I need these highschool statistics questions to be
solved. It would be great if you write the steps on paper, too.
12. Data show that 5% of apples produced from an apple orchard are bruised when they reach local stores. Compute the probability that at least 2 are bruised in a bushel of 50 apples. A. 0.2794 B. 0.00

Answers

Answer 1

A. 0.2794; The probability of at least 2 apples being bruised in a bushel of 50 apples is approximately 0.8466

To compute the probability that at least 2 apples are bruised in a bushel of 50 apples, we can use the binomial probability formula. The formula is:

P(X ≥ k) = 1 - P(X < k)

Where P(X ≥ k) is the probability of having at least k successes, P(X < k) is the probability of having less than k successes, and k is the number of bruised apples.

In this case, k = 0 (no bruised apples) and k = 1 (1 bruised apple) are not of interest, so we'll calculate the complement of those probabilities.

Step 1: Calculate the probability of no bruised apples (k = 0):

P(X = 0) = (0.05)^0 * (0.95)^50 = 0.95^50 ≈ 0.0765

Step 2: Calculate the probability of 1 bruised apple (k = 1):

P(X = 1) = (0.05)^1 * (0.95)^49 * (50 choose 1) = 0.05 * 0.95^49 * 50 ≈ 0.0769

Step 3: Calculate the probability of at least 2 bruised apples:

P(X ≥ 2) = 1 - (P(X = 0) + P(X = 1)) = 1 - (0.0765 + 0.0769) = 1 - 0.1534 ≈ 0.8466

Therefore, the probability that at least 2 apples are bruised in a bushel of 50 apples is approximately 0.8466, which corresponds to option A.

The probability of at least 2 apples being bruised in a bushel of 50 apples is approximately 0.8466, which can be calculated using the binomial probability formula.

To know  more about probability visit:

https://brainly.com/question/13604758

#SPJ11


Related Questions

degrees of freedom"" for any statistic is defined as _________.fill in the blank

Answers

Degrees of freedom for any statistic is defined as the number of independent pieces of information that go into the estimate of a parameter. It is usually denoted by df.

The term degrees of freedom is used in statistics to describe the number of values in a study that are free to vary or that have the freedom to move around in a distribution. In statistical studies, degrees of freedom can refer to a number of different things.The degrees of freedom for a statistic are typically determined by subtracting the number of parameters estimated from the sample size.

For example, in a simple linear regression, there are two parameters to be estimated: the slope and the intercept.Therefore, the degrees of freedom for the regression would be n-2, where n is the sample size. Similarly, in an independent samples t-test, the degrees of freedom are calculated as the sum of the degrees of freedom for each sample minus 2.

Therefore, if there are n1 and n2 observations in the two samples, the degrees of freedom for the t-test would be (n1-1)+(n2-1)-2=n1+n2-2. The concept of degrees of freedom is important in statistical inference because it helps to determine the distribution of test statistics and the critical values for hypothesis tests.

Know more about the Degrees of freedom

https://brainly.com/question/28527491

#SPJ11

In a large clinical trial, 398,256 children were randomly assigned to two groups. The treatment group consisted of 197,830 children given a vaccine for a certain disease, and 32 of those children developed the disease. The other 200,426 children were given a placebo, and 104 of those children developed the disease. Consider the vaccine treatment group to be the first sample. Identify the values of n₁, P₁, 9₁, ₂, P2, 92, P. and q.

Answers

                                                       

Based on the information given, let's break down the values:

n₁: The sample size of the treatment group (vaccine group).

n₁ = 197,830

P₁: The proportion of children in the treatment group who developed the disease.

P₁ = 32/197,830

   = 0.000162

9₁: The number of children in the treatment group who did not develop the disease.

9₁ = n₁ - P₁

   = 197,830 - 32

   = 197,798

n₂: The sample size of the control group (placebo group).

n₂ = 200,426

P₂: The proportion of children in the control group who developed the disease.

P₂ = 104/200,426

    = 0.000519

9₂: The number of children in the control group who did not develop the disease.

9₂ = n₂ - P₂

   = 200,426 - 104

   = 200,322

P: The overall proportion of children who developed the disease in the combined groups.

P = (32 + 104) / (197,830 + 200,426)

  = 0.000297

q: The complement of P (the proportion of children who did not develop the disease).

q = 1 - P = 1 - 0.000297

  = 0.999703

The treatment group (vaccine group) consisted of 197,830 children, with 32 of them developing the disease.

The control group (placebo group) consisted of 200,426 children, with 104 of them developing the disease.

The proportions of children developing the disease in the treatment and control groups are P₁ = 0.000162 and P₂ = 0.000519, respectively.

The overall proportion of children developing the disease across both groups is P = 0.000297.

The complements of P, representing the proportion of children not developing the disease, are q = 0.999703.

To know more about (vaccine group), visit

https://brainly.com/question/28288513

#SPJ11

5. Select all the choices that apply to a triangle with angles measures 30°, 60°, and 90°. obtuse acute Oright 000000000 scalene isosceles SSA ASA SAS sss

Answers

The following applies to the given triangle:acute, right, scalene.SSA and SSS do not apply to a triangle with angles measures 30°, 60°, and 90° because SSA is the ambiguous case and SSS is the congruence case which applies only to non-right triangles. ASA and SAS apply to non-right triangles only.

The angles measures of a triangle with 30°, 60°, and 90° are as follows:Explanation:Given angles measures of a triangle are 30°, 60°, and 90°.To identify the different types of the triangle and to know which of the following apply to it: Obtuse, Acute, Right, Scalene, Isosceles and SSA, ASA, SAS, sss, we use the following:We have the Pythagorean theorem:In a right-angled triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.Let us apply the Pythagorean theorem to the given triangle.The hypotenuse is the side opposite the right angle (90°). So, the hypotenuse is the longest side of the triangle. Thus, hypotenuse is opposite to the largest angle of the triangle.∴ The largest angle in the given triangle is 90°.The length of the sides opposite the angles 30° and 60° are 'a' and 'b' respectively and the length of the hypotenuse is 'c'.So, from the Pythagorean theorem we have

:c² = a² + b²∴ c² = (a/2)² + (a√3/2)²= a²/4 + 3a²/4 = 4a²/4= a²a = c/2andc² = a² + b²∴ b² = c² - a²= (c/2)² + (a√3/2)²= c²/4 + 3a²/4 = 3c²/4= (√3/2)c²b = c/2 × √3

The length of the sides of the given triangle with angles 30°, 60°, and 90° are a, b and c respectively:  Therefore, the triangle is a right triangle because it has a 90° angle.The sides are in a ratio of 1 : √3 : 2. Therefore, the triangle is a scalene triangle.The angles are in the ratio of 1 : 2 : 3. Therefore, it is an acute triangle.Therefore, the following applies to the given triangle:acute, right, scalene.SSA and SSS do not apply to a triangle with angles measures 30°, 60°, and 90° because SSA is the ambiguous case and SSS is the congruence case which applies only to non-right triangles. ASA and SAS apply to non-right triangles only.

To know more about ambiguous visit:

https://brainly.com/question/31273453

#SPJ11

find the average value of f(x,y)=6eyx ey over the rectangle r=[0,2]×[0,4]

Answers

We need to find the average value of f(x,y)=6eyx ey over the rectangle r=[0,2]×[0,4].Solution:Given function is f(x,y) = 6eyx ey

The formula for calculating the average value of a function over a region is as follows:Avg value of f(x,y) over the rectangle R = (1/Area of R) ∬R f(x,y)dAHere, R=[0,2]×[0,4].Area of the rectangle R = 2×4 = 8 sq units

Now, we calculate the double integral over R as follows:∬R f(x,y)dA = ∫0^4 ∫0^2 6eyx ey dxdy= 6∫0^4 ∫0^2 e2y dx dy= 6∫0^4 ey(2) dy= 3(ey(2)|0^4)= 3(e8-1)Now, we can find the average value as:Avg value of f(x,y) over the rectangle R = (1/Area of R) ∬R f(x,y)dA= (1/8)×3(e8-1)= (3/8)(e8-1)Therefore, the required average value is (3/8)(e8-1).Hence, the correct option is (D).

To know more about random sample visit:

https://brainly.com/question/29852583

#SPJ11

(6 pts) Your company plans to invest in a particular project.
There is a 25% chance that you will lose $38,000, a 40% chance that
you will break even, and a 35% chance that you will make $45,000.
Base

Answers

The expected value of the investment is $6,250. The company mentioned in the context is planning to invest in a particular project.

To calculate the expected value of the investment, we multiply each possible outcome by its respective probability and sum them up.

Given:

Probability of losing $38,000: 25% or 0.25

Probability of breaking even: 40% or 0.40

Probability of making $45,000: 35% or 0.35

Let's calculate the expected value:

Expected Value = (Probability of losing) * (Amount of loss) + (Probability of breaking even) * (Amount of break-even) + (Probability of making) * (Amount of profit)

Expected Value = (0.25) * (-$38,000) + (0.40) * $0 + (0.35) * $45,000

Expected Value = -$9,500 + $0 + $15,750

Expected Value = $6,250

Learn more about  company here:

https://brainly.com/question/29186261

#SPJ11

If

C(x) = 13000 + 400x − 3.6x2 + 0.004x3

is the cost function and

p(x) = 1600 − 9x

is the demand function, find the production level that will maximize profit. (Hint: If the profit is maximized, then the marginal revenue equals the marginal cost.)
units

Q 2

Find f.

f '''(x) = cos(x), f(0) = 4, f '(0) = 1, f ''(0) = 9

f(x) =

Q 3

A particle is moving with the given data. Find the position of the particle. a(t) = 2t + 3, s(0) = 9, v(0) = −4 s(t) =

Q 4

Find the most general antiderivative of the function. (Check your answer by differentiation. Use C for the constant of the antiderivative.)

f(x) = 6x5 − 7x4 − 6x2

F(x) =

Q 5
Factor the polynomial and use the factored form to find the zeros. (Enter your answers as a comma-separated list. Enter all answers including repetitions.)

P(x) = x3 + 3x2 − 9x − 27

x =

Answers

1. The production level that will maximize profit is 240 units.2. f(x) = sin(x) + x^3/3 + 4x + C where C is the constant of integration.

2. f(x) = sin(x) + x^3/3 + 4x + 1.

3. s(t) = 3t^2 + 2t + 9.

4.  F(x) is the most general antiderivative of f(x).

5. The factorization of P(x) is (x - 3)(x + 3)^2.The zeros of P(x) are -3 and 3.

1. The production level that will maximize profit is 240 units. Given,
C(x) = 13000 + 400x - 3.6x^2 + 0.004x^3 = cost function
p(x) = 1600 - 9x = demand functionProfit = Total revenue - Total cost Let,
P(x) = TR(x) - TC(x)
where P(x) is profit function, TR(x) is total revenue function, and TC(x) is total cost function.

Now,
TR(x) = p(x) * x = (1600 - 9x) * x = 1600x - 9x^2and
TC(x) = C(x) = 13000 + 400x - 3.6x^2 + 0.004x^3

Let's differentiate both TC(x) and TR(x) to find the marginal cost and marginal revenue.

MC(x) = d(TC(x))/dx = 400 - 7.2x + 0.012x^2MR(x) = d(TR(x))/dx = 1600 - 18x

Now, if profit is maximized, then MR(x) = MC(x).1600 - 18x = 400 - 7.2x + 0.012x^21600 - 400 = 10.8x - 0.012x^2
1200 = x(10.8 - 0.012x^2)1200/10.8 = x - 0.00111x^3
111111.111 = 100000x - x^3
0 = x^3 - 100000x + 111111.111

From trial and error method, x = 240 satisfies the above equation.

Therefore, the production level that will maximize profit is 240 units.2. f(x) = sin(x) + x^3/3 + 4x + C where C is the constant of integration.

2. First, find f''(x) and f'''(x).
f''(x) = d/dx[f'(x)]
= d/dx[cos(x)]
= -sin(x)

f'''(x) = d/dx[f''(x)]
= d/dx[-sin(x)]
= -cos(x)Since f(0) = 4, f'(0) = 1, and f''(0) = 9,
f'(x) = f'(0) + integral of f''(x)dx
= 1 - cos(x) + C1

f(x) = f(0) + integral of f'(x)dx
= 4 + integral of (1 - cos(x))dx + C2
= 4 + x - sin(x) + C2

Now,
f(0) = 4, f'(0) = 1, f''(0) = 9
So, 4 + C2 = 4 => C2 = 0and
1 - cos(0) + C1 = 1 => C1 = 1

Therefore,
f(x) = sin(x) + x^3/3 + 4x + 1.

3. The position of the particle is given by the equation,
s(t) = s(0) + v(0)t + 1/2 a(t)t^2Given a(t) = 2t + 3, s(0) = 9, and v(0) = -4
s(t) = 9 - 4t + t^2 + 3t^2/2
s(t) = 3t^2 + 2t + 9.

4. The most general antiderivative of the function is given by,
F(x) = Integral of f(x)dxwhere f(x) = 6x^5 - 7x^4 - 6x^2Now,
F(x) = x^6 - 7x^5/5 - 2x^3 + C where C is the constant of integration.F'(x) = f(x)
= 6x^5 - 7x^4 - 6x^2
So, F(x) is the most general antiderivative of f(x).

5. First, find the factorization of P(x).
P(x) = x^3 + 3x^2 - 9x - 27
= x^2(x + 3) - 9(x + 3)
= (x^2 - 9)(x + 3)
= (x - 3)(x + 3)(x + 3)

Therefore, the factorization of P(x) is (x - 3)(x + 3)^2.The zeros of P(x) are -3 and 3.

To know more on equation visit

https://brainly.com/question/17145398

#SPJ11

Q1) The production level that will maximize profit is 111 units.

Q2) [tex]f(x) = sin(x) + x - cos(x) + x + 4[/tex]

Q3) [tex]s(t) = (t³/3) + (3t²/2) - 4t + 9[/tex]

Q4) [tex]F(x) = x⁶ - (7/5)x⁵ - 2x³ + C1[/tex]

Q5) The zeros of the polynomial are: x = -3, 3

Q1) We are given the following equations:

[tex]C(x) = 13000 + 400x − 3.6x2 + 0.004x[/tex]

[tex]3p(x) = 1600 − 9x[/tex]

Given profit function:

[tex]π(x) = R(x) - C(x)[/tex] where R(x) = p(x)*x is the revenue function

[tex]π(x) = x(1600-9x) - (13000 + 400x − 3.6x² + 0.004x³)[/tex]

Taking the first derivative to maximize the profit

[tex]π'(x) = 1600 - 18x - (400 - 7.2x + 0.012x²)[/tex]

[tex]π'(x) = 0[/tex]

⇒ [tex]1600 - 18x = 400 - 7.2x + 0.012x²[/tex]

Solving for x, we get: x = 111.11 ≈ 111 units (approx)

Hence, the production level that will maximize profit is 111 units.

Q2) We have been given: f '''(x) = cos(x), f(0) = 4, f '(0) = 1, f ''(0) = 9

Taking the antiderivative of f '''(x) with respect to x, we get:

[tex]f''(x) = sin(x) + C1[/tex]

Differentiating f''(x) with respect to x, we get:

[tex]f'(x) = -cos(x) + C1x + C2[/tex]

Differentiating f'(x) with respect to x, we get:

[tex]f(x) = sin(x) + C1x - cos(x) + C2x + C3[/tex]

We know that f(0) = 4, f'(0) = 1 and f''(0) = 9

Putting the given values, we get: C1 = 1, C2 = 1, C3 = 4

Hence, [tex]f(x) = sin(x) + x - cos(x) + x + 4[/tex]

Q3) We have been given: a(t) = 2t + 3, s(0) = 9, v(0) = −4

Using the initial conditions, we get: [tex]v(t) = ∫a(t)dt = t² + 3t + C1[/tex]

Using the initial conditions, we get: C1 = -4

Hence, [tex]v(t) = t² + 3t - 4[/tex]

Using the initial conditions, we get: [tex]s(t) = ∫v(t)dt = (t³/3) + (3t²/2) - 4t + C2[/tex]

Using the initial conditions, we get: C2 = 9

Hence, s(t) = (t³/3) + (3t²/2) - 4t + 9

Q4) We need to find the antiderivative of [tex]f(x) = 6x⁵ - 7x⁴ - 6x²[/tex]

Taking the antiderivative, we get: [tex]F(x) = (6/6)x⁶ - (7/5)x⁵ - (6/3)x³ + C1[/tex]

Simplifying the above equation, we get: [tex]F(x) = x⁶ - (7/5)x⁵ - 2x³ + C1[/tex]

Hence, [tex]F(x) = x⁶ - (7/5)x⁵ - 2x³ + C1[/tex]

Q5) We have been given: [tex]P(x) = x³ + 3x² − 9x − 27[/tex]

[tex]P(x) = (x-3)(x² + 6x + 9)[/tex]

[tex]P(x) = (x-3)(x+3)²[/tex]

Hence, the zeros of the polynomial are: x = -3, 3

Therefore, the answer is (-3, 3).

To know more about zeros, visit:

https://brainly.com/question/32640703

#SPJ11

what does the uniform and normal probability distribution have in common? the mean and median are equal. both are symmetrical distributions.

Answers

Both Uniform and normal probability distributions have several things in common. Both are continuous that span the entire range of potential results. Both are symmetrical, with the mean and median being equal.

A uniform distribution, on the other hand, is a probability distribution in which every value between the minimum and maximum values is equally probable. A normal distribution, also known as a Gaussian distribution, is a probability distribution in which the majority of values are concentrated around the mean, with progressively fewer values at higher or lower deviations from the mean. The uniform and normal probability distributions share many characteristics despite their differences. Uniform distribution is defined by the fact that every possible value within a specified range has the same likelihood of occurring. As a result, the uniform distribution is symmetrical, with a constant density over the specified range. Normal distribution is characterized by its "bell curve" shape, with a steep peak at the mean and decreasing density at higher and lower deviations from the mean. Both distributions are symmetrical, with the mean and median being identical. The uniform distribution is symmetrical because every value has the same likelihood of occurring, whereas the normal distribution is symmetrical due to the cumulative influence of many independent variables.The most essential feature of both uniform and normal probability distributions is that they are continuous distributions that span the entire range of possible results. This means that there are no gaps between potential results, and any conceivable result within the specified range is accounted for by the distribution.

In conclusion, both uniform and normal probability distributions are continuous distributions that span the entire range of possible results. Both are symmetrical distributions, with the mean and median being equal. The uniform distribution is characterized by a constant density over the specified range, while the normal distribution has a "bell curve" shape with a steep peak at the mean and decreasing density at higher and lower deviations from the mean.

To know more about probability distributions visit:

brainly.com/question/14210034

#SPJ11

A light located 4 km from a straight shoreline rotates at a constant angular speed of 3.5 rad/min.
Find the speed of the movement of the spotlight along the shore when the beam is at an angle of 60° with the shoreline.

Answers

To find the speed of the movement of the spotlight along the shore, we need to determine the rate at which the distance between the light and the point where the beam meets the shore is changing.

Let's consider a right triangle formed by the light, the point where the beam meets the shore, and the shoreline. The hypotenuse of the triangle represents the distance between the light and the point on the shore where the beam meets. The angle between the hypotenuse and the shoreline is 60°.

Using trigonometry, we can relate the distance between the light and the shore to the angle of the beam. The distance is given by the formula:

distance = hypotenuse = 4 km

The rate of change of the distance is given by the derivative of the distance with respect to time:

d(distance)/dt = d(hypotenuse)/dt

Since the light rotates at a constant angular speed of 3.5 rad/min, the rate of change of the angle is constant:

d(angle)/dt = 3.5 rad/min

Using the chain rule, we can relate the rate of change of the distance to the rate of change of the angle:

d(distance)/dt = d(distance)/d(angle) * d(angle)/dt

Since the angle is 60°, we can calculate the rate of change of the distance:

d(distance)/dt = (4 km) * (π/180 rad) * (3.5 rad/min)

Simplifying the expression, we get:

d(distance)/dt = 2π km/min

Therefore, the speed of the movement of the spotlight along the shore when the beam is at an angle of 60° with the shoreline is 2π km/min.

To know more about angular speed click here: brainly.com/question/29058152

#SPJ11

You are performing a two-tailed test with test statistic z = 1.947, find the p-value accurate to 4 decimal places. p-value= Submit Question

Answers

A two-tailed test is performed. The p-value for a two-tailed test with a test statistic z = 1.947 is approximately 0.0511.

In hypothesis testing, the p-value is the probability of obtaining a test statistic as extreme as, or more extreme than, the observed test statistic, assuming the null hypothesis is true. In a two-tailed test, we are interested in deviations in both directions from the null hypothesis.

The p-value, the area under the standard normal distribution curve beyond the observed test statistic in both tails. Since the test statistic is positive (z = 1.947), we calculate the area to the right of the test statistic.

Using a standard normal distribution table or a calculator, find the area to the right of z = 1.947 is approximately 0.0255. To find the area in the left tail, we subtract this value from 0.5 (since the total area under the curve is 1).

P-value = 2 * (1 - 0.0255) ≈ 0.0511

Therefore, the p-value for this two-tailed test is approximately 0.0511, accurate to 4 decimal places.

To know more about p-values refer here:

https://brainly.com/question/30461126#

#SPJ11

easy prob pls help i need

Answers

The dimensions of the rectangular poster are 9 inches by 22 inches.

Let's assume the width of the rectangular poster is x inches.

According to the given information, the length of the poster is 4 more inches than two times its width. So, the length can be expressed as 2x + 4 inches.

The formula for the area of a rectangle is length × width. In this case, the area is given as 198 square inches.

Therefore, we have the equation:

(2x + 4) × x = 198

Expanding the equation:

[tex]2x^2 + 4x = 198[/tex]

Rearranging the equation to standard quadratic form:

[tex]2x^2 + 4x - 198 = 0[/tex]

To solve this quadratic equation, we can use factoring, completing the square, or the quadratic formula. Let's use the quadratic formula:

x = (-b ± √[tex](b^2 - 4ac[/tex])) / (2a)

Plugging in the values:

x = (-4 ± √[tex](4^2 - 4(2)(-198)))[/tex] / (2(2))

x = (-4 ± √(16 + 1584)) / 4

x = (-4 ± √1600) / 4

x = (-4 ± 40) / 4

Simplifying:

x = (-4 + 40) / 4 = 9

x = (-4 - 40) / 4 = -11

Since we are dealing with dimensions, the width cannot be negative. Therefore, the width of the poster is 9 inches.

Substituting the value of x back into the length equation:

Length = 2x + 4 = 2(9) + 4 = 18 + 4 = 22 inches

For more such questions on rectangular  visit:

https://brainly.com/question/2607596

#SPJ8

given the geometric sequence an = 2(−3)n − 1, which of the following values for n lies in the appropriate domain for n? (1 point) a.n = 1 b.n = 0 c.n = −1 they all lie in the domain

Answers

Among the given values for n, only n = 1 lies in the appropriate domain for the geometric sequence an = 2(−3)n − 1.

In a geometric sequence, the domain for n typically consists of all integers. However, when considering the given sequence an = 2(−3)n − 1, we can observe that the exponent on -3 is n - 1. This means that n must be a positive integer to ensure a valid exponent.

For option a, n = 1, the resulting exponent would be 1 - 1 = 0, which is valid.

For option b, n = 0, the resulting exponent would be 0 - 1 = -1, which is not a positive integer and falls outside the appropriate domain.

For option c, n = -1, the resulting exponent would be -1 - 1 = -2, which is also not a positive integer and falls outside the appropriate domain.

Therefore, only option a, n = 1, lies in the appropriate domain for the given geometric sequence.

Learn more about geometric sequence here:

https://brainly.com/question/27852674

#SPJ11

Determine if the lines are distinct parallel lines, skew, or the same line. r1​(t)=⟨3t+5,−3t−5,2t−2⟩r2​(t)=⟨11−6t,6t−11,2−4t⟩​ Choose the correct answer. The lines are the same line. The lines are skew. The lines are parallel

Answers

Let's first write the vector equation of the two lines r1​ and r2​. r1​(t)=⟨3t+5,−3t−5,2t−2⟩r2​(t)=⟨11−6t,6t−11,2−4t⟩

​The direction vector for r1​ will be (3,-3,2) and the direction vector for r2​ will be (-6,6,-4).If the dot product of two direction vectors is zero, then the lines are orthogonal or perpendicular. But here, the dot product of the direction vectors is -18 which is not equal to 0.

Therefore, the lines are not perpendicular or orthogonal. If the lines are not perpendicular, then we can tell if the lines are distinct parallel lines or skew lines by comparing their direction vectors. Here, we see that the direction vectors are not multiples of each other.So, the lines are skew lines. Choice: The lines are skew.

To know more about least common multiple visit:

https://brainly.com/question/30060162

#SPJ11

Twice a number increased by 4 is at least 10 more than the number
Define a variable, write an inequality, and solve each problem. Check your solution.

Answers

Twice a number (2x) increased by 4 is at least 10 more than the number (x) 2x + 4 ≥ x + 102x - x ≥ 10 - 42x ≥ 6x ≥ 3, Thus, the solution is x ≥ 3

Problem Twice a number increased by 4 is at least 10 more than the number

Solution: Let's define a variable x.

Let the number be x

According to the problem statement,

Twice a number (2x) increased by 4 is at least 10 more than the number (x) 2x + 4 ≥ x + 102x - x ≥ 10 - 42x ≥ 6x ≥ 3

Thus, the solution is x ≥ 3

Let's check whether our solution is correct or not.

Taking x = 3 in the inequality 2x + 4 ≥ x + 102(3) + 4 ≥ (3) + 104 + 6 ≥ 106 ≥ 10

Yes, the inequality holds true.

Therefore, our solution is correct.

To know more about variable visit:

https://brainly.com/question/15078630

#SPJ11

x is a normally distributed random variable with a mean of 24 and a standard deviation of 6. The probability that x is less than 11.5 is
a. 0.9814.
b. 0.0076.
c. 0.9924.
d. 0.0186.

Answers

Therefore, the probability that X is less than 11.5 is approximately 0.0186. So the correct option is (d) 0.0186.

To find the probability that X is less than 11.5, we can standardize the value using the z-score formula and then use the standard normal distribution table.

The z-score formula is given by:

z = (x - μ) / σ

Where:

x = the value we want to find the probability for (11.5 in this case)

μ = the mean of the distribution (24 in this case)

σ = the standard deviation of the distribution (6 in this case)

Substituting the values:

z = (11.5 - 24) / 6

z ≈ -2.0833

Now, we look up the corresponding area/probability in the standard normal distribution table for z = -2.0833. From the table, we find that the area to the left of z = -2.0833 is approximately 0.0186.

To know more about probability,

https://brainly.com/question/31439951

#SPJ11

evaluate the riemann sum for f(x) = 2x − 1, −6 ≤ x ≤ 4, with five subintervals, taking the sample points to be right endpoints.

Answers

The Riemann sum is a method of approximating the definite integral of a function using a sum of rectangles. To evaluate the Riemann sum for the function f(x) = 2x − 1, −6 ≤ x ≤ 4 with five subintervals, taking the sample points to be right endpoints, we will use the formula given below:∆x = (b – a)/nwhere b is the upper limit of integration, a is the lower limit of integration, and n is the number of subintervals.∆x = (4 – (-6))/5 = 2.

The width of each subinterval is ∆x = 2. We will evaluate the function at the right endpoint of each subinterval and multiply the result by the width of the subinterval. Then, we will add up all the resulting areas to get an approximate value of the definite integral.∫[−6, 4] f(x) dx ≈ 2[f(−6) + f(−4) + f(−2) + f(0) + f(2)]f(−6) = 2(−6) − 1 = −13f(−4) = 2(−4) − 1 = −9f(−2) = 2(−2) − 1 = −5f(0) = 2(0) − 1 = −1f(2) = 2(2) − 1 = 3∫[−6, 4] f(x) dx ≈ 2(−13 + (−9) + (−5) − 1 + 3)≈ 2(−25)≈ −50Thus, the approximate value of the definite integral of f(x) over [−6, 4] is −50.

To know more about integral visit :-

https://brainly.com/question/31059545

#SPJ11

find a power series representation for the function. f(x) = x2 (1 − 2x)2

Answers

The power series representation for the given function is therefore:- x2 + 2x3 - 4x4

In mathematics, a power series is a series that can be represented as an infinite sum of terms consisting of products of constants and variables raised to non-negative integer powers.

Power series are commonly used to represent functions as their sum and the series can then be manipulated to gain information about the function.

Power series can also be differentiated and integrated term by term within the radius of convergence.

For the function f(x) = x2(1 − 2x)2, we need to write it in a form that can be represented as a power series.

Let's start by factoring out x2 from the function:

f(x) = x2(1 − 2x)2

= x2(1 − 4x + 4x2)

Now we can multiply out the polynomial expression and write the function as a power series as shown below:

f(x) = x2(1 − 4x + 4x2)

= x2 − 4x3 + 4x4

By using the binomial theorem, we can also write the function as:

f(x) = x2(1 − 2x)2

= x2(1 − 2x)(1 − 2x)

= x2(1 − 2x) - x2(1 − 2x)2

= x2 - 2x3 - x2 + 4x3 - 4x4

= - x2 + 2x3 - 4x4

The power series representation for the given function is therefore:- x2 + 2x3 - 4x4

To know more about function visit:

https://brainly.com/question/30721594

#SPJ11

For this problem, carry at least four digits after the decimal in your calculations. Answers may vary slightly due to rounding Case studies showed that out of 10,579 convicts who escaped from certain

Answers

Out of 10,579 convicts who escaped from certain prisons, 8,023 were caught. The proportion of convicts who were caught is 0.759081964. We are to round the proportion to four decimal places, which gives 0.7591. Hence, the percentage of convicts who were caught is 75.91%.

First, the proportion of convicts who were caught is obtained by dividing the number of convicts who were caught by the total number of convicts who escaped.

This gives;Proportion = Number of convicts caught / Total number of convicts escaped

Proportion = 8023 / 10579Proportion = 0.759081964

Rounding the proportion to four decimal places gives 0.7591.

Finally, the percentage of convicts who were caught is obtained by multiplying the proportion by 100%. This gives;Percentage = Proportion x 100%

Percentage = 0.7591 x 100%Percentage = 75.91%Therefore, the percentage of convicts who were caught is 75.91%.

Summary:The proportion of convicts who were caught is 0.759081964. Rounding the proportion to four decimal places gives 0.7591. Hence, the percentage of convicts who were caught is 75.91%.

Learn more about percentage click here:

https://brainly.com/question/24877689

#SPJ11

Test the polar equation for symmetry with respect to the polar axis, the pole, and the line θ = π 2 . (Select all that apply.) r^2 = 4 sin(θ) To Test for Symmetry: 1.) If a polar equation is unchanged when we replace θ by - θ , then the graph is symmetric about the polar axis. 2.) If the equation is unchanged when we replace r by -r, or θ by θ + π, then the graph is symmetric about the pole. 3.) If the equation is unchanged when we replace with theta by π-θ, then the graph is symmetric about the vertical line θ = π/ 2 (the y- axis).

Answers

The polar equation [tex]r^2[/tex] = 4 sin(θ) exhibits symmetry with respect to the polar axis and the pole, but not with respect to the line θ = π/2.

1. Symmetry with respect to the polar axis: To test for symmetry about the polar axis, we replace θ with -θ in the equation. In this case, replacing θ with -θ gives us [tex]r^2[/tex] = 4 sin(-θ). Since sin(-θ) = -sin(θ), the equation becomes [tex]r^2[/tex] = -4 sin(θ). Since the equation changes when we replace θ with -θ, the graph is not symmetric about the polar axis.

2. Symmetry with respect to the pole: To test for symmetry about the pole, we replace r with -r in the equation. Replacing r with -r gives us

[tex](-r)^2[/tex] = 4 sin(θ), which simplifies to [tex]r^2[/tex] = 4 sin(θ). Since the equation remains unchanged, the graph is symmetric about the pole.

3. Symmetry with respect to the line θ = π/2: To test for symmetry about the line θ = π/2 (the y-axis), we replace θ with π - θ in the equation. Substituting π - θ for θ in the equation [tex]r^2[/tex] = 4 sin(θ), we get [tex]r^2[/tex] = 4 sin(π - θ). Since sin(π - θ) = sinθ, the equation remains unchanged. Therefore, the graph is symmetric about the line θ = π/2.

In conclusion, the polar equation [tex]r^2[/tex] = 4 sin(θ) exhibits symmetry with respect to the polar axis and the pole, but not with respect to the line θ = π/2.

Learn more about polar equation here:

https://brainly.com/question/29083133

#SPJ11

Question 2
Not yet answered
Marked out of 6.00
Flag question
Question text
-
A normal population has a mean of 21.0 and a standard deviation
of 6.0.
(a)
Compute the z value associated with

Answers

You have a specific data point, x, for which you want to calculate the z-value. Substitute the values into the formula to compute the z-value.

To compute the z-value associated with a given data point in a normal distribution, you can use the formula:

z = (x - μ) / σ

where:

z is the z-value

x is the data point

μ is the mean of the population

σ is the standard deviation of the population

In this case, the given information is:

Mean (μ) = 21.0

Standard Deviation (σ) = 6.0

Learn more about compute here:

https://brainly.com/question/32548335

#SPJ11

B. Cans of soda vary slightly in weight. Given below are the
measured weights of nine​ cans, in pounds.
0.8159
0.8192
0.8142
0.8164
0.8172
0.7902
0.8142
0.8123
0

Answers

Answer: 9 mean

Step-by-step explanation: Given data Xi 0.8159 0.8192 0.8142 0.8164 0.8172 0.7902 0.8142 0.8123 0.8139 1) n=total number of tin =9 mean =

The mean weight of the cans is approximately 0.6444 pounds, the median weight is approximately 0.81505 pounds, and the mode weight is approximately 0.8142 pounds.

The given weights of nine cans of soda in pounds are as follows:

0.8159, 0.8192, 0.8142, 0.8164, 0.8172, 0.7902, 0.8142, 0.8123, and 0.

To analyze the data, we can calculate the mean weight of the cans by adding all the weights and dividing by the total number of cans:

Mean = (0.8159 + 0.8192 + 0.8142 + 0.8164 + 0.8172 + 0.7902 + 0.8142 + 0.8123 + 0) / 9

Mean = 5.7996 / 9

Mean = 0.6444 pounds

Therefore, the mean weight of the cans is approximately equal to 0.6444 pounds.

Next, we can calculate the median weight of the cans by arranging them in ascending order and finding the middle value:

Arranging the weights in ascending order:

0, 0.7902, 0.8123, 0.8142, 0.8142, 0.8159, 0.8164, 0.8172, and 0.8192

Since we have an even number of values, we take the average of the two middle values:

Median = (0.8142 + 0.8159) / 2

Median = 1.6301 / 2

Median = 0.81505 pounds

Therefore, the median weight of the cans is approximately equal to 0.81505 pounds.

Finally, we can calculate the mode weight of the cans by finding the most frequently occurring value:

The mode weight is equal to 0.8142 pounds as it appears twice in the given data.

To know more about mean weight refer here:

https://brainly.com/question/32750508#

#SPJ11

Find the Z-score such that the area under the standard normal curve to the right is 0.32 Click the icon to view a table of areas under the normal curve. The approximate Z-score that corresponds to a right tail area of 0.32 is 0.7517 (Round to two decimal places as needed.)

Answers

The Z-score corresponding to a right tail area of 0.32 is approximately 0.75 (rounded to two decimal places).

Find the Z-score such that the area under the standard normal curve to the right is 0.32 Click the icon to view a table of areas under the normal curve. The approximate Z-score that corresponds to a right tail area of 0.32 is 0.7517 (Round to two decimal places as needed.)

The given area is a right-tail area, so we will find the value of Z that corresponds to 0.68 of the standard normal curve.

Step-by-step explanation:

The area under a standard normal curve is 1. The Z-score corresponding to the right-tail area of 0.32 is 0.7517 (rounded to four decimal places).Since this is a right-tail area, we will use the positive version of the Z-score (the negative version of the Z-score corresponds to a left-tail area).

Therefore, the Z-score corresponding to a right tail area of 0.32 is approximately 0.75 (rounded to two decimal places).

To know more about curve visit:

https://brainly.com/question/26460726

#SPJ11

14 pts Question 2 Indicate whether the statement is True or False a) A probability of 2.5 indicates that the event is very likely to happen but it is not certain. [Select] b) If two events A and B are

Answers

The probability is defined as the likelihood of a particular event taking place. The probability scale ranges from 0 to 1, with 0 indicating that the event is impossible and 1 indicating that it is certain.

In this context, the statement "A probability of 2.5 indicates that the event is very likely to happen but it is not certain" is false. It is because the probability scale ranges from 0 to 1, with no probabilities beyond this range.

Therefore, a probability of 2.5 is impossible.In addition, if two events A and B are independent, then the probability of both A and B happening is obtained by multiplying their probabilities. If two events are dependent, however, their joint probability is calculated differently.

To know more about probability, visit:

https://brainly.com/question/12629667

#SPJ11

(a) What is an alternating series? An alternating series is a Select-- whose terms are --Select-- (b) Under what conditions does an alternating series converge? An alternating series į an- (-1) - 1b, where bp = lanl, converges if 0 < ba+15 b, for all n, and lim bn = n=1 n = 1 (c) If these conditions are satisfied, what can you say about the remainder after n terms? The error involved in using the partial sum Sn as an approximation to the total sum s is the --Select-- v Rp = 5 - Sn and the size of the error is -Select- bn + 1

Answers

If the conditions for convergence are satisfied, the remainder after n terms is bounded by the absolute value of the next term, |bn+1|.

If an alternating series converges, what can be said about the remainder after n terms?

What is an alternating series? An alternating series is a series whose terms are alternately positive and negative.

Under what conditions does an alternating series converge? An alternating series, given by the form Σ(-1)^(n-1) * bn, where bn = |an|, converges if 0 < bn+1 ≤ bn for all n, and lim bn = 0 as n approaches infinity.

If these conditions are satisfied, what can you say about the remainder after n terms?

The error involved in using the partial sum Sn as an approximation to the total sum s is the absolute value of the remainder Rn = |s - Sn|, and the size of the error is bounded by the absolute value of the next term in the series, |bn+1|.

Learn more about convergence

brainly.com/question/29258536

#SPJ11

the convergence rate between the two plates is 5 mm/yr (millimeters per year). in 20 million years from now, where on the red number line will the observatory be?

Answers

Given that the convergence rate between the two plates is 5 mm/yr and the time period is 20 million years from now, we need to calculate the total distance between the two plates over this period. The position of the observatory in terms of the red number line will be displaced by a distance of 100,000,000 mm to the right of its initial position.

We know that the distance will be the product of convergence rate and time period. Hence,Total distance = Convergence rate × Time period= 5 mm/yr × 20,000,000 yr= 100,000,000 mmNow, we need to find the position of the observatory in terms of the red number line. We don't have any information about the initial position of the observatory.

Therefore, we can't determine its exact position.However, we can say that if the observatory is located on the red number line, then it will be displaced by a distance of 100,000,000 mm to the right of its initial position. This displacement is equivalent to 100,000 km or approximately 62,137 miles.In conclusion,

To know more about time period visit:

https://brainly.com/question/31824035

#SPJ11

Question 1 1 pts True or False The distribution of scores of 300 students on an easy test is expected to be skewed to the left. True False 1 pts Question 2 The distribution of scores on a nationally a

Answers

The distribution of scores of 300 students on an easy test is expected to be skewed to the left.The statement is True

:When a data is skewed to the left, the tail of the curve is longer on the left side than on the right side, indicating that most of the data lie to the right of the curve's midpoint. If a test is easy, we can assume that most of the students would do well on the test and score higher marks.

Therefore, the distribution would be skewed to the left. Hence, the given statement is True.

The distribution of scores of 300 students on an easy test is expected to be skewed to the left because most of the students would score higher marks on an easy test.

To know more about tail of the curve visit:

brainly.com/question/29803706

#SPJ11

how many rows and columns must a matrix a have in order to define a mapping from into by the rule t(x)ax?

Answers

A matrix with m rows and m columns is required in order to define a mapping from into by the rule t(x)ax, where m is a positive integer.

A matrix, a, is necessary in order to define a mapping from into by the rule t(x)ax.

Let's have a look at how many rows and columns are required to define this mapping.

In order to define a mapping from into by the rule t(x)ax, a should be a square matrix with the same number of rows and columns.

Therefore, a matrix with m rows and m columns is required in order to define a mapping from into by the rule t(x)ax, where m is a positive integer.

Know more about a matrix  here:

https://brainly.com/question/27929071

#SPJ11

A sample of size n = 10 is drawn from a population. The data is shown below. 66.8 58.2 83.3 83.3 44.2 83.3 76.4 54.3 65.2 62.9 What is the range of this data set? range = What is the standard deviatio

Answers

Answer:

25

Step-by-step explanation:

Answer:

Step-by-step explanation:

a. 66.8 58.2 83.3 83.3 44.2 83.3 76.4 54.3 65.2 62.9

Range = highest value - lowest

= 83.3 - 44.2 = 39.1.

b. Mean m = 677.9 / 10

= 67.8

Differences from the mean

= 66.8 - 67.8 = -1.0

-9.6

15.5

-23.6

15.5

15.5

8.6

-13.5

-2.6

-4.9

Now we sqare the above vales:

= 1 , 92.16, 240.25, 240.25, 240.25, 556.96, 73.96, 182.25, 6.76, 24.01

Now the sm of these is 1657.85

Now we divide this by 10 and find the sqare root

= √(165.785)

= 12.86.

Standrad deviation is 12.86.

Assume that population mean is to be estimated from the sample described. Use the sample results to approximate the margin of error and 95% confidence interval. n = 49, x=51.7 seconds, s = 6.2 seconds

Answers

Therefore, the 95% confidence interval for the population mean is approximately 49.969 seconds to 53.431 seconds.

To estimate the population mean, the margin of error can be approximated as the critical value (Z*) multiplied by the standard error (s/√(n)). For a 95% confidence level, Z* is approximately 1.96.

Using the given sample results:

n = 49

x = 51.7 seconds (sample mean)

s = 6.2 seconds (sample standard deviation)

The standard error (SE) is calculated as s/√(n):

SE = 6.2 / √(49)

≈ 0.883 seconds

The margin of error (ME) is then calculated as Z * SE:

ME = 1.96 * 0.883

≈ 1.731 seconds

The 95% confidence interval is calculated by subtracting and adding the margin of error to the sample mean:

95% Confidence Interval = (x - ME, x + ME)

= (51.7 - 1.731, 51.7 + 1.731)

= (49.969, 53.431)

To know more about confidence interval,

https://brainly.com/question/11972637

#SPJ11

A sample of 3 different calculators is randomly selected from a group containing 10 that are defective and 5 that have no defects. Assume that the sample is taken with replacement. What is the probability that at least one of the calculators is defective? Express your answer as a percentage rounded to the nearest hundredth without the % sign.

Answers

The probability that at least one calculator is defective is approximately 96.30%.

To find the probability that at least one calculator is defective, we need to calculate the probability that all three selected calculators are not defective and subtract it from 1.

The probability of selecting a calculator without defects is

[tex]\frac{5}{(10+5)} = \frac{5}{15 }[/tex]

          [tex]= \frac{1}{3}[/tex]

Since the selection is made with replacement, the probability of selecting three calculators without defects in a row is

[tex](\frac{1}{3})^3=\frac{1}{27}.[/tex]

Since, the probability of at least one calculator being defective is

[tex]1 -\frac{1}{27} =\frac{26}{27}[/tex]

To express this as a percentage rounded to the nearest hundredth, we multiply the probability by

[tex]100: (\frac{26}{27})\times 100 = 96.30[/tex]

Therefore, the probability that at least one calculator is defective is approximately 96.30%.

For such more questions on probability

https://brainly.com/question/25839839

#SPJ11

estimate the error. (round your answer to eight decimal places.) r10 ≤ t 1 3x dx 10 =

Answers

To estimate the error, we need to use the following formula;Where a is the lower limit of integration, b is the upper limit of integration, and M is the maximum value of the absolute value of f′′(x) in the interval [a,b].

Here, r = 10, t = 13x, and we need to find the error in approximating the integral of the given function f(x) = r / t by the third-degree Taylor polynomial T3(x) about x = 1.Let's start by finding f′′(x) as follows;Differentiating the function f(x) = r / t twice with respect to x gives;Now, let's find the maximum value of the absolute value of f′′(x) in the interval [1,10] as follows;Substituting the values of x in the expression for f′′(x), we get;Therefore, the maximum value of the absolute value of f′′(x) in the interval [1,10] is 0.008854214.

Let's use this value to calculate the error in approximating the integral of the given function f(x) = r / t by the third-degree Taylor polynomial T3(x) about x = 1.Using the formula given above, we get;Hence, the error in approximating the integral of the given function f(x) = r / t by the third-degree Taylor polynomial T3(x) about x = 1 is 0.00000806 (rounded to eight decimal places).Therefore, the estimated error is 0.00000806 (rounded to eight decimal places).

To Know more about Taylor polynomial visit:

brainly.com/question/30481013

#SPJ11

Other Questions
Suppose a histogram for a sample of data reveals that the data is has a long right tail. Which of the following is true regarding the relationship between mean and median? Mean = Median Mean Median Me Now that we are mostly through the semester I would like you all to take a look back on all of the artists and musical movements related to Rock and Roll and discuss which artists(s) and/or movement(s) you think are most relevant to today's Music Industry and why. Please be as specific as possible and give examples to support your claims. Discuss and debate.I need a 1-2 paragraph long of what it is asking please. Here are examples you can talk about. Please be detailed and specific:1.) Michael Jackson2.) The Beatles3.) Jimi Hendrix4.) Bob Dylan5.) David Bowie The study of business ethics is important to better understand all of the following exceptA. that a person's own moral philosophies and decision-making experience may not be sufficient to guide him or her in the business world. B. how and why people make ethical or unethical decisions. C. how to cope with conflicts between a person's own values and those of the organization in which he or she works. D. that business ethics is entirely an extension of an individual's own personal ethics. E. how to identify ethical issues arising in the business world. Which of the following from among the independent, dependent and moderating variables is a confound in an experimental study? Multiple Choice The independent variable The dependent variable The moderating variable All three variables are confounding variables O None of the three variables are confounding variables Describe the situation of a changing economy in the Canadian North, including any implications for Arctic food security. Make sure to add and apply geographic concepts of human geography to your answer. The statement of changes in retained earnings for the year shows:a. the retained earnings balance at the beginning of the year.b. amounts received from the sale of additional common stock during the year.c. extraordinary gains or losses during the year.d. the effect of a stock split during the year. the environment includes the interactions between domestic and foreign environmental forces, or between sets of foreign environmental forces when an affiliate in one country does business with customers in another. (Working with a statement of cash flows) Given the information in the popup window, prepare a statement of cash flows Cat) Complete the operating activities part of the statement of cash flows: (Round to the nearest dollar. NOTE: Input cash inflows as positive values and cash outflows as negative values) Statement of Cash Flows Cash Flows from Operating Activities Adjustments Dividends Increase in common stock Increase in accounts receivable Increase in inventories Operating income Increase in accounts payable Interest expense Depreciation expense. $25 27 65 5 215 40 50 20 Depreciation expense Increase in bank debt Increase in accrued expenses Increase in gross fixed assets Income taxes 20 48 15 55 45 (Click on the icon located on the top-right corner of the data table above in order to copy its contents into a spreadsheet.) Ask Luker Corporation uses a process costing system. The company had $179,500 of beginning Finished Goods Inventory on October 1. It transferred in $856,000 of units completed during the period. The ending Finished Goods Inventory balance on October 31 was $177,200. The entry to account for the cost of goods manufactured during October is: Multiple Choice O Debit Cost of Goods Sold $856,000; credit Finished Goods Inventory $856,000. Debit Cost of Goods Sold $858,300; credit Work in Process Inventory $858,300. Debit Finished Goods Inventory $856,000; credit Work in Process Inventory $856,000. Debit Finished Goods Inventory $177,200; credit Cost of Goods Sold $177,200. Debit Cost of Goods Sold $858,300; credit Finished Goods Inventory $858,300. Opening Inventory350Purchases2900Purchases Discounts5Purchases Returns and Allowances19Transportation-In107Ending inventory amounts to $434.Required: Calculate cost of goods sold. "One of the basic precepts in contract law is that any bargain struck must be fair to be enforceable." Explain the accuracy of that statement. Point our to the legal principles connected with this statement. If there are constant returns to scale, how is the production function written? Y/LA F(1, K/L, H/L, N/L) xY= 2 x A F(L, K, H, N) XL = A F(1,Y, K, H, N) Y/L A F(XL, XK, XH, XN) A person throws a ball upward into the air with an initial velocity of 15 m/s. Calculatea) how high it goes?b) how long the ball is in the air before it comes back ?c) how much time it takes for the ball to reach the maximum height? which of the following substances is likely to have the highest standard entropy in the liquid state?a. F2b. CH3OHc. C8H18d. CH2CH2 an iot device will monitor information from the environment. a. true b. false 1) example for question 1. November 1, 2015/ MSN money. com this is how you should answer question #12) I need you to give me a three sentence summary3) Example for question #3. Economic growth- the increase in productive capacity of an economic (p.24)question 4) for example. Economic growth is etc. how much work must you do to push a 11.0 kg block of steel across a steel table ( k = 0.60) at a steady speed of 1.20 m/s for 4.00 s ? Coopers Ltd is a renown domestic company dealing in household electrical appliances. It was a market leader in this industry until two years ago when sales started dropping. You are the Research and Development officer at Coopers and you have been tasked to conduct research on the satisfaction levels of your customers. Your sample size is 100 respondents comprising of 60 women and 40 men as the analysis is based on gender. Using cross tabulation as your data analysis method, illustrate with a contingency table the levels of customer satisfaction. (15 marks) b) Which research method widely uses cross tabulation and why? What is the approximate value of this logarithmic expression?log3 16 What is the fixed overhead spending variance? Multiple Choice 1)The difference between the flexible budget for variable overhead based on inputs and the flexible budget for variable overhead based on outputs 2)The difference between actual fixed overhead costs for the period and the standard fixed overhead costs applied to production based on a standard fixed overhead application rate. 3)The difference between budgeted (lump-sum) fixed overhead cost for the period and the standard fixed overhead cost applied to production 4)The difference between budgeted and actual fixed factory overhead costs for a period. The output activity level used to establish the predetermined fixed overhead application rate.