplify this to:

[tex]x^6/6 - x^7/14 + x^8/24 - x^9/36 +[/tex]...

We have now expressed the indefinite integral as a power series with coefficients given by the formula:

[tex]a_n = (-1)^(n+1) / n[/tex]

The radius of convergence of this power series can be found using the ratio test:

[tex]lim |a_(n+1)/a_n| = lim (n/(n+1)) = 1[/tex]

Since the limit is equal to 1, the ratio test is inconclusive, and we need to consider the endpoints of the interval of convergence.

The integral is undefined at x=-1, so the interval of convergence must be of the form (-1,r] or [-r,1), where r is the radius of convergence.

To determine the value of r, we can use the fact that the series for ln(1+x) converges uniformly on compact subsets of the interval (-1,1). This implies that the series fo [tex]x^4[/tex] ln(1+x) also converges uniformly on compact subsets of (-1,1), and hence on the interval (-r,r) for any r < 1.

Therefore, the radius of convergence is r = 1.

To know more about  convergence, here

https://brainly.com/question/31400159

#SPJ4

How does deriving the formula for the surface area of a sphere depend on knowing the formula for its volume?

Answers

The formula for the surface area of a sphere is derived from the formula for its volume by taking its derivative with respect to the radius.

Deriving the formula for the surface area of a sphere depends on knowing the formula for its volume because it involves taking the derivative of the volume formula with respect to the radius.

The volume formula for a sphere is  [tex]V = (4/3)πr^3[/tex], where r is the radius, and π is a constant. If we differentiate this formula with respect to r, we get dV/dr = [tex]4πr^2[/tex], which gives us the formula for the surface area of the sphere, A = [tex]4πr^2.[/tex]

Therefore, the formula for the surface area of a sphere is derived from the formula for its volume by taking its derivative with respect to the radius.

To know more about surface area here

https://brainly.com/question/16519513

#SPJ4

A store owner wants to buy a new rectanglar rug the rug must be between 55 aqnd 65 square feet and the side lenght must be less than 10 feet draw a rectangel that could repersent the new rug

Answers

A rectangle with a length less than 10 feet and an area between 55 and 65 square feet.

Let's call the length of the rectangle "l" and the width "w". We know that the area of a rectangle is given by the formula A = lw. We also know that the area of the rug must be between 55 and 65 square feet. Therefore:

55 ≤ lw ≤ 65

Since the length of the rectangle must be less than 10 feet, we have:

l < 10

We can use these two conditions to draw a rectangle that satisfies both requirements. For example, we could draw a rectangle with a length of 8 feet and a width of 7 feet, which gives an area of 56 square feet. This rectangle satisfies both conditions since 55 ≤ 56 ≤ 65 and 8 < 10.

Learn more about Rectangle

https://brainly.com/question/25292087

#SPJ4

According to a USA Today "Snapshot," 3% of Americans surveyed lie frequently. You conduct a survey of 500 college students and find that 20 of them lie frequently. Compute the probability that in a random sample of 500 college students, at least 20 lie frequently, assuming the true percentage is 3%. Does this result contradict the USA Today Snapshot? Explain.

Answers

According to the USA Today "Snapshot," 3% of Americans surveyed lie frequently. This means that out of a large sample of Americans, 3% of them admit to lying frequently. In your survey of 500 college students, you found that 20 of them lie frequently.

To compute the probability of at least 20 lying frequently in a random sample of 500 college students, assuming the true percentage is 3%, we can use a binomial distribution.
The formula for the probability of x successes in n trials with probability p of success is P(x) = (nCx)(p^x)((1-p)^(n-x)), where nCx represents the number of combinations of n things taken x at a time.

Using this formula, the probability of at least 20 college students lying frequently in a random sample of 500 college students is approximately 0.00002, or 0.002%. This is an extremely low probability, indicating that the results of your survey are unlikely to have occurred by chance alone.

However, this does not necessarily mean that the USA Today "Snapshot" is contradictory. It is possible that the true percentage of Americans who lie frequently is different from the percentage of college students who lie frequently. Additionally, the sample size and composition of your survey may not be representative of the entire population of college students. Therefore, while the results of your survey suggest that the true percentage of college students who lie frequently may be higher than 3%, it does not necessarily contradict the USA Today "Snapshot."
According to a USA Today "Snapshot," 3% of Americans surveyed lie frequently. We need to compute the probability that in a random sample of 500 college students, at least 20 lie frequently, assuming the true percentage is 3%. To do this, we can use the binomial probability formula:

P(x >= 20) = 1 - P(x <= 19)

Here, n = 500 (sample size), p = 0.03 (true percentage), and x represents the number of students who lie frequently.

Step 1:

Calculate the cumulative probability P(x <= 19):
We can use a cumulative binomial probability table or a calculator with a binomial cumulative distribution function (CDF). Using the CDF, we get:

P(x <= 19) = binomcdf(500, 0.03, 19) ≈ 0.964

Step 2:

Calculate the probability P(x >= 20):
P(x >= 20) = 1 - P(x <= 19) = 1 - 0.964 = 0.036

The probability that at least 20 out of 500 college students lie frequently is 0.036 or 3.6%. This result is slightly higher than the USA Today Snapshot's 3% figure.

However, this difference does not necessarily contradict the USA Today Snapshot. The slight discrepancy could be due to various factors, such as sample variation, differences in the population of college students compared to the general American population, or other sampling biases. The probability we calculated (3.6%) is still reasonably close to the 3% figure from the USA Today Snapshot, so it is not a strong contradiction.

Learn more about difference at : brainly.com/question/2432925

#SPJ11

an online used car company sells second-hand cars. for 30 randomly selected transactions, the mean price is 2900 dollars. part a) assuming a population standard deviation transaction prices of 290 dollars, obtain a 99% confidence interval for the mean price of all transactions. please carry at least three decimal places in intermediate steps. give your final answer to the nearest two decimal places.

Answers

We can say with 99% confidence that the true mean price of all transactions is between $2,799.16 and $3,000.84.

To obtain a 99% confidence interval for the mean price of all transactions, we can use the formula:

CI =  ± z*(σ/√n)

Where:
= sample mean price = 2900 dollars
σ = population standard deviation = 290 dollars
n = sample size = 30
z = z-score for a 99% confidence level = 2.576 (from the standard normal distribution table)

Substituting these values into the formula, we get:

CI = 2900 ± 2.576*(290/√30)
CI = 2900 ± 100.84
CI = (2799.16, 3000.84)

Know more about 99% confidence here:

https://brainly.com/question/30762304

#SPJ11

Somebody help me I need the answer?

Answers

For equation A+C=B the matrix C is [tex]\left[\begin{array}{ccc}-2&-7\\-5&8\end{array}\right][/tex] and C-B=A then C is [tex]\left[\begin{array}{ccc}2&-9\\7&0\end{array}\right][/tex]

The given matrix A = [tex]\left[\begin{array}{ccc}2&-1\\6&-4\end{array}\right][/tex]

B=[tex]\left[\begin{array}{ccc}0&-8\\1&4\end{array}\right][/tex]

Now the equation is A+C=B

[tex]\left[\begin{array}{ccc}2&-1\\6&4\end{array}\right][/tex]+C  =[tex]\left[\begin{array}{ccc}0&-8\\1&4\end{array}\right][/tex]

C=[tex]\left[\begin{array}{ccc}0&-8\\1&4\end{array}\right][/tex]- [tex]\left[\begin{array}{ccc}2&-1\\6&-4\end{array}\right][/tex]

C=[tex]\left[\begin{array}{ccc}-2&-7\\-5&8\end{array}\right][/tex]

Now equation is C-B=A

C=A+B

= [tex]\left[\begin{array}{ccc}2&-1\\6&-4\end{array}\right][/tex]+[tex]\left[\begin{array}{ccc}0&-8\\1&4\end{array}\right][/tex]

C=[tex]\left[\begin{array}{ccc}2&-9\\7&0\end{array}\right][/tex]

Hence, for equation A+C=B the matrix C is [tex]\left[\begin{array}{ccc}-2&-7\\-5&8\end{array}\right][/tex] and C-B=A then C is [tex]\left[\begin{array}{ccc}2&-9\\7&0\end{array}\right][/tex]

To learn more on Matrices click:

https://brainly.com/question/28180105

#SPJ1

A data analyst inputs the following code in RStudio: sales_1 <- (3500.00 * 12) Which of the following types of operators does the analyst use in the code? Select all that apply.A.ArithmeticB.AssignmentC.LogicalD.Relational

Answers

The data analyst uses the Assignment operator in the code.

Data analysts collect, clean, and examine data to help solve problems. Here's how you can start your journey as a single person. Data analysts collect, clean, and interpret data to answer questions or solve problems. Data analysis is the process of analyzing, cleaning, transforming, and modeling data to discover important information, draw conclusions, and support decisions. Data analysis has many facets and methods, including many techniques under different names, and used in different industries, research, and social studies.

The data analyst's code in R-Studio uses the following types of operators:
A. Arithmetic
B. Assignment

In the code, "sales_1 <- (3500.00 * 12)", the "*" operator is an arithmetic operator used for multiplication, and the "<-" operator is an assignment operator used to assign the result of the expression to the variable "sales_1".

Learn more about data analyst:

brainly.com/question/29351385

#SPJ11

A client wants to determine whether there is a significant difference in the time required to complete a program evaluation with the three different methods that are in common use. Suppose the times (in hours) required for each of 18 evaluators to conduct a program evaluation follow.
Method 1 Method 2 Method 3
69 63 59
72 71 65
66 76 67
78 69 55
75 73 57
73 70 63
Use α = 0.05 and test to see whether there is a significant difference in the time required by the three methods.
State the null and alternative hypotheses.
H0: Median1 = Median2 = Median3
Ha: Median1 ≠ Median2 ≠ Median3
H0: Median1 ≠ Median2 ≠ Median3
Ha: Median1 = Median2 = Median3
H0: Not all populations of times are identical.
Ha: All populations of times are identical.
H0: All populations of times are identical.
Ha: Not all populations of times are identical.
H0: Median1 = Median2 = Median3
Ha: Median1 > Median2 > Median3
Find the value of the test statistic. (Round your answer to two decimal places.)
Find the p-value. (Round your answer to three decimal places.)
p-value =
State your conclusion.
Do not reject H0. There is not sufficient evidence to conclude that there is a significant difference in the time required by the three methods.
Reject H0. There is not sufficient evidence to conclude that there is a significant difference in the time required by the three methods.
Do not reject H0. There is sufficient evidence to conclude that there is a significant difference in the time required by the three methods.
Reject H0. There is sufficient evidence to conclude that there is a significant difference in the time required by the three methods.

Answers

The null hypothesis is H0: Median1 = Median2 = Median3 and the alternative hypothesis is Ha: Median1 ≠ Median2 ≠ Median3. The test statistic is H = 9.73. The p-value is 0.007. Reject H0. There is sufficient evidence to conclude that there is a significant difference in the time required by the three methods.

To determine whether there is a significant difference in the time required to complete a program evaluation with the three different methods, we will use an ANOVA test.

1. State the null hypothesis and alternative hypothesis:
H0: All populations of times are identical.
Ha: Not all populations of times are identical.

2. Find the value of the test statistic:
Using the given data, perform a one-way ANOVA test. You can use statistical software or a calculator with ANOVA capabilities to find the F-value (test statistic).

3. Find the p-value:
The same software or calculator used in step 2 will provide you with the p-value. Remember to round your answer to three decimal places.

4. State your conclusion:
Compare the p-value with the given significance level (α = 0.05).
- If the p-value is less than α, reject H0. There is sufficient evidence to conclude that there is a significant difference in the time required by the three methods.
- If the p-value is greater than or equal to α, do not reject H0. There is not sufficient evidence to conclude that there is a significant difference in the time required by the three methods.

Know more about null hypothesis here:

https://brainly.com/question/4436370

#SPJ11

An amount is increased by 20% 40% of the new amount is 288 Work out the original amount. ​

Answers

Let x be the original amount.

When the amount is increased by 20%, the new amount becomes 1.20x.

Then, 40% of the new amount is 0.40(1.20x) = 0.48x.

We know that 0.48x = 288, so we can solve for x:

x = 288 / 0.48

x = 600

Therefore, the original amount is $600.

What is the answer to 4x^2+12x-112=0

Answers

The solution to the equation 4x^2+12x-112=0 is x = 4 or x = -7.

Answer:

x=4, -7

Step-by-step explanation:

4 (x−4)(x+7)=0

If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.

x−4=0x+7=0Set x−4 equal to 0 and solve for x. Set

x+7 equal to 0.x+7=0

Subtract 7 from both sides of the equation. x=−7

The final solution is all the values that make 4(x−4)(x+7)=0 true.

x=4,−7

The given differential equation (2D^2 + 12D + 2)y=0 is_______. a. Overdamping b. 2 c. critical damping d. underdamping Question 2 Not yet answered Marked out of 2.00 Qequation 3 (3D^2 + 6D + 7)y = sin x a. 7 b. stable c. unstable d. none of these

Answers

The answer is (d) none of these.

For the differential equation (2D^2 + 12D + 2)y = 0,

The characteristic equation is: 2r^2 + 12r + 2 = 0

Solving this quadratic equation using the quadratic formula, we get:

r = (-12 ± sqrt(12^2 - 4(2)(2))) / (2(2))

r = (-6 ± sqrt(32)) / 2

r = -3 ± sqrt(8)

The roots of the characteristic equation are complex conjugates, which means that the solution to the differential equation will be of the form:

y = e^(-3x) (c1 cos(sqrt(8)x) + c2 sin(sqrt(8)x))

The damping ratio is given by:

ζ = (c * n) / (2 * sqrt(a))

where c is the damping coefficient, n is the natural frequency, and a is the coefficient of the second derivative term.

In this case, c = 12, n = sqrt(8), and a = 2. Substituting these values into the above formula, we get:

ζ = (12 * sqrt(8)) / (2 * sqrt(2))

ζ = 6

Since the damping ratio ζ is greater than 1, the system is overdamped.

Therefore, the answer is (a) Overdamping.

For the differential equation (3D^2 + 6D + 7)y = sin(x),

The characteristic equation is: 3r^2 + 6r + 7 = 0

Using the quadratic formula, we can see that the roots of the characteristic equation are complex conjugates, which means that the solution to the differential equation will be of the form:

y = e^(-3x) (c1 cos(sqrt(2)x) + c2 sin(sqrt(2)x))

Since the real part of the roots of the characteristic equation is negative, the system is stable

However, the right-hand side of the differential equation is not of the form that matches with the solution, which means that the system is not able to respond to the input sin(x).

Therefore, the answer is (d) none of these.

To learn more about characteristic visit:

https://brainly.com/question/920068

#SPJ11

What is 3 + 2 HELP then after add 3456 then subtract 45 and then divid 20

Answers

The simplify value of numeric expression, 3 + 2, after adding 3456 then subtracting 45 and then dividing by 20 is equals the 17.8.

We have an expression of numbers, 3 + 2 we have to apply some arithematic operations on it and determine the final simplfy value. Let the expression be x = 3 + 2, add 3456 in it

=> x = 3 + 2 + 3456

Substracts 45 from above expression

=> x = 3 + 2 + 3456 - 45

Dividing the above expression of x by 20

=>

[tex]\frac{ x } {20} = \frac{ 3 + 2 + 3456 - 45}{20}[/tex]

[tex]= \frac{3416}{20}[/tex]

= 17.8

Hence, required simplify value is 17.8.

For more information about expression, visit :

https://brainly.com/question/25968875

#SPJ4

Find the distance from y to the subspace W of R4 spanned by v1 and v2. given that the closest point to y in W is and v Let y 2 4 The distance is Simplify your answer. Type an exact answer, using radicals as needed)

Answers

The distance from y to W is sqrt(10), which is the exact answer using radicals.

Let's start by finding the projection of y onto the subspace W spanned by v1 and v2. The projection of y onto W is given by:

projW(y) = ((y · v1)/||v1||^2)v1 + ((y · v2)/||v2||^2)v2

where · denotes the dot product and || || denotes the norm or length of a vector.

Using the given information, we have:

v1 = [1 0 1 0], v2 = [0 1 0 1], and y = [2 4 0 0]

We can calculate the dot products and norms as follows:

||v1||^2 = 1^2 + 0^2 + 1^2 + 0^2 = 2

||v2||^2 = 0^2 + 1^2 + 0^2 + 1^2 = 2

y · v1 = 2(1) + 4(0) + 0(1) + 0(0) = 2

y · v2 = 2(0) + 4(1) + 0(0) + 0(1) = 4

Therefore, the projection of y onto W is:

projW(y) = ((2/2)[1 0 1 0]) + ((4/2)[0 1 0 1])

= [1 0 1 0] + [0 2 0 2]

= [1 2 1 2]

The closest point to y in W is the projection projW(y), so we have:

v = [1 2 1 2]

The distance from y to W is the length of the vector y - v, which we can calculate as:

||y - v|| = ||[2 4 0 0] - [1 2 1 2]||

= ||[1 2 -1 -2]||

= sqrt(1^2 + 2^2 + (-1)^2 + (-2)^2)

= sqrt(10)

Therefore, the distance from y to W is sqrt(10), which is the exact answer using radicals.

Complete question: Let [tex]$y=\left[\begin{array}{r}13 \\ -1 \\ 1 \\ 2\end{array}\right], y_1=\left[\begin{array}{r}1 \\ 1 \\ -1 \\ -2\end{array}\right]$[/tex], and [tex]$v_2=\left[\begin{array}{l}5 \\ 1 \\ 0 \\ 3\end{array}\right]$[/tex] . Find the distance from y to the subspace W of [tex]$\mathrm{R}^4$[/tex] spanned by [tex]$v_1$[/tex] and [tex]$v_2$[/tex], given that the closest point to [tex]$y$[/tex] in [tex]$W$[/tex] is [tex]$\hat{y}=\left[\begin{array}{r}11 \\ 3 \\ -1 \\ 4\end{array}\right]$[/tex].

To learn more about radicals visit:

https://brainly.com/question/1369233

#SPJ11

if you give me new answer i will give you like
Find the probabilities of getting the values + 1 and - 1 For each of the space directors x, y, z and each of the vectors luz, ld, liz, 107, 117, 18)

Answers

Probabilities are calculated by dividing the number of favorable outcomes by the total number of possible outcomes. In this case, we need to know what the experiment or event is, and what the probability distribution of the outcomes looks like. Space directors refer to the three coordinate axes x, y, and z, which are used to describe three-dimensional space. Vectors are quantities that have both magnitude and direction and can be represented by arrows or line segments in space.



To find the probabilities of getting the values +1 and -1 for each of the space directors (x, y, z) and each of the vectors (luz, ld, liz, 107, 117, 18), follow these steps:

1. Determine the total number of possible outcomes for each vector. For example, if luz has 3 possible outcomes (+1, 0, -1), the total number of outcomes is 3.

2. Count the number of occurrences of +1 and -1 in each vector. For example, if luz has 1 occurrence of +1 and 1 occurrence of -1, then there are 2 occurrences of interest.

3. Calculate the probabilities by dividing the number of occurrences of interest by the total number of outcomes. For example, for luz, the probability of getting +1 or -1 is 2 occurrences of interest / 3 total outcomes = 2/3 or approximately 0.67.

Repeat these steps for each of the space directors (x, y, z) and vectors (ld, liz, 107, 117, 18) to find the probabilities of getting the values +1 and -1.

Learn more about probabilities at https://brainly.com/question/13604758

#SPJ11

find the sum of the coefficients in the polynomial $3(x^{10} - x^7 2x^3 - x 7) 4(x^3 - 2x^2 - 5)$ when it is simplified.

Answers

The sum of the coefficients in the simplified polynomial is -54.

Adding two integers always results in an integer, if the two integers are positive, their sum will be positive, if two integers are negative, they will yield a negative sum)

To find the sum of the coefficients of the simplified polynomial, first, distribute the constants and then combine like terms.

The given polynomial is:

[tex]$3(x^{10} - x^7 2x^3 - x 7) 4(x^3 - 2x^2 - 5)$[/tex]

Distribute the constants:

[tex]$3x^{10} - 3x^7 - 6x^3 - 3x - 21 + 4x^3 - 8x^2 - 20$[/tex]
Combine like terms:

[tex]$3x^{10} - 3x^7 + (-6x^3 + 4x^3) + (-8x^2) + (-3x) + (-21 - 20)$[/tex]

Which simplifies to:

[tex]$3x^{10} - 3x^7 - 2x^3 - 8x^2 - 3x - 41$[/tex]

Now, sum the coefficients:

[tex]$3 - 3 - 2 - 8 - 3 - 41 = -54$[/tex]

So, the sum of the coefficients in the simplified polynomial is -54.

learn more about Polynoimal

https://brainly.com/question/11536910

#SPJ11

Let class A is a prerequisite for classes B and C; class D is a prerequisite for classes B and E; class C is a prerequisite for classes E and F. Assign 2-digit numbers to these classes such that these numbers considered as 2-dimensional vectors will be in a partial order relation determined by the component- wise s between these vectors.

Answers

To assign 2-digit numbers to these classes such that these numbers considered as 2-dimensional vectors will be in a partial order relation determined by the component-wise s between these vectors, we can follow the given steps.

1. Identify the classes and their prerequisites:
- Class A is a prerequisite for classes B and C
- Class D is a prerequisite for classes B and E
- Class C is a prerequisite for classes E and F

2. Draw a directed graph representing the prerequisites:
```
A -> B -> E -> F
 \-> C -> E
D -----^
```

3. Assign numbers to the classes in such a way that the numbers assigned to prerequisite classes are smaller than those assigned to dependent classes. We can use the following numbering scheme:
- Class A: 10
- Class B: 20
- Class C: 30
- Class D: 40
- Class E: 50
- Class F: 60

4. Represent these numbers as 2-dimensional vectors with the first digit representing the horizontal component and the second digit representing the vertical component:
- Class A: (1,0)
- Class B: (2,0)
- Class C: (3,0)
- Class D: (4,0)
- Class E: (5,0)
- Class F: (6,0)

5. Check if these vectors are in a partial order relation determined by the component-wise ≤ between these vectors:
- (1,0) ≤ (2,0) since 1 ≤ 2
- (1,0) ≤ (3,0) since 1 ≤ 3
- (4,0) ≤ (2,0) since 4 ≤ 2
- (4,0) ≤ (5,0) since 4 ≤ 5
- (3,0) ≤ (5,0) since 3 ≤ 5
- (5,0) ≤ (6,0) since 5 ≤ 6

Therefore, the assignment of numbers to these classes and their representation as 2-dimensional vectors satisfy the partial order relation determined by the component-wise ≤ between these vectors.

To learn more about 2-dimensional vectors visit : https://brainly.com/question/28931875

#SPJ11

What is the value of a

Answers

Answer:

The value of a is 2 since 2/4 = 1/2.

Is the random variable discrete or continuous?

The number of passengers in a passenger vehicle on a highway at rush hour

Answers

The random variable is discrete because it can only take on integer values.

You cannot have a fraction or decimal number of passengers in a vehicle. For example, a vehicle can have 1, 2, 3, or 4 passengers, but it cannot have 2.5 passengers. Discrete variables have a countable number of possible values and can be listed and counted. In contrast, continuous variables can take on any value within a range and are not limited to specific values. Examples of continuous variables include time, weight, and height.

Learn more about discrete variable:

https://brainly.com/question/14354370

#SPJ4

pls help me with this problem. I need this today. thank you
Solve the system of linear equations using iterative methods 1. 6X1 + 2x2 + x3 = 26 = = 2x1 + 8x2 - 2x3 = 24 = X1 - 2X2 + 6x3 = 30

Answers

The solution to the system of linear equations using iterative methods is X1 = 2.24, X2 = 2.17, and X3 = 4.68.

To solve this system of linear equations using iterative methods, we can use the Gauss-Seidel method. Here are the steps:

1. Rearrange the equations so that each variable is on the left side and the constants are on the right side:

X1 = (26 - 2x2 - x3)/6
X2 = (24 - 2x1 + 2x3)/8
X3 = (30 - x1 + 2x2)/6

2. Make an initial guess for X1, X2, and X3. Let's use (0, 0, 0) as our initial guess.

3. Use the equations from Step 1 and plug in the initial guess for X1, X2, and X3 to get new values.

X1 = (26 - 2(0) - (0))/6 = 4.333
X2 = (24 - 2(0) + 2(0))/8 = 3
X3 = (30 - (0) + 2(0))/6 = 5

4. Use the new values for X1, X2, and X3 in the equations from Step 1 to get newer values.

X1 = (26 - 2(3) - (5))/6 = 2.167
X2 = (24 - 2(2.167) + 2(5))/8 = 2.125
X3 = (30 - (2.167) + 2(3))/6 = 4.556

5. Keep repeating step 4 until the values for X1, X2, and X3 stop changing significantly. Let's repeat step 4 one more time.

X1 = (26 - 2(2.125) - (4.556))/6 = 2.24
X2 = (24 - 2(2.24) + 2(4.556))/8 = 2.17
X3 = (30 - (2.24) + 2(2.125))/6 = 4.68

6. We can see that the values for X1, X2, and X3 are not changing significantly anymore. Therefore, the solution to the system of linear equations using iterative methods is X1 = 2.24, X2 = 2.17, and X3 = 4.68.

Learn more about iterative methods at https://brainly.com/question/31370534

#SPJ11

A classroom is rectangular in shape. If listed as ordered pairs, the corners of the classroom are (−22, 14), (−22, −10), (2, 14), and (2, −10). What is the perimeter of the classroom in feet?

96 feet
176 feet
240 feet
480 feet

Answers

The value of perimeter of the classroom in feet is,

P = 110.4 feet

We have to given that;

A classroom is rectangular in shape.

And, If listed as ordered pairs, the corners of the classroom are (−22, 14), (−22, −10), (2, 14), and (2, −10).

We have to find distance of length and width of rectangle.

Hence, We get;

Length is distance between (−22, 14) and (−22, −10).

That is,

d = √(- 22 + 22)² + (- 10 - 14)²

d = √24²

d = 24

And, Width is distance between (−22, 14) and (−2, −10).

That is,

d = √(- 22 + 2)² + (- 10 - 14)²

d = √20² + 24²

d = √400 + 576

d = √976

d = 31.24

Hence, Perimeter of classroom is,

P = 2 (24 + 31.2)

P = 2 x 55.2

P = 110.4 feet

Learn more about the rectangle visit:

https://brainly.com/question/2607596

#SPJ1

Answer: the answer  is actually 96 feet  i know you don't want to read the long version so just trust me.

Step-by-step explanation: and i dont have the time sorry.

Use General Linear Process to determine the mean function and the autocovariance function of ARC2) given by Xt = ∅1X't-1- ∅2X't-2 +et

Answers

The GLP's mean function is (t) = (1 + 2), and the GLP's autocovariance function is γ(h) = ∅1² γ(h-1) + ∅2² γ(h-2) - ∅1∅2 γ(h-2), where γ(0) = σ² / (1 - ∅1² - ∅2²).

What is function?

A function connects an input with an output. It is analogous to a machine with an input and an output. And the output is somehow related to the input. The standard manner of writing a function is f(x) "f(x) =... "

To use the General Linear Process approach, we first express the given AR(2) model in the following form:

Xt = ∅1Xt-1 - ∅2Xt-2 + et

where et is a white noise process with zero mean and variance σ².

The mean function of this GLP is given by:

μ(t) = E[Xt] = E[∅1Xt-1 - ∅2Xt-2 + et] = ∅1E[Xt-1] - ∅2E[Xt-2] + E[et]

Since et is a white noise process with zero mean, we have E[et] = 0. Also, by assuming that the process is stationary, we have E[Xt-1] = E[Xt-2] = μ. Therefore, the mean function of the GLP is:

μ(t) = μ(∅1 + ∅2)

The autocovariance function of this GLP is given by:

γ(h) = cov(Xt, Xt-h) = cov(∅1Xt-1 - ∅2Xt-2 + et, ∅1Xt-1-h - ∅2Xt-2-h + e(t-h))

Note that et and e(t-h) are uncorrelated since the white noise process is uncorrelated at different time points. Also, we assume that the process is stationary, so that the autocovariance function only depends on the time lag h. Using the properties of covariance, we have:

γ(h) = ∅1² γ(h-1) + ∅2² γ(h-2) - ∅1∅2 γ(h-2)

where γ(0) = Var[Xt] = σ² / (1 - ∅1² - ∅2²).

Therefore, the mean function of the GLP is μ(t) = μ(∅1 + ∅2), and the autocovariance function of the GLP is γ(h) = ∅1² γ(h-1) + ∅2² γ(h-2) - ∅1∅2 γ(h-2), where γ(0) = σ² / (1 - ∅1² - ∅2²).

Learn more about functions on:

https://brainly.com/question/10439235

#SPJ11

Evaluate the given integral by changing to polar coordinates. integral integral_R sin(x^2 + y^2) dA, where R is the region in the first quadrant between the circles with center the origin and radii 2 and 3

Answers

To evaluate the given integral by changing to polar coordinates, we first need to determine the limits of integration in polar form. The region R is in the first quadrant and is bounded by the circles with the center of the origin and radii 2 and 3. In polar coordinates, the equation of a circle centered at the origin is given by r = a, where a is the radius.

So, the equations of the two circles are:

r = 2  and  r = 3

Since the region R is between these two circles, the limits of integration for r are:

2 ≤ r ≤ 3

To determine the limits of integration for θ, we need to consider the quadrant in which the region R lies. Since R is in the first quadrant, we have:

0 ≤ θ ≤ π/2

Now, we can express the integrand sin(x^2 + y^2) in terms of polar coordinates:

sin(x^2 + y^2) = sin(r^2)

Therefore, the integral in polar coordinates is:

∫∫R sin(x^2 + y^2) dA = ∫ from 0 to π/2 ∫ from 2 to 3 sin(r^2) r dr dθ

This integral can be evaluated using standard techniques of integration.
To evaluate the integral using polar coordinates, we first need to express the given region R and the integrand in terms of polar coordinates. In polar coordinates, x = r*cos(θ) and y = r*sin(θ), so x^2 + y^2 = r^2.

The region R is in the first quadrant and is bounded by the circles with radii 2 and 3. In polar coordinates, this translates to 0 ≤ θ ≤ π/2, 2 ≤ r ≤ 3.

Now we can rewrite the integral as:

integral_integral_R sin(x^2 + y^2) dA
= integral (θ=0 to π/2) integral (r=2 to 3) sin(r^2) * r dr dθ

Now we can evaluate the integral step by step:

1. Integrate with respect to r:
integral (θ=0 to π/2) [(-1/2)cos(r^2)] (from r=2 to r=3) dθ
= integral (θ=0 to π/2) [(-1/2)(cos(9) - cos(4))] dθ

2. Integrate with respect to θ:
[(-1/2)(cos(9) - cos(4))]*(θ evaluated from 0 to π/2)
= [(-1/2)(cos(9) - cos(4))] * (π/2)

So the final answer is:

(π/2)(-1/2)(cos(9) - cos(4))

Learn more about circles here:- brainly.com/question/11833983

#SPJ11

A tangent of length 12 cm has its end point 16 cm from the circle's centre. Find the radius of the circle.

Answers

The radius of the circle with tangent length of 12 cm is equal to √122 cm

Tangent to a circle theorem

The tangent to a circle theorem states that a line is tangent to a circle if and only if the line is perpendicular to the radius drawn to the point of tangency

The radius of the circle will form a right triangle with the tangent length 12 cm and the length 16 cm, thus the length of the radius can be derived using the Pythagoras rule as follows:

(16 cm)² = (12 cm)² + r² {r = radius}

r = √(16² - 12²) cm

r = √(256 - 144) cm

r = √112 cm.

Therefore, the radius of the circle with tangent length of 12 cm is equal to √122 cm

Read more about tangent to a circle here:https://brainly.com/question/11067500

#SPJ1

Correctly use the wolframalpha method introduced in the Section 7.1 Learning Guidance and Section 7.1 Homework solutions (including your own correct using of parenthesis in the wolframalpha command), match X-Y the function z = x-y/1+x^2+y^2 given by Problem 30 on Page 392 with a graph and a contour map on Page 393. - Graph C, contour map II. - Graph C, contour map I. - Graph D, contour map I. - Graph D, contour map II.

Answers

To correctly use the wolframalpha command to match the function z = x-y/1+x^2+y^2 given by Problem 30 on Page 392 with a graph and a contour map on Page 393, you can follow the steps below:

1. Go to the wolframalpha website.
2. In the search bar, type "plot z = x-y/(1+x^2+y^2)" and hit enter.
3. The website will generate a 3D graph of the function.
4. To match the graph C and contour map II, click on the "More" button below the graph and select "Contour plot."
5. In the new window, select the second option from the left, which is the contour map.
6. Adjust the settings as necessary to match the colors and levels of the contour map on Page 393.
7. To match the graph C and contour map I, follow the same steps as above, but select the first option for the contour map.
8. To match the graph D and contour map I, click on the "More" button below the graph and select "Contour plot."
9. In the new window, select the first option from the left, which is the contour map.
10. Adjust the settings as necessary to match the colors and levels of the contour map on Page 393.
11. To match the graph D and contour map II, follow the same steps as above, but select the second option for the contour map.

It's important to correctly use parentheses in the wolframalpha command to ensure that the website understands the order of operations. In this case, we want to divide y by the sum of 1, x^2, and y^2 before subtracting it from x. Therefore, we need to enclose the denominator in parentheses, like this:

plot z = x-(y/(1+x^2+y^2))

By following these steps and using the correct wolframalpha command, you can match the function with the appropriate graph and contour map.

Learn more about wolframalpha command: https://brainly.com/question/30698326

#SPJ11

Other Questions
What should Ms. Fernandez be told about potential drug interactions or dental adverse reactions? You are managing an Agile team developing a high-tech gadget for the organization. The gadget will monitor and report on different aspects of the business and report performance. If you want to assume a servant-leader role, how should you respond to team conflicts? A nurse is planning care for a client with increased intracranial pressure. What is the best position for this client?Side-lying with head flatSupineTrendelenburgLow Fowler's The purpose of draping the tendons in a post-tensioned slab is...A. To account for long term shrinkage of the concrete.B. To reduce wobble in the post tensioned slab.C. To make it more difficult for the contractor to install.D. To balance the stresses that are generated from the gravity loading. A plane intersects a rectangular pyramid horizontally as shown. Describe the cross-section. Responses A rectangle B circlecircle C triangletriangle D trapezoid Despite laws to prevent it, many companies have acted illegally by using corrupt practices to: all routine business messages should contain which of the following components? (choose every correct answer.) kindly explain this in brief1 1 Parking spaces are an important facilities for a building system to ensure the proper placement and facilitation of the transportation. Moreover, parking is consider an essential part of the transportation system in a proper environment of accessibility and functionality for the people conducting activities within the building. However, illegal/prohibited car parking has become a problem due to the increasing numbers of vehicles transportation and lack of facilities. Apart from that, the underlying conception of the culture of illegal car parking among Pakistanis particularly within the city and developed townships. Keeping in view the under laying problem you are required to achieve following objectives Objectives: (i)To study the numbers of parking violation at MUST city campus.(ii). To investigate the correlation between the numbers of parking violation and parking spaces available at MUST city campus.(iii)To determine the parking spaces to accommodate users at MUST city campus. Requirement:The data collection and observation period should be more than 1 day with 30 minutes interval. Based on your observation you are required to present a case study by applying statistical method on the parking violation of cars/motorbikes at MUST city campus and give the conclusive solution to the problem" All of the following belong to the thoracic cage, except __________.sternumclaviclescostal cartilagesthoracic vertebraeAll of the choices belong To increase available capital, Bengal issued 1,000 bonds with a stated interest rate of 5% and face value of $10,000 per bond. The bonds will make monthly interest payments at the end of each month and mature in 5 years. The market rate of interest for similar bonds at the time of issuance was 6%. Calculate the bond issuance price, and record the sale/issuance of all 1,000 bonds.Record the first interest payment made on the bonds issued in this transaction. (A) The following is the trial balance of Bestari Bhd. as at 30 April 2021: RM'000 RM'000 Inventories as at 1 May 2020 300Carriage inwards 100Carriage outwards 220Development costs 200Salaries 400Travelling expenses by salesmen 90General administrative expenses 250Revenue and purchases2,600 4,190Trade receivables and trade payables 970 400Cash 80Finance costs: interest on bank overdraft 10 Tax paid 130Land 800Motor van: Cost 500Accumulated depreciation for motor van as at 1 May 2020 100Equipment: Cost 600Accumulated depreciation for equipment as at 1 May 2020 120Allowance for doubtful debts as at 1 May 2020 20Bank 50Ordinary shares 1,3007% Redeemable preference shares 700General reserve 608% Debenture 200Retained earnings 1107,250 7,250Additional information:1. The inventories as at 30 April 2021 had been valued at cost of RM750,000. However, 20% of these inventories were obsolete, with the net realisable value estimated at RM120,000.2. The company depreciates its equipment at 10% on cost and motor van at 20% per annum using the reducing balance method. Both depreciation charges are to be treated as Administrative expenses.3. A piece of land was acquired during the year for RM200,000 and this amount had been included in the purchases amount.4. The Development costs of RM200,000 are to be amortised over 4 years, and the amortisation charge is to be recognised as Administrative expenses.5. An amount of RM70,000 owing by a customer had been deemed to be uncollectible. Allowance for doubtful debts is to be adjusted at 4% of the remaining receivables after deducting bad debts. It is the companys policy to treat bad debts and allowance for doubtful debts as Distribution costs.6. Both interest on debenture and dividend for redeemable preference shares for the year have not been recorded in the book as at 30 April 2021. Dividend for redeemable preference shares is to be classified as the Finance costs.7. The estimated tax expense for the year ended 30 April 2021 is RM160,000.Required:Prepare the statement of profit or loss (by function) for Bestari Bhd. for the year ended 30 April 2021. Cost of sales, administrative expenses, distribution costs and finance costs to be prepared as part of your workings. (11 marks)Show transcribed image text (T/F) Unreinforced concrete has a tensile strength roughly half that of the compressive strength. describe the series of processes involved in transforming an igneous rock into a sedimentary rock. please be sure to include all the processes and steps depicted on the diagram. Find the inverse g(x) of the following functions. Sketch f(x) and g(x) and show that they are symmetric with respect to the line y=x. a. f(x) = 3x - 2 b. f(x)= Vx - 3 Calculate the amount of gas (in moles) in a 17.86 L container at 1,281.40 mmHg and 322.85 K. HEYYYYYY!!!!!! In the figure shown below, triangle PQR is transformed to create triangle P'Q'R'. Point S will be transformed the same way as triangle PQR. Which sentence could describe how point S will be transformed?a. Point S will be translated to (4, 3) and then reected to (4, -3).b. Point S will be translated to (6, 0) and then rotated to (0, 6). c. Point S will be translated to (4, 3) and then reected to (-4, 3). d. Point S will be translated to (6, 0) and then rotated to (0, -6). Using the integral test, find the values ofpfor which the series[infinity]n=21n(lnn)p=2[infinity]1(ln)converges. For which values ofpdoes it diverge? Explain If all the particles in a detrital sedimentary rock are nearly the same size, it is __________.A) very well-sortedB) sandstoneC) poorly sortedD) well-roundedE) a conglomerate James Rhodes seems differently to me today, I can't tell why. Read the sentence below. Choose the underlined part where a comma splice or fused sentence occurs. Hoping to relax after a busy week at work and school, Cheryl smoothed on some sunscreen, settled onto her pool raft, and opened her new Stephen King novel, then her neighbor cranked up the lawnmower, ruining the quiet. Question 9 options: school, Cheryl raft, and novel, then lawnmower, ruining