Answer:
Answers are below!
Step-by-step explanation:
(2 + g) (8)
= (2 + g) (8)
Add a 8 after the 2, and flip.
= (2)(8) + (g)(8)
= 16 + 8g
= 8g + 16
= (4) (8 + -5g)
Add another 4, then flip.
= (4) (8) + (4) (-5g)
= 32 − 20g
= - 20g + 32
−7 (5-n)
= (−7) (5 + -n)
Add another 7, then flip.
= (−7) (5) + (-7) (-n)
= −35 + 7n
= 7n - 35
Use the distributive property.
a (b + c) = ab + ac
a = 8
b = 2m
c = 1
= 8 × 2m + 8 × 1
Simplify, you get 16m + 8.
Use the distributive property.
a (b + c) = ab + ac
a = 6x
b = y
c = z
= 6xy - 6xz is the answer.
[tex]\mathrm{Apply\:the\:distributive\:law}:\quad \\\:a\left(b+c\right)=ab+ac[/tex]
[tex]a=-3,\:b=2b,\:c=2a[/tex]
[tex]=-3\cdot \:2b+\left(-3\right)\cdot \:2a[/tex]
Apply minus plus rules.
[tex]=-3\cdot \:2b+\left(-3\right)\cdot \:2a[/tex]
Multiply the numbers.
3 x 2 = 6
Answer:
9. -35+7n
10. 16m+8
11. 6xy-6xz
Step-by-step explanation:
You multiplying the terms inside the ( ) by the outside factor.
This is call distributive property, a(b+c)=ab+ac.
Also, a(b+c)=(b+c)a by commutative property.
It also works over the operation subtraction since subtraction is just a disguised addition (addition of the opposite). That is, a(b-c)=ab-ac.
Anyhow, let's look at 9.,10., and 11..
9.
-7(5-n)
(-7)(5-n)
(-7)(5)-(-7)(n)
-35+7n
10.
8(2m+1)
(8)(2m)+(8)(1)
16m+8
11.
6x(y-z)
(6x)(y-z)
(6x)(y)-(6x)(z)
6xy-6xz
Hint on 7. It's like all the other problems. That is, it is equivalent to doing 8(2+g).
If you want comment below, if you want me to check any of yours or if you have any questions.
Congruent sides???????????
Answer:
the second option : ST and WX
Step-by-step explanation:
congruent means they would completely cover each other when oriented in the same direction and positioned at the same location.
after dying the two mirroring actions we get
VS correlates to ZW
ST correlates to WX
TU correlates to XY
UV correlates to ZY
HELP HELP HELP MATH⚠️⚠️⚠️⚠️⚠️
Find four consecutive integers with the sum of 2021
Answer:
This problem has not solution
Step-by-step explanation:
lets the integers be:
x
x+1
x+2
x+3
so:
x+(x+1)+(x+2)+(x+3)=2021
x+x+x+x+1+2+3=2021
4x+6=2021
4x=2021-6=2015
x=2015/4=503.75
x is not a integer
anyone have sna pc hat ??
mine is rince9253
Answer:
Yeah the answer is n o .
Answer:
yes i do have but i dont use it
What is the value of x?
I am Your Crush boy you have never seen a boy like me if you will see me you will fall in my love. come zom Id- 6622308635 pas- 6UC3yE
Answer:
I don't know the answer to ur question. LOL
Answer:
stop being desperate
nobody is gonna fall in love with some desperate weirdo
a. 23 = -11 - 4x
b. 23 = -11 + (-4x)
C. 23 + 11 = -11 + (-4x) + 11
d. 23 + 11 = -11 + 11 +(-4x)
e. 34 = - 4x
f. 34/-4 = -4x/ -4
g. -8.5 = x
Which properties of equality justify steps c and f?
A.) addition property of equality; subtraction property of equality B.) addition property of equality; division property of equality C.) subtraction property of equality; multiplication property of equality D.) multiplication property of equality; division property of equality
Answer:
B.) addition property of equality; division property of equality
SHOW PROCESS!!!
Will mark brainly!!
Thank you!
Answer:
Step-by-step explanation:
By applying cosine rule in the given triangle,
c² = a² + b²-2abcosC
c² = (5.6)² + (10.7)² - 2(5.6)(10.7)cos(109.3°)
c² = 185.46
c = 13.6 km
By applying sine rule in the given triangle ABC,
[tex]\frac{\text{sin}A}{a}= \frac{\text{sin}B}{b}= \frac{\text{sin}C}{c}[/tex]
[tex]\frac{\text{sin}A}{5.6}=\frac{\text{sin}B}{10.7}=\frac{\text{sin}109.3}{13.6}[/tex]
[tex]\frac{\text{sin}B}{10.7}=\frac{\text{sin}109.3}{13.6}[/tex]
sin(B) = [tex]\frac{10.7\times \text{sin}(109.30)}{13.6}[/tex]
= 0.7425
B = [tex]\text{sin}^{-1}(0.7425)[/tex]
B = 48.0°
[tex]\frac{\text{sin}A}{5.6}=\frac{\text{sin}109.3}{13.6}[/tex]
sin(A) = [tex]\frac{[\text{sin}(109.3)]\times (5.6)}{13.6}[/tex]
= 0.3886
A = [tex]\text{sin}^{-1}(0.3886)[/tex]
A = 22.9°
Cathy is planning to take the Certified Public Accountant Examination (CPA exam). Records kept by the college of business from which she graduated indicate that 73% of students who graduated pass the CPA exam. Assume that the exam is changed each time it is given. Let n = 1, 2, 3, ... represent the number of times a person takes the CPA test until the first pass. (Assume the trials are independent).
(a) What is the probability that Cathy passes the CPA test on the first try?
(b) What is the probability that Cathy passes the CPA test on the second or third try?
Answer:
The responses to these question can be defined as follows:
Step-by-step explanation:
For point a:
[tex]\to P(1) = 0.73[/tex]
For point b:
[tex]\to P(2\ or\ 3) = P(2) + P(3)[/tex]
[tex]= 0.27 \times 0.73 + 0.27\times 0.27\times0.73\\\\=0.1971+0.1971\times 0.27\\\\=0.1971+0.053217\\\\=0.250317[/tex]
Floataway Tours has $420,000 that can be use to purchase new rental boats for hire during the summer. The boats can be purchased from two different manufacturers. Floataway Tours would like to purchase at least 50 boats and would like to purchase the same number from Sleekboat as from Racer to maintain goodwill. At the same time,Floataway Tours wishes to have a total seating capacity of at least 200.
Required:
Formulate this problem as a linear program.
Answer and explanation:
A linear problem is an equation based on known and unknown variables that follow a linear path, usually without exponents and look like this:
y=mx+b. To formulate the linear constraints of the problem above, we look at the unknown variables and known variables and define and equation using this.
From the problem, assume x and y are the prices of the different boat brands:
50x+50y=420000
Assume a and b are number of x brand boats and y brand boats supplied thus:
a+b>=200
a regular Pentagon with sides 40cm what is the perimeter
Perimeter = namely the length of outside bordering,
well, this is a PENTAgon, or PENTA=5 or namely 5 sides, is regular so each side is the same length, so we have a polygon with 5 sides each measuring 40cm, well, its perimeter is just 40+40+40+40+40 = 200.
Find the distance between the two points in simplest radical form (−6, 1) and (−8,−4)
The coordinator of the vertices of the triangle are (-8,8),(-8,-4), and
Answer with Step-by-step explanation:
Complete question:
The coordinates of the vertices of the triangle are (-8,8),(-8,-4), and. Consider QR the base of the triangle. The measure of the base is b = 18 units, and the measure of the height is h = units. The area of triangle PQR is square units.
Let
P=(-8,8)
Q=(-8,-4)
QR=b=18 units
Height of triangle, h=Length of PQ
Distance formula
[tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Using the formula
Height of triangle, h=[tex]\sqrt{(-8+8)^2+(-4-8)^2}=12units[/tex]
Area of triangle PQR=[tex]\frac{1}{2}\times base\times height[/tex]
Area of triangle PQR=[tex]\frac{1}{2}\times 18\times 12[/tex]
Area of triangle PQR=108 square units
Length of QR=18units
Let the coordinates of R(x,y)
[tex]\sqrt{(x+8)^2+(y+4)^2}=18[/tex]
[tex](x+8)^2+(y+4)^2=324[/tex]
[tex]x^2+64+16x+y^2+8y+16=324[/tex]
[tex]x^2+y^2+16x+8y=324-64-16[/tex]
[tex]x^2+y^2+16x+8y=244[/tex] ......(1)
Using Pythagoras theorem
[tex]H=\sqrt{P^2+B^2}[/tex]
[tex]H=\sqrt{(18)^2+(12)^2}[/tex]
[tex]H=6\sqrt{13}[/tex]units
[tex](6\sqrt{13})^2=(x+8)^2+(y-8)^2[/tex]
[tex]x^2+64+16x+y^2+64-16y=468[/tex]
[tex]x^2+y^2+16x-16y=468-64-64=340[/tex]
[tex]x^2+y^2+16x-16y=340[/tex] .....(2)
Subtract equation (2) from (1) we get
[tex]24y=-96[/tex]
[tex]y=-96/24=-4[/tex]
Using the value of y in equation (1)
[tex]x^2+16x+16-32=244[/tex]
[tex]x^2+16x=244-16+32[/tex]
[tex]x^2+16x=260[/tex]
[tex]x^2+16x-260=0[/tex]
[tex]x^2+26x-10x-260=0[/tex]
[tex]x(x+26)-10(x+26)=0[/tex]
[tex](x+26)(x-10)=0[/tex]
[tex]x=-26, x=10[/tex]
Hence, the coordinate of R (10,-4) or (-26,-4).
Trigonometric ratio: find an angle measure
Answer:
[tex]T =56.3[/tex]
Step-by-step explanation:
Given
The attached triangle
Required
Measure of T
This is calculated as:
[tex]\cos T = \frac{Adjacent}{Hypotenuse}[/tex]
[tex]\cos T = \frac{5}{9}[/tex]
Take arccos
[tex]T = \cos^{-1}{(5/9)}[/tex]
[tex]T =56.3[/tex]
amy shoots a 100 arrows at a target each arrow hits with a probability 0.01 what is the probability that one of her first 5 arrows hit the target
Answer:
0.5759
Step-by-step explanation:
What is the m GE bisects Find m
Answer:
DGF = 106
Step-by-step explanation:
Bisects means to divide in half, with two equal parts
DGF = DGE + EGF
DGE = EGF
DGF = DGE + DGE
DGF = 53+53
DGF = 106
GE bisects ∠DGF, so it divides ∠DGF into 2 equal parts.
So, m∠EGF = m∠DGE
=> m∠EGF = 53°
m∠DGF = m∠EGF + m∠DGE
=> m∠DGF = 53° + 53°
=> m∠DGF = 106°
How many flowers spaced every 4 inches are needed to surround a circular garden with a 15-foot radius? Round all circumference and area calculations to the nearest whole number.
Answer:
283 flowers
Step-by-step explanation:
c=2pi*r
c = 1130.973 =1131
1131/4
282.75 = 283
Stuck on this question
Answer:
9262
Step-by-step explanation:
just plug in 22 for n and calculate
Using the quadratic formula, which of the following are the zeros of the quadratic equation below? y=x^2-x-5
Answer:
The roots(Zeros) are
x=2.7913 and -1.7913
Frans paid R9600 as interest on a loan he took 5 years ago at 16% rate. What's was the amount he took as loan? Yeah
Answer:
5555 Lakh rupoes maybe hope it helps
The amount Frans took as loan = R12000
What is simple interest?"It is the interest that is only calculated on the initial amount of the loan."
Formula for simple interest:[tex]SI=\frac{P\times R\times T}{100}[/tex]
where, P: principal amount
T : period
R: rate of interest
For given question,
SI = 9600
T = 5 years
R = 16%
We need to find the principal amount.
Using simple interest formula,
[tex]\Rightarrow SI=\frac{P\times R\times T}{100}\\\\\Rightarrow P=\frac{SI\times 100}{R\times T}\\\\\Rightarrow P=\frac{9600\times 100}{5\times 16}\\\\\Rightarrow P=12000[/tex]
Therefore, the amount Frans took as loan = R12000
Learn more about the simple interest here:
https://brainly.com/question/22621039
#SPJ3
A three-dimensional object's measurement(s) include which of the following?
Check all that apply.
A. Width
B. Length
C. Height
D. None of these
Answer:
A.
B.
C.
Step-by-step explanation:
all three are used in 3 dimensional objects hence the name 3 dimensions.
Each of these extreme value problems has a solution with both a maximum value and a minimum value. Use Lagrange multipliers to find the extreme values of the function subject to the given constraint.
(a) f (x, y) = x^2 - y^2; x^2 + y^2 = 1
Max of 1 at (plusminus 1, 0), min of - 1 at (0, plusminus l)
(b) f (x, y) = 3x + y; x^2 + y^2 = 10
Max of 10 at (3, 1), min of - 10 at (- 3, - 1)
(c) f (x, y) = xy; 4x^2 + y^2 = 8
Max of 2 at plusminus (1, 2), min of - 2 at plusminus (l, - 2)
Answer:
a) f(x,y) = - 1 minimum at P ( 0 ; -1 )
b) f (x,y) = 10 maximum at P ( 3 , 1 ) and f (x,y) = - 10 minimum at Q ( - 3 , - 1 )
c) Max f ( x , y ) = 2 for points P ( 1, 2 ) and T ( -1 , -2 )
Min f ( x , y ) = -2 for points Q ( 1 , - 2 ) and R ( -1 , 2 )
Step-by-step explanation:
A) f(x,y) = x² - y² subject to x² + y² = 1 g(x,y) = x² + y²- 1
δf(x,y)/ δx = 2*x δg(x,y)/ δx = 2*x
δf(x,y)/ δy = - 2*y δg(x,y)/ δy = 2*y
δf(x,y)/ δx = λ* δg(x,y)/ δx
2*x = λ*2*x
δf(x,y)/ δy = λ* δg(x,y)/ δy
- 2*y = λ*2*y
Then, solving
2*x = λ*2*x x = λ*x λ = 1
- 2*y = λ*2*y y = - 1
x² + y²- 1 = 0 x² + ( -1)² - 1 = 0 x = 0
Point P ( 0 ; -1 ) ; then at that point
f(x,y) = x² - y² f(x,y) = 0 - ( -1)² f(x,y) = - 1 minimum
b) f( x, y ) = 3*x + y g ( x , y ) = x² + y² = 10
δf(x,y)/ δx = 3 δg(x,y)/ δx = 2*x
δf(x,y)/ δy = 1 δg(x,y)/ δy = 2*y
δf(x,y)/ δx = λ * δg(x,y)/ δx ⇒ 3 = 2* λ *x (1)
δf(x,y)/ δy = λ * δg(x,y)/ δy ⇒ 1 = 2*λ * y (2)
x² + y² - 10 = 0 (3)
Solving that system
From ec (1) λ = 3/2*x From ec (2) λ = 1/2*y
Then (3/2*x ) = 1/2*y 3*y = x
x² + y² = 10 ⇒ 9y² + y² = 10 10*y² = 10
y² = 1 y ± 1 and
y = 1 x = 3 P ( 3 , 1 ) y = - 1 x = -3 Q ( - 3 , - 1 )
Value of f( x , y ) at P f (x,y) = 3*x + y f (x,y) = 3*(3) +1
f (x,y) = 10 maximum at P ( 3 , 1 )
Value of f( x , y ) at Q f (x,y) = 3*x + y f (x,y) = 3*(- 3) + ( - 1 )
f (x,y) = - 10 minimum at Q ( - 3 , - 1 )
c) f( x, y ) = xy g ( x , y ) = 4*x² + y² - 8
δf(x,y)/ δx = y δg(x,y)/ δx = 8*x
δf(x,y)/ δy = x δg(x,y)/ δy = 2*y
δf(x,y)/ δx = λ * δg(x,y)/ δx ⇒ y = λ *8*x (1)
δf(x,y)/ δy = λ * δg(x,y)/ δy ⇒ x = λ *2*y (2)
4*x² + y² - 8 = 0 (3)
Solving the system
From ec (1) λ = y/8*x and From ec (2) λ = x/2*y Then y/8*x = x/2*y
2*y² = 8*x² y² = 4*x²
Plugging that value in ec (3)
4*x² + 4*x² - 8 = 0
8*x² = 8 x² = 1 x ± 1 And y² = 4*x²
Then:
for x = 1 y² = 4 y = ± 2
for x = -1 y² = 4 y = ± 2
Then we get P ( 1 ; 2 ) Q ( 1 ; - 2)
R ( - 1 ; 2 ) T ( -1 ; -2)
Plugging that values in f( x , y ) = xy
P ( 1 ; 2 ) f( x , y ) = 2 R ( - 1 ; 2 ) f( x , y ) = - 2
Q ( 1 ; - 2) f( x , y ) = -2 T ( -1 ; -2 ) f( x , y ) = 2
Max f ( x , y ) = 2 for points P and T
Min f ( x , y ) = -2 for points Q and R
Marla scored 70% on her last unit exam in her statistics class. When Marla took the SAT exam, she scored at the 70th percentile in mathematics. Explain the difference in these two scores.
Answer:
The difference is that Marla's exam in her statistics class was graded by percent of correct answers, in her case 70%, while the SAT is graded into a curve, taking other students' grades also into account, and since she scored in the 70th percentile, Marla scored better than 70% of the students.
Step-by-step explanation:
Marla scored 70% on her last unit exam in her statistics class.
This means that in her statistics class, Marla got 70% of her test correct.
When Marla took the SAT exam, she scored at the 70th percentile in mathematics.
This means that on the SAT exam, graded on a curve, Marla scored better than 70% of the students.
Explain the difference in these two scores.
The difference is that Marla's exam in her statistics class was graded by percent of correct answers, in her case 70%, while the SAT is graded into a curve, taking other students' grades also into account, and since she scored in the 70th percentile, Marla scored better than 70% of the students.
An equation, f, has a domain of all whole numbers and has a range of all real numbers. A) Does the equation
represent a function? B) Explain why or why not. C) provide examples in either case, (and include your reasoning why
you chose this equation for your example.)
Answer:
f is not a function
Step-by-step explanation:
Given
Domain: Whole numbers
Range: Real numbers
Required
Is f a function
Base on the given parameters, f is not a function because:
There are more real numbers than whole numbers
And this implies that at least one element in the domain will have more than one corresponding elements in the range. i.e. one-to-many or many-to-many relationship
For a relation to be regarded as a function, the relationship has to be one-to-one or many-to-one
i.e. 1 or many domain elements to 1 element in the range.
An example is:
[tex]\begin{array}{ccccc}x & {1} & {9} & {9} & {0} \ \\ f(x) & {1.5} & {3.2} & {-3.5} & {0.1} \ \end{array}[/tex]
In the above function
The domain (i.e. x values) are whole numbers
The range (i.e. y values) are real numbers
However,
9 points to 3.2 and -3.5
So, the relation is not a function.
Suppose that Bag 1 contains a red (R), a blue (B) and a white (W) ball, while Bag 2 contains a red (R), a pink (P), a yellow (Y) and a green (G) ball. A game consists of you randomly drawing a ball from each of Bag 1 and Bag 2. (a) What are the 12 outcomes in the sample space S for this experiment? (b) You win the prize of baked goods if you draw at least 1 red ball. List the outcomes in the event that you win that prize, and use them to compute the probability of this event. You should assume that all outcomes in the sample spaces obtained in (a) are equally likely.
Answer:
1 /2
Step-by-step explanation:
Given :
Bag 1 : Red (R) ; Blue (B) ; White (W)
Bag 2 : Red (R) ; Pink (P) ; Yellow (Y) ; Green (G)
Total number of possible outcomes :
3C1 * 4C1 = 3 * 4 = 12 outcomes
Sample space (S) ;
_______ R ______ B _______ W
R_____ RR _____ RB ______ RW
P_____ PR _____ PB ______ PW
Y _____YR_____ YB ______ YW
G _____GR ____ GB ______ GW
To win price of baked goods ; Atleast one red ball must be drawn :
Probability of winning ; P(winning) = required outcome / Total possible outcomes
Required outcome = {RR, RB, RW, PR, YR, GR} = 6
Total possible outcomes = S = 12
P(winning) = 6/12 = 1/2
For its grand opening, a store gives every 12th customer a calendar and every 20th customer a mug. Which guest is the first to receive both a calendar and a mug?
Answer: yes
Step-by-step explanation:
Determine how much simple interest you would earn on the following investment:
$13,400 invested at a 6/2 % interest rate for 4 years.
Answer:
How do you mean 6/2%? Clarify it for assistance
Answer:
Simple interest = $ 3,484.00
Step-by-step explanation:
I= P×R×T ÷ 100
The rate is 6 1/2 and I will use the decimal form 6.5,to change that to a whole number we simply move the decimal point one place behind.
Since we moved the decimal point in the numerator we need to do the same for the denominator.Therefore 100 becomes 1000.
13400 × 65 × 4 = $ 3,484.00
1000
Select the correct answer.
Which chart best represents the following information about student results from a class assignment?
Answer
a) chart
Step-by-step explanation:
a) chart best represents the following information about student results from a class assignment
In one U.S city, the taxi cost is $3 plus $0.80 per mile. If you are traveling from the airport, there is an additional charge of $5.50 for tolls. How far can you travel from the airport by taxi for $56.50?
Answer:
60 miles
Step-by-step explanation:
Create an equation where y is the total cost and x is the number of miles traveled.
0.8x will represent the cost from the miles traveled. 8.5 will be added to this to represent the taxi cost and additional charge from tolls:
y = 0.8x + 8.5
Plug in 56.50 as y and solve for x, the number of miles:
y = 0.8x + 8.5
56.5 = 0.8x + 8.5
48 = 0.8x
60 = x
So, you can travel 60 miles
The of the matrix whose columns are vectors which define the sides of a parallelogram one another is the area of the parallelogram?
Answer:
absolute value of the determinant, adjacent to, equal to
Step-by-step explanation:
The absolute value of a determinant of the [tex]\text{matrix whose}[/tex] columns are the vectors and they define the [tex]\text{sides}[/tex] of a [tex]\text{parallelogram}[/tex] which is adjacent to one another and is equal to the [tex]\text{area}[/tex] of the [tex]\text{parallelogram}[/tex].
The determinant is a real number. They are like matrices, but we use absolute value bars to show determinants whereas to represent a matric, we use square brackets.
2/5 e +4 = 9
Help please
Answer:
e=12.5 or e=25/2
Step-by-step explanation: