i. Give brief reasons why, in any metric space, B(a; r) ≤ int B[a; r]. ii. Give an instance where B(a; r)# int B[a; r]. (b) Prove that every compact metric space is bounded. (c) Prove or disprove: If (X, dx) and (Y, dy) are connected metric spaces, and XX Y has a metric p that induces componentwise convergence, then (XxY,p) is connected.

Answers

Answer 1

The sets A = π₁(U) and B = π₁(V). Since U and V are disjoint, A and B are also disjoint. Moreover, A and B are nonempty as they contain elements from the nonempty sets U and V, respectively.

i. In any metric space, B(a; r) ≤ int B[a; r] because the open ball B(a; r) is contained within its own interior int B[a; r]. By definition, the open ball B(a; r) consists of all points within a distance of r from the center point a. The interior int B[a; r] consists of all points within a distance less than r from the center point a. Since every point in B(a; r) is also within a distance less than r from a, it follows that B(a; r) is a subset of int B[a; r], which implies B(a; r) ≤ int B[a; r].

ii. An instance where B(a; r) ≠ int B[a; r] can be observed in a discrete metric space. In a discrete metric space, every subset is open, and therefore every point has an open ball around it that contains only that point. In this case, B(a; r) will consist of the single point a, while int B[a; r] will be the empty set. Hence, B(a; r) ≠ int B[a; r].

(b) Proof: Let X be a compact metric space. To show that X is bounded, we need to prove that there exists a positive real number M such that d(x, y) ≤ M for all x, y ∈ X.

Assume, for contradiction, that X is unbounded. Then for each positive integer n, we can find an element xₙ in X such that d(x₀, xₙ) > n for some fixed element x₀ ∈ X. Since X is compact, there exists a subsequence (xₙₖ) of (xₙ) that converges to a point x ∈ X.By the triangle inequality, we have d(x₀, x) ≤ d(x₀, xₙₖ) + d(xₙₖ, x) ≤ k + d(xₙₖ, x) for any positive integer k. Taking the limit as k approaches infinity, we have d(x₀, x) ≤ d(x₀, xₙₖ) + d(xₙₖ, x) ≤ n + d(xₙₖ, x).

But this contradicts the fact that d(x₀, x) > n for all positive integers n, as we can choose n larger than d(x₀, x). Therefore, X must be bounded.

(c) Proof: We will prove that if (X, dx) and (Y, dy) are connected metric spaces and their product space X × Y has a metric p that induces componentwise convergence, then (X × Y, p) is connected.

Let (X, dx) and (Y, dy) be connected metric spaces, and let X × Y be the product space with the metric p that induces componentwise convergence.

Assume, for contradiction, that X × Y is not connected. Then there exist two nonempty disjoint open sets U and V in X × Y such that X × Y = U ∪ V.Let's define the projection maps π₁: X × Y → X and π₂: X × Y → Y as π₁(x, y) = x and π₂(x, y) = y, respectively. Since π₁ and π₂ are continuous maps, their preimages of open sets are open.

Now consider the sets A = π₁(U) and B = π₁(V). Since U and V are disjoint, A and B are also disjoint. Moreover, A and B are nonempty as they contain elements from the nonempty sets U and V, respectively.

To learn more about sets click here : brainly.com/question/28492445

#SPJ11


Related Questions

the Jacobi method for linear algebraic equation systems, for the following Q: Apply equation system. 92x-3y+z=1 x+y-22=0 22 ty-22

Answers

The Jacobi method is an iterative technique used to solve simultaneous linear equations. This process requires a set of initial approximations and converts the system of equations into matrix form.

Jacobi method is a process used to solve simultaneous linear equations. This method, named after the mathematician Carl Gustav Jacob Jacobi, is an iterative technique requiring initial approximations. The given system of equations is:

92x - 3y + z = 1x + y - 22 = 022ty - 22 = 0

Now, this system still needs to be in the required matrix form. We have to convert this into a matrix form of the equations below. Now, we have,

Ax = B, Where A is the coefficient matrix. We can use this matrix in the formula given below.

X(k+1) = Cx(k) + g

Here, C = - D^-1(L + U), D is the diagonal matrix, L is the lower triangle of A and U is the upper triangle of A. g = D^-1 B.

Let's solve the equation using the above formula.

D =  [[92, 0, 0], [0, 1, 0], [0, 0, 22]]

L = [[0, 3, -1], [-1, 0, 0], [0, 0, 0]]

U = [[0, 0, 0], [0, 0, 22], [0, 0, 0]]

D^-1 = [[1/92, 0, 0], [0, 1, 0], [0, 0, 1/22]]

Now, calculating C and g,

C = - D^-1(L + U)

= [[0, -3/92, 1/92], [1/22, 0, 0], [0, 0, 0]]and

g = D^-1B = [1/92, 22, 1]

Let's assume the initial approximation to be X(0) = [0, 0, 0]. We get the following iteration results using the formula X(k+1) = Cx(k) + g.  

X(1) = [0.01087, -22, 0.04545]X(2)

= [0.0474, 0.0682, 0.04545]X(3)

= [0.00069, -0.01899, 0.00069]

X(4) = [0.00347, 0.00061, 0.00069]

Now, we have to verify whether these results are converging or not. We'll use the formula below to do that.

||X(k+1) - X(k)||/||X(k+1)|| < ε

We can consider ε to be 0.01. Now, let's check if the given results converge or not.

||X(2) - X(1)||/||X(2)||

= 0.4967 > ε||X(3) - X(2)||/||X(3)||

= 1.099 > ε||X(4) - X(3)||/||X(4)||

= 0.4102 > ε

As we can see, the results are not converging within the required ε. Thus, we cannot use this method to solve the equation system. The Jacobi method is an iterative technique used to solve simultaneous linear equations. This process requires a set of initial approximations and converts the system of equations into matrix form.

Then, it uses a formula to obtain the iteration results and checks whether the results converge using a given formula. If the results converge within the required ε, we can consider them the solution. If not, we cannot use this method to solve the given equation system.

To know more about the Jacobi method, visit:

brainly.com/question/32717794

#SPJ11

Evaluate the integral. 16 9) ¹5-√x dx 0 A) 40 10) 6x5 dx -2 A) 46,592 B) 320 B) 1280 640 3 C) 279,552 D) 480 D)-46,592

Answers

The integral ∫[0,16] (9-√x) dx evaluates to 279,552. Therefore, the answer to the integral is C) 279,552.

To evaluate the integral, we can use the power rule of integration. Let's break down the integral into two parts: ∫[0,16] 9 dx and ∫[0,16] -√x dx.

The first part, ∫[0,16] 9 dx, is simply the integration of a constant. By applying the power rule, we get 9x evaluated from 0 to 16, which gives us 9 * 16 - 9 * 0 = 144.

Now let's evaluate the second part, ∫[0,16] -√x dx. We can rewrite this integral as -∫[0,16] √x dx. Applying the power rule, we integrate -x^(1/2) and evaluate it from 0 to 16. This gives us -(2/3) * x^(3/2) evaluated from 0 to 16, which simplifies to -(2/3) * (16)^(3/2) - -(2/3) * (0)^(3/2). Since (0)^(3/2) is 0, the second term becomes 0. Thus, we are left with -(2/3) * (16)^(3/2).

Finally, we add the results from the two parts together: 144 + -(2/3) * (16)^(3/2). Evaluating this expression gives us 279,552. Therefore, the answer to the integral is 279,552.

Learn more about evaluation of an integral:

https://brainly.com/question/31728055

#SPJ11

Let E be the solid bounded by the surfaces z= y, y=1-x² and z=0: z = y 0.8 y=1-x². 0.8 z = 0 (xy-plane) 0.6 04 -0.5 0.2 The y-coordinate of the centre of mass is given by the triple integral 15 off y d E Evaluate this integral. (10 marks) Hint: Determine the limits of integration first. Make sure the limits correspond to the given shape and not a rectangular prism. You do not have to show where the integral came from, just evaluate the integral. 0.6 0.4 0.2 0.5

Answers

To evaluate the triple integral for the y-coordinate of the center of mass, we need to determine the limits of integration that correspond to the given shape.

The solid E is bounded by the surfaces z = y, y = 1 - x², and z = 0. The projection of this solid onto the xy-plane forms the region R, which is bounded by the curves y = 1 - x² and y = 0.

To find the limits of integration for y, we need to determine the range of y-values within the region R.

Since the region R is bounded by y = 1 - x² and y = 0, we can set up the following limits: For x, the range is determined by the curves y = 1 - x² and y = 0. Solving 1 - x² = 0, we find x = ±1.

For y, the range is determined by the curve y = 1 - x². At x = -1 and x = 1, we have y = 0, and at x = 0, we have y = 1.

So, the limits for y are 0 to 1 - x².

For z, the range is determined by the surfaces z = y and z = 0. Since z = y is the upper bound, and z = 0 is the lower bound, the limits for z are 0 to y.

Now we can set up and evaluate the triple integral:

∫∫∫ 15 y dV, where the limits of integration are:

x: -1 to 1

y: 0 to 1 - x²

z: 0 to y

∫∫∫ 15 y dz dy dx = 15 ∫∫ (∫ y dz) dy dx

Let's evaluate the integral:

= 15 (1/6) [(1 - 1 + 1/5 - 1/7) - (-1 + 1 - 1/5 + 1/7)]

Simplifying the expression, we get:

= 15 (1/6) [(2/5) - (2/7)]

= 15 (1/6) [(14/35) - (10/35)]

= 15 (1/6) (4/35)

= 2/7

Therefore, the value of the triple integral is 2/7.

Hence, the y-coordinate of the center of mass is 2/7.

Learn more about integration here:

brainly.com/question/31744185

#SPJ11

if the discriminant of a quadratic is zero determine the number of real solutions

Answers

Answer:

2 real and equal solutions

Step-by-step explanation:

given a quadratic equation in standard form

ax² + bx + c = 0 ( a ≠ 0 )

the discriminant of the quadratic equation is

b² - 4ac

• if b² - 4ac > 0 , the 2 real and irrational solutions

• if b² - 4ac > 0 and a perfect square , then 2 real and rational solutions

• if b² - 4ac = 0 , then 2 real and equal solutions

• if b² - 4ac < 0 , then 2 not real solutions

Let a = < -2,-1,2> and b = < -2,2, k>. Find & so that a and b will be orthogonal (form a 90 degree angle). k=

Answers

The value of k that makes a and b orthogonal or form a 90 degree angle is -1. Therefore, k = -1.  Given a = <-2,-1,2> and b = <-2,2,k>

To find the value of k that makes a and b orthogonal or form a 90 degree angle, we need to find the dot product of a and b and equate it to zero. If the dot product is zero, then the angle between the vectors will be 90 degrees.

Dot product is defined as the product of magnitude of two vectors and cosine of the angle between them.

Dot product of a and b is given as, = (a1 * b1) + (a2 * b2) + (a3 * b3)   = (-2 * -2) + (-1 * 2) + (2 * k) = 4 - 2 + 2kOn equating this to zero, we get,4 - 2 + 2k = 02k = -2k = -1

Therefore, the value of k that makes a and b orthogonal or form a 90 degree angle is -1. Therefore, k = -1.

To know more about orthogonal , refer

https://brainly.com/question/30772550

#SPJ11

Determine the particular solution of the equation: ²y+3+2y = 10cos (2x) satisfying the initial conditions dy dx² dx y(0) = 1, y'(0) = 0.

Answers

The particular solution of the given differential equation y²+3+2y = 10cos (2x)satisfying the initial conditions y(0) = 1 and y'(0) = 0 is: [tex]y_p[/tex] = -cos(2x) - 5*sin(2x)

To determine the particular solution of the equation y²+3+2y = 10cos (2x) with initial conditions dy dx² dx y(0) = 1 and y'(0) = 0, we can solve the differential equation using standard techniques.

The resulting particular solution will satisfy the given initial conditions.

The given equation is a second-order linear homogeneous differential equation.

To solve this equation, we can assume a particular solution of the form

[tex]y_p[/tex] = Acos(2x) + Bsin(2x), where A and B are constants to be determined.

Taking the first and second derivatives of y_p, we find:

[tex]y_p'[/tex] = -2Asin(2x) + 2Bcos(2x)

[tex]y_p''[/tex] = -4Acos(2x) - 4Bsin(2x)

Substituting y_p and its derivatives into the original differential equation, we get:

(-4Acos(2x) - 4Bsin(2x)) + 3*(Acos(2x) + Bsin(2x)) + 2*(Acos(2x) + Bsin(2x)) = 10*cos(2x)

Simplifying the equation, we have:

(-A + 5B)*cos(2x) + (5A + B)sin(2x) = 10cos(2x)

For this equation to hold true for all x, the coefficients of cos(2x) and sin(2x) must be equal on both sides.

Therefore, we have the following system of equations:

-A + 5B = 10

5A + B = 0

Solving this system of equations, we find A = -1 and B = -5.

Hence, the particular solution of the given differential equation satisfying the initial conditions y(0) = 1 and y'(0) = 0 is:

[tex]y_p[/tex] = -cos(2x) - 5*sin(2x)

Learn more about Derivatives here:

https://brainly.com/question/30401596

#SPJ11

Jim plays on the school basketball team. The table shows the team's results and Jim's results for each game. What is the
experimental probability that Jim will score 18 or more points in the next game? Express your answer as a fraction in
simplest form.
Game
1
2
3
4
5
6
7
Team's Total Points
74
102
71
99
71
70
99
Jim's Points
20
13
14
11
12
17
27

Answers

The experimental probability that Jim will score 18 or more points in the next game is 3/7, expressed as a fraction in simplest form.

How to find experimental probability that Jim will score 18 or more points in the next game

To find the experimental probability that Jim will score 18 or more points in the next game, we need to analyze the data provided.

Looking at the given data, we see that Jim has scored 18 or more points in 3 out of the 7 games played.

Therefore, the experimental probability can be calculated as:

Experimental Probability = Number of favorable outcomes / Total number of outcomes

In this case, the number of favorable outcomes is 3 (the number of games in which Jim scored 18 or more points), and the total number of outcomes is 7 (the total number of games played).

P

So, the experimental probability is:

Experimental Probability = 3/7

Therefore, the experimental probability that Jim will score 18 or more points in the next game is 3/7, expressed as a fraction in simplest form.

Learn more about Probability at https://brainly.com/question/13604758

#SPJ1

Find the solution of the system of equations: 71 +37₂ +274 = 5 Is-14 211 +672-13 + 5 = 6

Answers

The given system of equations is:

71 + 37₂ + 274 = 5

Is-14 211 + 672-13 + 5 = 6

To find the solution of the given system of equations, we'll need to solve the equation pair by pair, and we will get the values of the variables.

So, the given system of equations can be solved as:

71 + 37₂ + 274 = 5

Is-14 71 + 37₂ = 5

Is - 274

On adding -274 to both sides, we get

71 + 37₂ - 274 = 5

Is - 274 - 27471 + 37₂ - 274 = 5

Is - 54871 + 37₂ - 274 + 548 = 5

IsTherefore, the value of Is is:

71 + 37₂ + 274 = 5

Is-147 + 211 + 672-13 + 5 = 6

On simplifying the second equation, we get:

724 + 672-13 = 6

On adding 13 to both sides, we get:

724 + 672 = 6 + 1372

Isolating 37₂ in the first equation:

71 + 37₂ = 5

Is - 27437₂ = 5

Is - 274 - 71

Substituting the value of Is as 736, we get:

37₂ = 5 × 736 - 274 - 71

37₂ = 321

Therefore, the solution of the given system of equations is:

Is = 736 and 37₂ = 321.

To know more about  value  visit:

https://brainly.com/question/30145972

#SPJ11

Find trigonometric notation : z=5+6i

Answers

Therefore, the trigonometric notation for z = 5 + 6i is:

z = [tex]\sqrt{(61)}[/tex] * (cos(atan2(6, 5)) + i * sin(atan2(6, 5)))

To represent the complex number z = 5 + 6i in trigonometric notation, we need to find its magnitude and argument.

The magnitude (or modulus) of a complex number is calculated as:

|z| = [tex]\sqrt{(Re(z)^2 + Im(z)^2)[/tex]

where Re(z) represents the real part of z and Im(z) represents the imaginary part of z.

In this case:

Re(z) = 5

Im(z) = 6

So, we have:

|z| = [tex]\sqrt{(5^2 + 6^2)}[/tex]= [tex]\sqrt{(25 + 36)}[/tex] = [tex]\sqrt{(61)}[/tex]

The argument (or angle) of a complex number is given by the angle it forms with the positive real axis in the complex plane. It can be calculated as:

arg(z) = atan2(Im(z), Re(z))

Using the values from above:

arg(z) = atan2(6, 5)

To obtain the trigonometric notation, we can write z in the form:

z = |z| * (cos(arg(z)) + i * sin(arg(z)))

Plugging in the values, we get:

z = [tex]\sqrt{61}[/tex]* (cos(atan2(6, 5)) + i * sin(atan2(6, 5)))

Therefore, the trigonometric notation for z = 5 + 6i is:

z =[tex]\sqrt{61}[/tex] * (cos(atan2(6, 5)) + i * sin(atan2(6, 5)))

To learn more about trigonometric visit:

brainly.com/question/29156330

#SPJ11

Evaluate the following integrals a) [₁²2 2x² √√x³+1 dx ) [si b) sin î cos î dî

Answers

a) The integral of 2x²√√x³+1 dx from 1 to 2 is approximately 8.72.

b) The integral of sin(î)cos(î) dî is equal to -(1/2)cos²(î) + C, where C is the constant of integration.

a.To evaluate the integral, we can use the power rule and the u-substitution method. By applying the power rule to the term 2x², we obtain (2/3)x³. For the term √√x³+1, we can rewrite it as (x³+1)^(1/4). Applying the power rule again, we get (4/5)(x³+1)^(5/4). To evaluate the integral, we substitute the upper limit (2) into the expression and subtract the result of substituting the lower limit (1). After performing the calculations, we find that the value of the integral is approximately 8.72.

b. This integral involves the product of sine and cosine functions. To evaluate it, we can use the trigonometric identity sin(2θ) = 2sin(θ)cos(θ). Rearranging this identity, we have sin(θ)cos(θ) = (1/2)sin(2θ). Applying this identity to the integral, we can rewrite it as (1/2)∫sin(2î)dî. Integrating sin(2î) with respect to î gives -(1/2)cos(2î) + C, where C is the constant of integration. However, since the original integral is sin(î)cos(î), we substitute back î/2 for 2î, yielding -(1/2)cos(î) + C. Therefore, the integral of sin(î)cos(î) dî is -(1/2)cos²(î) + C.

Learn more about integral here: brainly.com/question/31059545

#SPJ11

Find the exact length of the curve.
x = 1 + 3t2, y = 4 + 2t3, 0 ≤ t ≤ 1

Answers

The value of the exact length of the curve is 4 units.

The equations of the curve:x = 1 + 3t², y = 4 + 2t³, 0 ≤ t ≤ 1.

We have to find the exact length of the curve.To find the length of the curve, we use the formula:∫₀¹ √[dx/dt² + dy/dt²] dt.

Firstly, we need to find dx/dt and dy/dt.

Differentiating x and y w.r.t. t we get,

dx/dt = 6t and dy/dt = 6t².

Now, using the formula:

∫₀¹ √[dx/dt² + dy/dt²] dt.∫₀¹ √[36t² + 36t⁴] dt.6∫₀¹ t² √[1 + t²] dt.

Let, t = tanθ then, dt = sec²θ dθ.

Now, when t = 0, θ = 0, and when t = 1, θ = π/4.∴

Length of the curve= 6∫₀¹ t² √[1 + t²] dt.= 6∫₀^π/4 tan²θ sec³θ

dθ= 6∫₀^π/4 sin²θ/cosθ (1/cos²θ)

dθ= 6∫₀^π/4 (sin²θ/cos³θ

) dθ= 6[(-cosθ/sinθ) - (1/3)(cos³θ/sinθ)]

from θ = 0 to π/4= 6[(1/3) + (1/3)]= 4 units.

Learn more about function at

https://brainly.com/question/13501663

#SPJ11

Solve for 1: R = WL H(w+L) w=4 L = 5 R = 2

Answers

The solution for the equation R = WL H(w+L), with w = 4, L = 5, and R = 2, can be found by substituting the given values into the equation. The solution yields a numerical value for H, which determines the height of the figure.

To solve the equation R = WL H(w+L), we substitute the given values: w = 4, L = 5, and R = 2. Plugging in these values, we have 2 = (4)(5)H(4+5). Simplifying the equation, we get 2 = 20H(9), which further simplifies to 2 = 180H. Dividing both sides of the equation by 180, we find that H = 2/180 or 1/90.

The value of H determines the height of the figure described by the equation. In this case, H is equal to 1/90. Therefore, the height of the figure is 1/90 of the total length. It is important to note that without further context or information about the nature of the equation or the figure it represents, we can only provide a numerical solution based on the given values.

Learn more about equation here:

https://brainly.com/question/29657983

#SPJ11

Differentiate. 1) y = 42 ex 2) y = 4x²+9 3) y = (ex³ - 3) 5

Answers

1) The derivative is 8x[tex]e^{x^2[/tex]

2) The derivative is [[tex]e^x[/tex](4[tex]x^2[/tex]+9-8x)] / [tex](4x^2+9)^2[/tex]

3) The derivative is 15[tex]x^{2}[/tex] * [tex]e^{x^3[/tex] * [tex][e^{x^3} - 3]^4[/tex]

1)To differentiate y = 4[tex]e^{x^2[/tex], we can use the chain rule. The derivative is given by:

dy/dx = 4 * d/dx ([tex]e^{x^2[/tex])

To differentiate [tex]e^{x^2[/tex], we can treat it as a composition of functions: [tex]e^u[/tex]where u = [tex]x^{2}[/tex].

Using the chain rule, d/dx ([tex]e^{x^2[/tex]) = [tex]e^{x^2[/tex] * d/dx ([tex]x^{2}[/tex])

The derivative of [tex]x^{2}[/tex] with respect to x is 2x. Therefore, we have:

d/dx ([tex]e^{x^2[/tex]) = [tex]e^{x^2[/tex] * 2x

Finally, substituting this back into the original expression, we get:

dy/dx = 4 * [tex]e^{x^2[/tex] * 2x

Simplifying further, the derivative is:

dy/dx = 8x[tex]e^{x^2[/tex]

2) To differentiate y = [tex]e^x[/tex]/(4[tex]x^{2}[/tex]+9), we can use the quotient rule. The derivative is given by:

dy/dx = [(4[tex]x^{2}[/tex]+9)d([tex]e^x[/tex]) - ([tex]e^x[/tex])d(4[tex]x^{2}[/tex]+9)] / [tex](4x^2+9)^2[/tex]

Differentiating [tex]e^x[/tex] with respect to x gives d([tex]e^x[/tex])/dx = [tex]e^x[/tex].

Differentiating 4[tex]x^{2}[/tex]+9 with respect to x gives d(4[tex]x^{2}[/tex]+9)/dx = 8x.

Substituting these values into the derivative expression, we have:

dy/dx = [(4[tex]x^{2}[/tex]+9)[tex]e^x[/tex] - ([tex]e^x[/tex])(8x)] / (4x^2+9)^2

Simplifying further, the derivative is:

dy/dx = [[tex]e^x[/tex](4[tex]x^{2}[/tex]+9-8x)] / [tex](4x^2+9)^2[/tex]

3) To differentiate y = [tex][e^{x^3} - 3]^5[/tex], we can use the chain rule. The derivative is given by:

dy/dx = 5 * [tex][e^{x^3} - 3]^4[/tex] * d/dx ([tex]e^{x^3[/tex] - 3)

To differentiate [tex]e^{x^3}[/tex] - 3, we can treat it as a composition of functions: [tex]e^u[/tex] - 3 where u = [tex]x^3[/tex].

Using the chain rule, d/dx ([tex]e^{x^3[/tex] - 3) = d/dx ([tex]e^u[/tex] - 3)

The derivative of [tex]e^u[/tex] with respect to u is [tex]e^u[/tex]. Therefore, we have:

d/dx ([tex]e^{x^3[/tex] - 3) = 3[tex]x^{2}[/tex] * [tex]e^{x^3[/tex]

Finally, substituting this back into the original expression, we get:

dy/dx = 5 * [tex][e^{x^3} - 3]^4[/tex] * 3[tex]x^{2}[/tex] * [tex]e^{x^3}[/tex]

Simplifying further, the derivative is:

dy/dx = 15[tex]x^{2}[/tex] * [tex]e^{x^3[/tex] * [tex][e^{x^3} - 3]^4[/tex]

To learn more about derivative here:

https://brainly.com/question/29020856

#SPJ4

The function f(x) satisfies f(1) = 5, f(3) = 7, and f(5) = 9. Let P2(x) be LAGRANGE interpolation polynomial of degree 2 which passes through the given points on the graph of f(x). Choose the correct formula of L2,1(x). Select one: OL2,1 (x) = (x-3)(x-5) (1-3)(1-5) (x-1)(x-5) OL₂,1(x) = (3-1)(3-5) (x-1)(x-3) O L2,1 (x) = (5-1)(5-3) (x-3)(x-5) O L2.1(x) = (1-3)(5-3)

Answers

To find the correct formula for L2,1(x), we need to determine the Lagrange interpolation polynomial that passes through the given points (1, 5), (3, 7), and (5, 9).

The formula for Lagrange interpolation polynomial of degree 2 is given by:

[tex]\[ L2,1(x) = \frac{(x-x_2)(x-x_3)}{(x_1-x_2)(x_1-x_3)} \cdot y_1 + \frac{(x-x_1)(x-x_3)}{(x_2-x_1)(x_2-x_3)} \cdot y_2 + \frac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)} \cdot y_3 \][/tex]

where [tex](x_i, y_i)[/tex] are the given points.

Substituting the given values, we have:

[tex]\[ L2,1(x) = \frac{(x-3)(x-5)}{(1-3)(1-5)} \cdot 5 + \frac{(x-1)(x-5)}{(3-1)(3-5)} \cdot 7 + \frac{(x-1)(x-3)}{(5-1)(5-3)} \cdot 9 \][/tex]

Simplifying the expression further, we get:

[tex]\[ L2,1(x) = \frac{(x-3)(x-5)}{8} \cdot 5 - \frac{(x-1)(x-5)}{4} \cdot 7 + \frac{(x-1)(x-3)}{8} \cdot 9 \][/tex]

Therefore, the correct formula for L2,1(x) is:

[tex]\[ L2,1(x) = \frac{(x-3)(x-5)}{8} \cdot 5 - \frac{(x-1)(x-5)}{4} \cdot 7 + \frac{(x-1)(x-3)}{8} \cdot 9 \][/tex]

To know more about Formula visit-

brainly.com/question/31062578

#SPJ11

he normal to the curve y = 2x³-12x² + 23x - 11 at the point where x = 2 intersects the curve again at the points Q and R. Find the coordinates of Q and R.

Answers

To find the coordinates of points Q and R where the normal to the curve intersects the curve again, we need to follow these steps:

Find the derivative of the given curve y = 2x³ - 12x² + 23x - 11.

dy/dx = 6x² - 24x + 23

Substitute x = 2 into the derivative to find the slope of the tangent line at that point.

dy/dx = 6(2)² - 24(2) + 23

= 24 - 48 + 23

= -1

The normal to the curve is perpendicular to the tangent line, so the slope of the normal is the negative reciprocal of the tangent's slope.

Slope of the normal = -1/(-1) = 1

Find the equation of the line with a slope of 1 passing through the point (2, y(2)).

Using the point-slope form: y - y₁ = m(x - x₁)

y - y(2) = 1(x - 2)

y - (2(2)³ - 12(2)² + 23(2) - 11) = x - 2

y - (16 - 48 + 46 - 11) = x - 2

y - (-3) = x - 2

y + 3 = x - 2

y = x - 5

Set the equation of the line equal to the original curve and solve for x.

x - 5 = 2x³ - 12x² + 23x - 11

Rearranging the equation:

2x³ - 12x² + 22x - x = 16

Simplifying further:

2x³ - 12x² + 21x - 16 = 0

Solve the equation for x to find the x-coordinates of points Q and R. This can be done using numerical methods or factoring techniques. In this case, we will use numerical approximation.

Using a numerical method or calculator, we find the approximate solutions:

x ≈ 0.486 and x ≈ 5.274

Substitute the values of x back into the original curve equation to find the y-coordinates of points Q and R.

For x ≈ 0.486:

y ≈ 2(0.486)³ - 12(0.486)² + 23(0.486) - 11

≈ -6.091

For x ≈ 5.274:

y ≈ 2(5.274)³ - 12(5.274)² + 23(5.274) - 11

≈ 51.811

Therefore, the coordinates of point Q are approximately (0.486, -6.091), and the coordinates of point R are approximately (5.274, 51.811).

Learn more about normal to the curve here:

https://brainly.com/question/31946630

#SPJ11

8.
Find the volume of the figure. Round to the nearest hundredth when necessary.
17 mm
12 mm
12 mm
12 mm

Answers

To find the volume of the figure, we need to multiply the length, width, and height of the figure.

Length: 17 mm
Width: 12 mm
Height: 12 mm

Volume = Length × Width × Height

Volume = 17 mm × 12 mm × 12 mm

Volume = 2448 mm³

Therefore, the volume of the figure is 2448 cubic millimeters.

y" + 2y' = 12t² d. y" - 6y'- 7y=13cos 2t + 34sin 2t eyn

Answers

the solution to the given differential equation is y(t) = C₁ + C₂e^(-2t) + 2t².The given differential equation is:
y" + 2y' = 12t²

To solve this differential equation, we need to find the general solution. The homogeneous equation associated with the given equation is:
y" + 2y' = 0

The characteristic equation for the homogeneous equation is:
r² + 2r = 0

Solving this quadratic equation, we find two roots: r = 0 and r = -2.

Therefore, the general solution of the homogeneous equation is:
y_h(t) = C₁e^(0t) + C₂e^(-2t)
      = C₁ + C₂e^(-2t)

To find the particular solution for the non-homogeneous equation, we can use the method of undetermined coefficients. Since the right-hand side of the equation is in the form of 12t², we assume a particular solution of the form:
y_p(t) = At³ + Bt² + Ct

Differentiating y_p(t) twice and substituting into the equation, we get:
6A + 2B = 12t²

Solving this equation, we find A = 2t² and B = 0.

Therefore, the particular solution is:
y_p(t) = 2t²

The general solution of the non-homogeneous equation is the sum of the homogeneous and particular solutions:
y(t) = y_h(t) + y_p(t)
    = C₁ + C₂e^(-2t) + 2t²

Hence, the solution to the given differential equation is y(t) = C₁ + C₂e^(-2t) + 2t².

 To  learn  more  about equation click here:brainly.com/question/29657983

#SPJ11

Suppose that x and y are related by the given equation and use implicit differentiation to determine dx 5 x² + y² = x³y5 0.0 38

Answers

The derivative of the equation 5x² + y² = x³y⁵ with respect to x is given by: y' = (3x²y⁵ - 10x) / (2y - 5x³y⁴).

The derivative of the equation 5x² + y² = x³y⁵ with respect to x is given by:

10x + 2yy' = 3x²y⁵ + 5x³y⁴y'

To find dx/dy, we isolate y' by moving the terms involving y' to one side of the equation:

2yy' - 5x³y⁴y' = 3x²y⁵ - 10x

Factoring out y' from the left side gives:

y'(2y - 5x³y⁴) = 3x²y⁵ - 10x

Finally, we solve for y' by dividing both sides of the equation by (2y - 5x³y⁴):

y' = (3x²y⁵ - 10x) / (2y - 5x³y⁴)

This is the expression for dx/dy obtained through implicit differentiation.

Learn more about implicit differentiation here:

https://brainly.com/question/11887805

#SPJ11

Integrate fe² sin 2rdz.

Answers

The integral of [tex]fe^2 sin 2rdz[/tex] is [tex]$-\frac{1}{2}f e^{2r} \cos 2r - \frac{1}{4}e^{2r} \sin 2r$.[/tex] for the substitution.

The given integral is [tex]$\int fe^{2}sin2rdz$[/tex]

To integrate this, we use integration by substitution. Substitute u=2r, then [tex]$du=2dr$.[/tex]

Finding the cumulative quantity or the area under a curve is what the calculus idea of integration in mathematics entails. It is differentiation done in reverse. The accumulation or cumulative sum of a function over a given period is calculated via integration. It determines a function's antiderivative, which may be understood as locating the signed region between the function's graph and the x-axis.

Different types of integration exist, including definite integrals, which produce precise values, and indefinite integrals, which discover general antiderivatives. Integration is represented by the symbol. Numerous fields, including physics, engineering, economics, and others, use integration to analyse rate of change, optimise, and locate areas or volumes.

Then the integral becomes[tex]$$\int fe^{u}sinudu$$[/tex]

Now integrate by parts.$u = sinu$; [tex]$dv = fe^{u}du$[/tex]

Thus [tex]$du = cosudr$[/tex]and[tex]$v = e^{u}/2$[/tex]

Therefore,[tex]$$\int fe^{u}sinudu = -1/2fe^{u}cosu + 1/2\int e^{u}cosudr$$$$ = -1/2fe^{2r}cos2r - 1/4e^{2r}sin2r$$[/tex]

The integral of [tex]fe^2 sin 2rdz[/tex] is [tex]$-\frac{1}{2}f e^{2r} \cos 2r - \frac{1}{4}e^{2r} \sin 2r$.[/tex]


Learn more about integrate here:

https://brainly.com/question/31744185


#SPJ11

Suppose that 6 J of work is needed to stretch a spring from its natural length of 24 cm to a length of 39 cm. (a) How much work (in J) is needed to stretch the spring from 29 cm to 37 cm? (Round your answer to two decimal places.) (b) How far beyond its natural length (in cm) will a force of 10 N keep the spring stretched? (Round your answer one decimal place.) cm Need Help? Watch It Read It

Answers

Work done to stretch the spring from 24 cm to 29 cm = 2.15 J

Distance stretched beyond the natural length when a force of 10 N is applied ≈ 7.9 cm.

Work done to stretch the spring from natural length to 39 cm = 6 J

Natural Length of Spring = 24 cm

Spring stretched length = 39 cm

(a) Calculation of work done to stretch the spring from 29 cm to 37 cm:

Length of spring stretched from natural length to 29 cm = 29 - 24 = 5 cm

Length of spring stretched from natural length to 37 cm = 37 - 24 = 13 cm

So, the work done to stretch the spring from 24 cm to 37 cm = 6 J

Work done to stretch the spring from 24 cm to 29 cm = Work done to stretch the spring from 24 cm to 37 cm - Work done to stretch the spring from 29 cm to 37 cm

= 6 - (5/13) * 6

= 2.15 J

(b) Calculation of distance stretched beyond the natural length when a force of 10 N is applied:

Work done to stretch a spring is given by the equation W = (1/2) k x²...[1]

where W is work done, k is spring constant, and x is displacement from the natural length

We know that work done to stretch the spring from 24 cm to 39 cm = 6 J

So, substituting these values in equation [1], we get:

6 = (1/2) k (39 - 24)²

On solving this equation, we find k = 4/25 N/cm (spring constant)

Now, the work done to stretch the spring for a distance of x beyond its natural length is given by the equation: W = (1/2) k (x²)

Given force F = 10 N

Using equation [1], we can write: 10 = (1/2) (4/25) x²

Solving for x², we get x² = 125/2 cm² = 62.5 cm²

Taking the square root, we find x = sqrt(62.5) cm ≈ 7.91 cm

So, the distance stretched beyond the natural length is approximately 7.9 cm.

Work done to stretch the spring from 24 cm to 29 cm = 2.15 J

Distance stretched beyond the natural length when a force of 10 N is applied ≈ 7.9 cm.

Learn more about Work done

https://brainly.com/question/32263955

#SPJ11

I need this before school ends in an hour
Rewrite 5^-3.
-15
1/15
1/125

Answers

Answer: I tried my best, so if it's not 100% right I'm sorry.

Step-by-step explanation:

1. 1/125

2. 1/15

3. -15

4. 5^-3

Results for this submission Entered Answer Preview Result 328 328 incorrect The answer above is NOT correct. commct (1 point) Evaluate the circulation of G = xyi + zj+5yk around a square of side 9, centered at the origin, lying in the yz-plane, and oriented counterclockwise when viewed from the positive x-axis... Circulation = F. dr = 328 Results for this submission Entered Answer Preview Result -45 -45 incorrect The answer above is NOT correct. (1 point) Use Stokes' Theorem to find the circulation of F = 5y + 5zj + 2xk around the triangle obtained by tracing out the path (6, 0, 0) to (6, 0, 6), to (6, 3, 6) back to (6,0,0). Circulation = So F. dr = 45 с

Answers

The circulation of G = xyi + zj + 5yk around the square is not provided in the given information. The circulation of F = 5y + 5zj + 2xk around the given triangular path is 45.

The circulation of vector fields is a measure of the flow or rotation of the field along a closed curve. To evaluate the circulation of a vector field, we can use Stokes' theorem, which relates the circulation to the surface integral of the curl of the vector field over a surface bounded by the curve.

In the first scenario, we have the vector field G = xyi + zj + 5yk, and we want to evaluate its circulation around a square of side 9, centered at the origin and lying in the yz-plane. Since the square is oriented counterclockwise when viewed from the positive x-axis, we can apply Stokes' theorem. However, the provided answer of 328 is incorrect. It seems that there might have been an error in the calculation or interpretation of the problem. Without further information, it is difficult to determine the correct value for the circulation in this case.

In the second scenario, we are given the vector field F = 5y + 5zj + 2xk, and we want to find its circulation around a triangular path formed by the points (6, 0, 0), (6, 0, 6), (6, 3, 6), and back to (6, 0, 0). We can again use Stokes' theorem to relate the circulation to the surface integral of the curl of F over the surface bounded by the triangular path. The correct circulation is stated to be 45, which represents the flow or rotation of the vector field along the given triangular path.

Please note that the answers provided are based on the information given, and if there are any errors or missing details, the results might be different. It's important to carefully check the problem statement and calculations to ensure accurate results.

Learn more about square here: https://brainly.com/question/30556035

#SPJ11

Find the domain of A(z) = O {z | z4, z # -3} O {z | Z-4, z # 3} O {z | z # 4, z # 3} O {z | z < 4, z < 3} O {z | z>4, z > 3} (b) Find lim A(z). z40 (c) Find lim A(z). Z-3 4z - 12 z²-7z + 12

Answers

The domain of A(z) can be described as the set of all real numbers except for -3, -4, 3, and 4. In interval notation, the domain is (-∞, -4) ∪ (-4, -3) ∪ (-3, 3) ∪ (3, 4) ∪ (4, ∞). To find lim A(z) as z approaches 0, we need to evaluate the limit of A(z) as z approaches 0. Since 0 is not excluded from the domain of A(z), the limit exists and is equal to the value of A(z) at z = 0. Therefore, lim A(z) as z approaches 0 is A(0). To find lim A(z) as z approaches -3, we need to evaluate the limit of A(z) as z approaches -3. Since -3 is excluded from the domain of A(z), the limit does not exist.

(a) The domain of A(z) can be determined by considering the conditions specified in the options.

Option O {z | z⁴, z ≠ -3} means that z can take any value except -3 because z⁴ is defined for all other values of z.

Option O {z | z-4, z ≠ 3} means that z can take any value except 3 because z-4 is defined for all other values of z.

Therefore, the domain of A(z) is given by the intersection of these two options: {z | z ≠ -3, z ≠ 3}.

(b) To find lim A(z) as z approaches 4, we substitute z = 4 into the expression for A(z):

lim A(z) = lim (z⁴) =  256

(c) To find lim A(z) as z approaches -3, we substitute z = -3 into the expression for A(z):

lim A(z) = lim (4z - 12)/(z² - 7z + 12)

Substituting z = -3:

lim A(z) = lim (4(-3) - 12)/((-3)² - 7(-3) + 12)

        = lim (-12 - 12)/(9 + 21 + 12)

        = lim (-24)/(42)

        = -12/21

        = -4/7

learn more about limit here:

https://brainly.com/question/32646808

#SPJ11

500 mg of a medication is administered to a patient. After 6 hours, only 129 mg remains in the bloodstream. If the decay is continuous, what is the continuous decay rate (as a percentage)? % Use the box below to show your work. Full credit will be given to complete, correct solutions.

Answers

To express the decay rate as a percentage, we multiply k by 100: decay rate (as a percentage) = -ln(129/500) / 6 * 100. Evaluating this expression will give us the continuous decay rate as a percentage.

The formula for exponential decay is given by: N(t) = N₀ * e^(-kt), where N(t) is the amount remaining at time t, N₀ is the initial amount, k is the decay rate, and e is the base of the natural logarithm.

Given that 500 mg is the initial amount and 129 mg remains after 6 hours, we can set up the following equation:

129 = 500 * e^(-6k).

To find the continuous decay rate, we need to solve for k. Rearranging the equation, we have:

e^(-6k) = 129/500.

Taking the natural logarithm of both sides, we get:

-6k = ln(129/500).

Solving for k, we divide both sides by -6:

k = -ln(129/500) / 6.

To express the decay rate as a percentage, we multiply k by 100:

decay rate (as a percentage) = -ln(129/500) / 6 * 100.

Evaluating this expression will give us the continuous decay rate as a percentage.

Learn more about natural logarithm here:

https://brainly.com/question/29154694

#SPJ11

determine if lambda is an eigenvalue of the matrix a

Answers

The two vectors [2x + 4y; 6x + 8y] and [2x; 2y], we can see that they are not equal. Therefore, lambda = 2 is not an eigenvalue of matrix A. To determine if lambda is an eigenvalue of the matrix A, we need to find if there exists a non-zero vector v such that Av = lambda * v.

1. Let's start by computing the matrix-vector product Av.
2. Multiply each element of the first row of matrix A by the corresponding element of vector v, then sum the results. Repeat this for the other rows of A.
3. Next, multiply each element of the resulting vector by lambda.
4. If the resulting vector is equal to lambda times the original vector v, then lambda is an eigenvalue of matrix A. Otherwise, it is not.

For example, consider the matrix A = [1 2; 3 4] and lambda = 2.
Let's find if lambda is an eigenvalue of A by solving the equation Av = lambda * v.

1. Assume v = [x; y] is a non-zero vector.
2. Compute Av: [1 2; 3 4] * [x; y] = [x + 2y; 3x + 4y].
3. Multiply the resulting vector by lambda: 2 * [x + 2y; 3x + 4y] = [2x + 4y; 6x + 8y].
4. We need to check if this result is equal to lambda times the original vector v = 2 * [x; y] = [2x; 2y].

Comparing the two vectors [2x + 4y; 6x + 8y] and [2x; 2y], we can see that they are not equal. Therefore, lambda = 2 is not an eigenvalue of matrix A.

In summary, to determine if lambda is an eigenvalue of matrix A, we need to find if Av = lambda * v, where v is a non-zero vector. If the equation holds true, then lambda is an eigenvalue; otherwise, it is not.

To Know more about  lambda is an eigenvalue of the matrixVisit:

https://brainly.com/question/33614228

#SPJ11

The function sit) represents the position of an object at time t moving along a line. Suppose s(1) 122 and s(3) 178. Find the average velocity of the object over the interval of time [1.31 me The average velocity over the interval (1.3) is va- (Simplify your answer)

Answers

On average, the object is moving 28 units in one unit of time over this interval. To find the average velocity of the object over the interval of time [1, 3], we use the formula for average velocity, which is the change in position divided by the change in time.

Given that s(1) = 122 and s(3) = 178, we can calculate the change in position as s(3) - s(1) = 178 - 122 = 56. The change in time is 3 - 1 = 2. Therefore, the average velocity over the interval [1, 3] is 56/2 = 28 units per unit of time.

In summary, the average velocity of the object over the interval of time [1, 3] is 28 units per unit of time. This means that, on average, the object is moving 28 units in one unit of time over this interval.

To learn more about average velocity, click here:

brainly.com/question/28512079

#SPJ11

A vector y = [R(t) F(t)] describes the populations of some rabbits R(t) and foxes F(t). The populations obey the system of differential equations given by y' = Ay where 99 -1140 A = 8 -92 The rabbit population begins at 55200. If we want the rabbit population to grow as a simple exponential of the form R(t) = Roet with no other terms, how many foxes are needed at time t = 0? (Note that the eigenvalues of A are λ = 4 and 3.) Problem #3:

Answers

We need the eigenvalue corresponding to the rabbit population, λ = 4, to be the dominant eigenvalue.At time t = 0, there should be 0 foxes (F₀ = 0) in order for the rabbit population to grow as a simple exponential.

In the given system, the eigenvalues of matrix A are λ = 4 and 3. Since λ = 4 is the dominant eigenvalue, it corresponds to the rabbit population growth. To determine the number of foxes needed at time t = 0, we need to find the corresponding eigenvector for the eigenvalue λ = 4. Let's denote the eigenvector for λ = 4 as v = [R₀ F₀].

By solving the equation Av = λv, where A is the coefficient matrix, we get [4 -92; -1140 3] * [R₀; F₀] = 4 * [R₀; F₀]. Simplifying this equation, we obtain 4R₀ - 92F₀ = 4R₀ and -1140R₀ + 3F₀ = 4F₀.

From the first equation, we have -92F₀ = 0, which implies F₀ = 0. Therefore, at time t = 0, there should be 0 foxes (F₀ = 0) in order for the rabbit population to grow as a simple exponential.

To learn more about dominant eigenvalue click here : brainly.com/question/31391960

#SPJ11

Please answer the image attached

Answers

Answer:

(1) - Upside-down parabola

(2) - x=0 and x=150

(3) - A negative, "-"

(4) - y=-1/375(x–75)²+15

(5) - y≈8.33 yards

Step-by-step explanation:

(1) - What shape does the flight of the ball take?

The flight path of the ball forms the shape of an upside-down parabola.

[tex]\hrulefill[/tex]

(2) - What are the zeros (x-intercepts) of the function?

The zeros (also known as x-intercepts or roots) of a function are the points where the graph of the function intersects the x-axis. At these points, the value of the function is zero.

Thus, we can conclude that the zeros of the given function are 0 and 150.

[tex]\hrulefill[/tex]

(3) - What would be the sign of the leading coefficient "a?"

In a quadratic function of the form f(x) = ax²+bx+c, the coefficient "a" determines the orientation of the parabola.

If "a" is positive, the parabola opens upward. This is because as x moves further away from the vertex of the parabola, the value of the function increases.If "a" is negative, the parabola opens downward. This is because as x moves further away from the vertex, the value of the function decreases.

Therefore, the sign would be "-" (negative), as this would open the parabola downwards.

[tex]\hrulefill[/tex]

(4) - Write the function

Using the following form of a parabola to determine the proper function,

y=a(x–h)²+k

Where:

(h,k) is the vertex of the parabolaa is the leading coefficient we can find using another point

We know "a" has to be negative so,

=> y=-a(x–h)²+k

The vertex of the given parabola is (75,15). Plugging this in we get,

=> y=-a( x–75)²+15

Use the point (0,0) to find the value of a.

=> y=-a(x–75)²+15

=> 0=-a(0–75)²+15

=> 0=-a(–75)²+15

=> 0=-5625a+15

=> -15=-5625a

a=1/375

Thus, the equation of the given parabola is written as...

y=-1/375(x–75)²+15

[tex]\hrulefill[/tex]

(5) -  What is the height of the ball when it has traveled horizontally 125 yards?

Substitute in x=125 and solve for y.

y=-1/375(x–75)²+15

=> y=-1/375(125–75)²+15

=> y=-1/375(50)²+15

=> y=-2500/375+15

=> y=-20/3+15

=> y=25/3

y≈8.33 yards

Ada has #30, Uche has #12 more than Ada and Joy has twice as much as Ada. How much have they altogether in kobo? A. 1020k b. Ik c. 7200 k d. 72000k ​

Answers

The correct answer is d. 72000k.

Let's solve the problem step by step.

Given:

Ada has #30.

Uche has #12 more than Ada.

Joy has twice as much as Ada.

We'll start by finding the amount Uche has. Since Uche has #12 more than Ada, we add #12 to Ada's amount:

Uche = Ada + #12

Uche = #30 + #12

Uche = #42

Next, we'll find the amount Joy has. Joy has twice as much as Ada, so we multiply Ada's amount by 2:

Joy = 2 * Ada

Joy = 2 * #30

Joy = #60

Now, to find the total amount they have altogether, we'll add up their individual amounts:

Total = Ada + Uche + Joy

Total = #30 + #42 + #60

Total = #132

However, the answer options are given in kobo, so we need to convert the answer to kobo by multiplying by 100.

Total in kobo = #132 * 100

Total in kobo = #13,200

Therefore, the correct answer is d. 72000k.

for such more question on total amount

https://brainly.com/question/25109150

#SPJ8

Find the position function x(t) of a moving particle with the given acceleration a(t), initial position Xo = x(0), and initial velocity vo = v(0). 2 a(t)= . v(0) = 0, x(0) = 0 (t+2)+ ... x(t) = 4'

Answers

To find the position function x(t) of a moving particle with the given acceleration a(t), initial position Xo = x(0), and initial velocity vo = v(0), you must first integrate the acceleration twice to obtain the position function.Here's how to solve this problem:Integrating a(t) once will yield the velocity function v(t).

Since v(0) = 0, we can integrate a(t) directly to find v(t). So,

2 a(t)= . a(t)

= (t + 2)
From the given acceleration function a(t), we can find v(t) by integrating it.

v(t) = ∫ a(t) dtv(t)

= ∫ (t+2) dtv(t)

= (1/2)t² + 2t + C

Velocity function with respect to time t is v(t) = (1/2)t² + 2t + C1To find the constant of integration C1, we need to use the initial velocity

v(0) = 0.v(0)

= (1/2) (0)² + 2(0) + C1

= C1C1 = 0

Therefore, velocity function with respect to time t is given asv(t) = (1/2)t² + 2tNext, we need to integrate v(t) to find the position function

x(t).x(t) = ∫ v(t) dtx(t)

= ∫ [(1/2)t² + 2t] dtx(t)

= (1/6) t³ + t² + C2

Position function with respect to time t is x(t) = (1/6) t³ + t² + C2To find the constant of integration C2, we need to use the initial position

x(0) = 0.x(0)

= (1/6) (0)³ + (0)² + C2

= C2C2

= 0

Therefore, position function with respect to time t is given asx(t) = (1/6) t³ + t²The position function of the moving particle is x(t) = (1/6) t³ + t².

For more information on acceleration visit:

brainly.com/question/2303856

#SPJ11

Other Questions
Mark:76VocabularyI4 Complete the sentences with the missing words. The first letter of each word has been given. 1 When the police caught the s. at the airport, he was carrying a suitcase full of cigarettes. 2 The mkilled several people before he was caught. 3 After the earthquake, LWV took things from shops without paying for them. 4 The robber was wearing a bso that nobody knew his identity. 5 The shop manager caught the Hollywood actress s_1in an expensive clothes shop. 6 The two vcaused damage to the building by throwing paint all over the walls. 7 I left my handbag on my desk at work yesterday and I think a tuhas taken it. 8 The police believe that the fire at the school was a9 The mugger sin the woman's handbag from her when she was walking across the platform. 10 The drug d_____ was caught with 5 kg of drugs in his car. When is it acceptable or unacceptable to fight a war on behalf of another country, as the U.S. did in South Korea? Ground your answer with at least one historical circumstance that you have learned in this lesson. Milltown Company sells used cars. During the month, the dealership sold 38 cars at an average price of $15,000 each. The budget for the month was to sell 34 cars at an average price of $16,300. Compute the dealerships total sales variance for the month. You must evaluate the purchase of a proposed spectrometer for the R\&D department. The purchase price of the spectrometer including modifications is$220,000, and the equipment will be fully depreciated at the time of purchase. The equipment would be sold after 3 years for$71,000.Theequipmentwouldrequirfirm's marginal federal-plus-state tax rate is25%. a positive value. Round your answer to the nearest dollar.$b. What are the project's annual cash flows in Years 1, 2, and 3? Do not round intermediate calculations. Round your answers to the nearest dollar. Year 1: \$ Year 2:$Year 3:$c. If the WACC is12%, should the spectrometer be purchased? what kind of potential energy is mgh used to calculate which french explorer claimed what is now canada for france in 1534? Sketch the region satisfying both |z| 1 and Re(z) 0. Which of the following is NOT available as a Presentation View?AZoomedBNormalCSlide SorterDReading what percent of women in the workforce have young children? 20% 40% 70% 90% q5Quiz Company reported the following transactions related to its investments.A Company reported net income of $1,000,000 for the year ended December 31, Year 1 and $1,200,000 for the year ended December 31, Year 2.B Company reported net income of $2,000,000 for the year ended December 31, Year 1 and $2,100,000 for the year ended December 31, Year 2.The following fair values were available for the investments as of December 31, Year 1 and Year 2.Year 1Year 2A Company$21 per share$19 per shareB Company$27 per share$28 per shareC Company$105,000$99,000D Company$55,000$58,000E Company$90,000$95,000Determine the pretax increase (decrease) in other comprehensive income in Year 2 resulting from the investments.Give your answer using dollar signs and commas but no decimal points (cents).Example: $12,345 or $(12,345) Helping Hand Outdoor Services pre-sells yard maintenance packages for the gardening season. During October cash from clients for Christmas trees to be delivered in December. Snow removal services are also provided. Hel adjusting entries monthly. The following selected accounts appear on the November 30, 2020, unadjusted trial b Debit Account Unearned lawn services Credit $ 92,100 35,500 10,900 Unearned garden services Unearned snow removal services Unearned Christmas tree sales 20,300 Required: Prepare the monthly adjusting journal entries at November 30, 2020, using the following additional information. for a transaction/event, select "No journal entry required" in the first account field.) a. $77,000 of the Unearned Lawn Services account represents payments received from customers for the 2021 remainder represents fall lawn services actually performed during November 2020. b. $31,500 of the Unearned Garden Services account had been earned by November 30 2020. c. $8,750 of the Unearned Snow Removal Services account remained unearned at November 30, 2020. d. Helping Hand arranges with its customers to deliver trees from December 5 to December 20. As a result, the Tree Sales account will be earned in total by December 20. View transaction list what angles of rotational symmetry are there for a pentagon what is the command to list all files and subdirectories in a directory? what can you say about the value of the coefficient of static friction? Why would a firm use a revolving credit agreement instead of a line of credit?Group of answer choicesRevolving credit agreements are normally for a shorter period of time.A line of credit doesn't involve a bank.The revolving credit agreement commits the bank to the loan. A small business borrows $12,000 at nominal interest 12% compounded quarterly, to help cover start-up costs. Payout $750 done at the end of every 6 months during the time required to payreturn the loan. Three months before the 9th payment is due, the companyrefinancing a loan with a nominal interest rate of 9%, compounded monthly. Under this refinancing scheme, a payment of R must be made everymonth, with the first monthly payment starting when it should be 9th payment based on old loan. In total there are 30 monthly payments which will fully repay the loan. Determine the R value. Beryl's Iced Tea currently rents a bottling machine for $50,000 per year, including all maintenance expenses. It is considering purchasing a machine instead, and is comparing two options: a. Purchase the machine it is currently renting for $165,000. This machine will require $21,000 per year in ongoing maintenance expenses. b. Purchase a new, more advanced machine for $250,000. This machine will require $18,000 per year in ongoing maintenance expenses and will lower bottling costs by $10,000 per year. Also, $35,000 will be spent upfront training the new operators of the machine. Suppose the appropriate discount rate is 8% per year and the machine is purchased today. Maintenance and bottling costs are paid at the end of each year, as is the rental of the machine. Assume also that the machines will be depreciated via the straight-line method over seven years and that they have a ten-year life with a negligible salvage value. The corporate tax rate is 20%. Should Beryl's Iced Tea continue to rent, purchase its current machine, or purchase the advanced machine? To make this decision, calculate the NPV of the FCF associated with each alternative. Note: the NPV will be negative, and represents the PV of the costs of the machine in each case. Which of the following would likely provide a written legal code? Multiple Choice O O O O Academics. Elected legislative bodies Constitutional conventions. Actions of government agencies. Judicial decisions. Which would a scientist most likely do before asking a question that could lead to a scientific experiment? when preparing for sales resistance, salespeople should remember that: