Step-by-step explanation:
if you're calculating the area of that shape?
first, you calculate the area of triangle
Area of triangle =1/2(8-(-4))(9-5)=1/2(12)(4)=6×4=24
Area of rectangle =(8-(-4))(5-(-5))=(12)(10)=120
the total area will be 120+24=144
Problem 6: (10 pts) In plane R², we define the taricab metric: d((₁, ₁), (2, 2)) = *₁-*₂|+|1- 92. Show that d is a metric. (Here is the absolute value sign.)
The taxicab metric, d((x₁, y₁), (x₂, y₂)) = |x₁ - x₂| + |y₁ - y₂|, is a metric in R².
Is the function f(x) = 2x + 3 a linear function?To prove that the taxicab metric, d((x₁, y₁), (x₂, y₂)) = |x₁ - x₂| + |y₁ - y₂|, is a metric in R², we need to demonstrate that it satisfies the three properties: non-negativity, identity of indiscernibles, and triangle inequality.
Firstly, the non-negativity property is satisfied since the absolute value of any real number is non-negative.
Secondly, the identity of indiscernibles property holds because if two points have the same coordinates, the absolute differences in the x and y directions will be zero, resulting in a zero distance.
Lastly, the triangle inequality property is fulfilled because the sum of two absolute values is always greater than or equal to the absolute value of their sum.
Therefore, the taxicab metric satisfies all the necessary conditions to be considered a metric in R².
Learn more about taxicab metric
brainly.com/question/33109318
#SPJ11
10 A virus is spreading such that the number of people infected increases by 4% a day. Initially 100 people were diagnosed with the virus. How many days will it be before 1000 are infected?
It will take approximately 35 days before 1000 people are infected.
Initially, 100 people were diagnosed with the virus.
A virus is spreading at a rate of 4% each day.
Let us calculate how many days it will take for 1000 people to be infected.
Let us assume that x represents the number of days it will take for 1000 people to be infected.
Since the number of people infected increases by 4% each day, after one day, the number of people infected will be 100 × (1 + 0.04) = 104 people.
After two days, the number of people infected will be 104 × (1 + 0.04) = 108.16 people
.After three days, the number of people infected will be 108.16 × (1 + 0.04) = 112.4864 people.
Thus, we can say that the number of people infected after x days is given by 100 × (1 + 0.04)ⁿ.
So, we can write 1000 = 100 × (1 + 0.04)ⁿ.
In order to solve for n, we need to isolate it.
Let us divide both sides by 100.
So, we have:10 = (1 + 0.04)ⁿ
We can then take the logarithm of both sides and solve for n.
Thus, we have:
log 10 = n log (1 + 0.04)
Let us divide both sides by log (1 + 0.04).
Therefore:
n = log 10 / log (1 + 0.04)
Using a calculator, we get:
n = 35.33 days
Rounding this off, we get that it will take about 35 days for 1000 people to be infected.
To learn more on logarithm:
https://brainly.com/question/30340014
#SPJ11
An augmented matrix for a system of linear equations in x, y, and z is given. Find the solution of the system. 2 100 0 1 0 (x, y, z) = 0 0 1 -3 N|GT| Need Help? Read It × )
The solution to the given system of linear equations is:
x = undetermined
y = undetermined
z = -3
To find the solution of the system of linear equations represented by the augmented matrix, we can use Gaussian elimination or row reduction.
Starting with the augmented matrix:
[ 2 100 0 | 1 ]
[ 0 0 1 | -3 ]
Let's perform row operations to simplify the matrix:
Row 2 multiplied by 2:
[ 2 100 0 | 1 ]
[ 0 0 2 | -6 ]
Row 1 subtracted by Row 2:
[ 2 100 0 | 1 ]
[ 0 0 2 | -6 ]
[ 2 100 0 | 7 ]
[ 0 0 2 | -6 ]
Row 1 divided by 2:
[ 1 50 0 | 7/2 ]
[ 0 0 2 | -6 ]
Now, let's analyze the simplified matrix. The system of equations can be written as:
1x + 50y + 0z = 7/2
0x + 0y + 2z = -6
From the second equation, we can solve for z:
2z = -6
z = -6/2
z = -3
Substituting z = -3 into the first equation:
x + 50y = 7/2
From here, we have an equation with two variables. To find a unique solution, we would need another equation or constraint. Without additional information, we cannot determine the specific values of x and y.
Learn more about linear equations
https://brainly.com/question/32634451
#SPJ11
Franklin made 2 2/5 quarts of hot chocolate. Each mug holds 3/5 of a quart. How many mugs will Franklin be able to fill?
Answer:
Franklin will be able to fill 4 mugs.
Step-by-step explanation:
We Know
Franklin made 2 2/5 quarts of hot chocolate.
2 2/5 = 12/5 = 2.4
Each mug holds 3/5 of a quart.
3/5 = 0.6
How many mugs will Franklin be able to fill?
We Take
2.4 ÷ 0.6 = 4 mugs
So, Franklin will be able to fill 4 mugs.
Decompose the function f(x)=√−x^2+11x−30 as a composition of a power function g(x) and a quadratic function h(x) : g(x)= h(x)= Give the formula for the reverse composition in its simplest form : h(g(x))= What is its domain? Dom(h(g(x)))= )
The domain of h(g(x)) is the set of all real-numbers such that g(x) =[tex]x^{\frac{1}{2} }[/tex] ≥ 0 that is Dom(h(g(x))) = [0, ∞) for the function f(x)=√−x^2+11x−30 as a composition of a power function g(x) and a quadratic function h(x) .
Given that, f(x) = √(−x² + 11x − 30).
We have to decompose the function f(x) as a composition of a power function g(x) and a quadratic function h(x).
Let g(x) be a power function of the form g(x) = xⁿ.
Let h(x) be a quadratic function of the form :
h(x) = ax² + bx + c.So,
we have to find the values of n, a, b, and c such that f(x) = h(g(x)).
We have, g(x) = xⁿ and
h(x) = ax² + bx + c.
Then, h(g(x)) = a(xⁿ)² + b(xⁿ) + c
= ax² + bx + c.
Put x = 0.
We get,c = h(0)
Also, f(0) = h(g(0))
= c
= - 30
From the given function, f(x) = √(−x² + 11x − 30),
we see that it is the composition of a power function and a quadratic function, as shown below:
f(x) = √(-(x - 6)(x - 5))
= √(-(x - 6))√(x - 5)
= [tex](x-6)^{\frac{1}{2} }[/tex][tex](x-5)^{\frac{1}{2} }[/tex]
Therefore, g(x) = [tex]x^{\frac{1}{2} }[/tex]
and h(x) = (x - 6) + (x - 5)
= 2x - 11.
So, f(x) = h(g(x))
m= 2([tex]x^{\frac{1}{2} }[/tex]) - 11
Therefore, h(g(x)) = 2([tex]x^{\frac{1}{2} }[/tex]) - 11
The domain of h(g(x)) is the set of all real numbers such that g(x) =[tex]x^{\frac{1}{2} }[/tex] ≥ 0.
Therefore, Dom(h(g(x))) = [0, ∞)
To know more about domain, visit:
brainly.com/question/28599653
#SPJ11
Can the equation \( x^{2}-3 y^{2}=2 \). be solved by the methods of this section using congruences \( (\bmod 3) \) and, if so, what is the solution? \( (\bmod 4) ?(\bmod 11) \) ?
The given quadratic equation x² - 3y² = 2 cannot be solved using congruences modulo 3, 4, or 11.
Modulo 3
We can observe that for any integer x, x² ≡ 0 or 1 (mod3) since the only possible residues for a square modulo 3 are 0 or 1. However, for 3y² the residues are 0, 3, and 2. Since 2 is not a quadratic residue modulo 3, there is no solution to the equation modulo 3.
Modulo 4
When taking squares modulo 4, we have 0² ≡ 0 (mod 4), 1² ≡ 1 (mod 4), 2² ≡ 0 (mod 4), and 3² ≡ 1 (mod 4). So, for x², the residues are 0 or 1, and for 3y², the residues are 0 or 3. Since 2 is not congruent to any quadratic residue modulo 4, there is no solution to the equation modulo 4.
Modulo 11:
To check if the equation has a solution modulo 11, we need to consider the quadratic residues modulo 11. The residues are: 0, 1, 4, 9, 5, 3. We can see that 2 is not congruent to any of these residues. Therefore, there is no solution to the equation modulo 11.
To know more about quadratic equation here
https://brainly.com/question/29269455
#SPJ4
The substitution best suited for computing the integral /1+4-² x=5+ √2tan 0 x=2+√5 sin 0 x=3 sin 0 x=3+ sin 0 is x=2+√5 sec
The integral is solved by substituting x = 2 + √5 secθ. The correct substitution option is B) -√5 secθ.
To solve the given integral ∫ (2 + √5 secθ) / (1 + 4x²) dx, we can substitute x = 2 + √5 secθ. This substitution simplifies the integral, transforming it into ∫ (2 + √5 secθ) / (1 + 4(2 + √5 secθ)²) dx. By expanding and simplifying, we get ∫ (2 + √5 secθ) / (21 + 4√5 secθ + 20 sec²θ) dx. This integral can then be solved using trigonometric identities and integration techniques. The correct option for the substitution is B) -√5 secθ.
Learn more about Integration here: brainly.com/question/31744185
#SPJ11
choose the right answer 3. Two pulleys connected by a belt rotate at speeds in inverse ratio to their diameters. If a 10 inch driver pulley rotates at 1800 rpm, what is the rotation rate of an 8 inch driven pulley? 7. A. B. Solve the equation given: A. 2250 rpm 2500 rpm B. 1 16 √4 C. D. 1440 rpm 1850 rpm 2 log b² + 2log b = log 8b² + log 2b C. D. 4 √16
3. The rotation rate of the 8-inch driven pulley is 2250 rpm (option A).
7. The solution to the equation is b ≈ 1.307 (option B).
Let's solve the given equations step by step:
3. Two pulleys connected by a belt rotate at speeds in inverse ratio to their diameters. If a 10-inch driver pulley rotates at 1800 rpm, what is the rotation rate of an 8-inch driven pulley?
The speed of rotation is inversely proportional to the diameter of the pulley. Therefore, we can set up the following equation:
(driver speed) * (driver diameter) = (driven speed) * (driven diameter)
Let's substitute the given values into the equation:
1800 rpm * 10 inches = (driven speed) * 8 inches
Simplifying the equation:
18000 = (driven speed) * 8
To find the driven speed, we divide both sides of the equation by 8:
18000 / 8 = driven speed
The rotation rate of the 8-inch driven pulley is:
driven speed = 2250 rpm
Therefore, the correct answer is A. 2250 rpm.
7. Solve the equation given: 2 log b² + 2 log b = log 8b² + log 2b
Let's simplify the equation step by step:
2 log b² + 2 log b = log 8b² + log 2b
Using the property of logarithms, we can rewrite the equation as:
log b²² + log b² = log (8b² * 2b)
Combining the logarithms on the left side:
log (b²² * b²) = log (8b² * 2b)
Simplifying the equation further:
log (b²⁴) = log (16b³)
Since the logarithm functions are equal, the arguments must also be equal:
b²⁴ = 16b³
Dividing both sides by b³:
b²¹ = 16
To solve for b, we take the 21st root of both sides:
b = [tex]√(16^(1/21))[/tex]
Calculating the value:
b ≈ 1.307
Therefore, the correct answer is B. √4.
Learn more about rotation
https://brainly.com/question/1571997
#SPJ11
Let W=span{[λ−1,1,3λ], [−7,λ+2,3λ−4]} for a real number λ. If [2,−3,λ] is orthogonal to the set W, find the value of λ. A. 1 B. −5/3
C. 4 D. 1/5
To find the value of λ, we need to determine when the vector [2, -3, λ] is orthogonal to the set W, where W = span{[λ−1, 1, 3λ], [−7, λ+2, 3λ−4]}.
Two vectors are orthogonal if their dot product is zero. Therefore, we need to calculate the dot product between [2, -3, λ] and the vectors in W.
First, let's find the vectors in W by substituting the given values of λ into the span:
For the first vector in W, [λ−1, 1, 3λ]:
[λ−1, 1, 3λ] = [2−1, 1, 3(2)] = [1, 1, 6]
For the second vector in W, [−7, λ+2, 3λ−4]:
[−7, λ+2, 3λ−4] = [2−1, -3(2)+2, λ+2, 3(2)−4] = [-7, -4, λ+2, 2]
Now, let's calculate the dot product between [2, -3, λ] and each vector in W.
Dot product with [1, 1, 6]:
(2)(1) + (-3)(1) + (λ)(6) = 2 - 3 + 6λ = 6λ - 1
Dot product with [-7, -4, λ+2, 2]:
(2)(-7) + (-3)(-4) + (λ)(λ+2) + (2)(2) = -14 + 12 + λ² + 2λ + 4 = λ² + 2λ - 6
Since [2, -3, λ] is orthogonal to the set W, both dot products must equal zero:
6λ - 1 = 0
λ² + 2λ - 6 = 0
To solve the first equation:
6λ = 1
λ = 1/6
To solve the second equation, we can factor it:
(λ - 1)(λ + 3) = 0
Therefore, the possible values for λ are:
λ = 1/6 and λ = -3
However, we need to check if λ = -3 satisfies the first equation as well:
6λ - 1 = 6(-3) - 1 = -18 - 1 = -19, which is not zero.
Therefore, the value of λ that makes [2, -3, λ] orthogonal to the set W is λ = 1/6.
So, the correct answer is D. 1/6.
Learn more about orthogonal-
https://brainly.com/question/30772550
#SPJ11
Consider the same firm with production function: q=f(L,K) = 20L +25K+5KL-0.03L² -0.02K² Make a diagram of the total product of labour, average product of labour, and marginal product of labour in the short run when K = 5. (It is ok if this diagram is not to scale.) Does this production function demonstrate increasing marginal returns due to specialization when L is low enough? How do you know?
The MP curve initially rises to its maximum value because of the specialized nature of the fixed capital, where each additional worker's productivity rises due to the marginal product of the fixed capital.
Production Function: q = f(L,K) = 20L + 25K + 5KL - 0.03L² - 0.02K²
Given, K = 5, i.e., capital is fixed. Therefore, the total product of labor, average product of labor, and marginal product of labor are:
TPL = f(L, K = 5) = 20L + 25 × 5 + 5L × 5 - 0.03L² - 0.02(5)²
= 20L + 125 + 25L - 0.03L² - 5
= -0.03L² + 45L + 120
APL = TPL / L, or APL = 20 + 125/L + 5K - 0.03L - 0.02K² / L
= 20 + 25 + 5 × 5 - 0.03L - 0.02(5)² / L
= 50 - 0.03L - 0.5 / L
= 49.5 - 0.03L / L
MP = ∂TPL / ∂L
= 20 + 25 - 0.06L - 0.02K²
= 45 - 0.06L
The following diagram illustrates the TP, MP, and AP curves:
Figure: Total Product (TP), Marginal Product (MP), and Average Product (AP) curves
The production function demonstrates increasing marginal returns due to specialization when L is low enough, i.e., when L ≤ 750. The marginal product curve initially increases and reaches a maximum value of 45 units of output when L = 416.67 units. When L > 416.67, MP decreases, and when L = 750 units, MP becomes zero.
The MP curve's initial increase demonstrates that the production function displays increasing marginal returns due to specialization when L is low enough. This is because when the capital is fixed, an additional unit of labor will benefit from the fixed capital and will increase production more than the previous one.
In other words, Because of the specialised nature of the fixed capital, the MP curve first climbs to its maximum value, where each additional worker's productivity rises due to the marginal product of the fixed capital.
The APL curve initially rises due to the MP curve's increase and then decreases when MP falls because of the diminishing marginal returns.
Learn more about average product
https://brainly.com/question/13128888
#SPJ11
Find the coordinates of G if F(1,3.5) is the midpoint of GJ and J has coordinates (6,-2).
The coordinates of point G are (3.5, 0.75).
The coordinates of point G can be found by using the midpoint formula. Given that F(1, 3.5) is the midpoint of GJ and J has coordinates (6, -2), we can calculate the coordinates of G as follows:
The midpoint formula states that the coordinates of the midpoint M between two points (x1, y1) and (x2, y2) can be found by taking the average of the x-coordinates and the average of the y-coordinates. Therefore, we can find the x-coordinate of G by taking the average of the x-coordinates of F and J, and the y-coordinate of G by taking the average of the y-coordinates of F and J.
x-coordinate of G = (x-coordinate of F + x-coordinate of J) / 2 = (1 + 6) / 2 = 7 / 2 = 3.5
y-coordinate of G = (y-coordinate of F + y-coordinate of J) / 2 = (3.5 + (-2)) / 2 = 1.5 / 2 = 0.75
Therefore, the coordinates of point G are (3.5, 0.75).
Learn more about midpoint here:
https://brainly.com/question/28667736
#SPJ11
11 Translating a sentence into a multi-step equation V Translate the sentence into an equation. Nine more than the quotient of a number and 3 is equal to 6. Use the variable c for the unknown number.
Translating a sentence into a multi-step equation gives : 9 + (c/3) = 6.
1. Identify the unknown number and assign a variable to it.
In this case, the unknown number is represented by the variable c.
2. Translate the sentence into an equation.
The sentence states "Nine more than the quotient of a number and 3 is equal to 6." We can break this down into two parts. First, we have the quotient of a number and 3, which can be represented as c/3. Then, we add nine more to this quotient, resulting in 9 + (c/3). Finally, we set this expression equal to 6.
3. Justify the equation.
The equation 9 + (c/3) = 6 translates the sentence accurately. It states that when we divide a number (represented by c) by 3 and add 9 to the quotient, the result is 6. By solving this equation, we can find the value of c that satisfies the given condition.
Learn more about translating a sentence visit
brainly.com/question/30411928
#SPJ11
Solve the Equation Ut -Uxx = 0, 0
u (0.t) = u (1, t) = 0, t0
and the initial conditions u(x,0) = sin xx, 0≤x≤1 Carry out the computations for two levels taking h=1/3, k=1/36
We have U0,j = U(m,j) = 0, Ui,0 = sin πxi, i = 0, 1, 2, …, m. We have h₂ = 1/9 and ∆t = k/h₂ = 1/4. Using the above formulae and values, we can obtain the numerical solution of the given equation for two levels.
Given, Ut -Uxx = 0, 0
u (0,t) = u (1, t) = 0, t ≥ 0
u(x,0) = sin πx, 0 ≤ x ≤ 1
To compute the solution for Ut -Uxx = 0, with the boundary conditions u (0.t) = u (1, t) = 0, t ≥ 0, and the initial conditions u(x,0) = sin πx, 0 ≤ x ≤ 1, we first discretize the given equation by forward finite difference for time and central finite difference for space, which is given by: Uni, j+1−Ui, j∆t=U(i−1)j−2Ui, j+U(i+1)jh₂ where i = 1, 2, …, m – 1, j = 0, 1, …, n.
Here, we have used the following notation: Ui,j denotes the numerical approximation of u(xi, tj), and ∆t and h are time and space steps, respectively. Also, we need to discretize the boundary condition, which is given by u (0.t) = u (1, t) = 0, t ≥ 0. Therefore, we have U0,j=Um,j=0 for all j = 0, 1, …, n.
Now, to obtain the solution, we need to compute the values of Ui, and j for all i and j. For that, we use the given initial condition, which is u(x,0) = sin πx, 0 ≤ x ≤ 1. Therefore, we have U0,j = U(m,j) = 0, Ui,0 = sin πxi, i = 0, 1, 2, …, m. Using the above expressions, we can compute the values of Ui, and j for all i and j. However, since the solution is given for two levels, we take h = 1/3 and k = 1/36. Therefore, we have h₂ = 1/9 and ∆t = k/h₂ = 1/4. Using the above formulae and values, we can obtain the numerical solution of the given equation for two levels.
Learn more about numerical approximation here:
https://brainly.com/question/33117679
#SPJ11
Let u = (1, 2, 3), v = (2, 2, -1), and w = (4, 0, −4). Find z, where 2u + v - w+ 3z = 0. z = (No Response)
z = -5.
To find the value of z, we can rearrange the equation 2u + v - w + 3z = 0:
2u + v - w + 3z = 0
Substituting the given values for u, v, and w:
2(1, 2, 3) + (2, 2, -1) - (4, 0, -4) + 3z = 0
Expanding the scalar multiplication:
(2, 4, 6) + (2, 2, -1) - (4, 0, -4) + 3z = 0
Simplifying each component:
(2 + 2 - 4) + (4 + 2 + 0) + (6 - 1 + 4) + 3z = 0
0 + 6 + 9 + 3z = 0
15 + 3z = 0
Subtracting 15 from both sides:
3z = -15
Dividing both sides by 3:
z = -15/3
Simplifying:
z = -5
Therefore, z = -5.
Learn more about equation here
https://brainly.com/question/24169758
#SPJ11
1) In the method,two independent variable are assumed to have;
a)Low collinearity
b)High collinearity
c)No collinearity
d)Perfect collinearity
2) If variance of coefficient cannot be applied, we cannot conduct test for;
a) Correlation
b) Determination
c)Significant
d) Residual term
1) In the method, two independent variable are assumed to have: (b) High collinearity
2) If variance of coefficient cannot be applied, we cannot conduct test for: (b) Determination
1. The method of least squares regression assumes that the independent variables are not perfectly correlated with each other. If two independent variables are perfectly correlated, then the least squares estimator will be biased. This is because the least squares estimator will try to fit the data as closely as possible, and if two independent variables are perfectly correlated, then any change in one variable will cause a change in the other variable. This will make it difficult for the least squares estimator to distinguish between the effects of the two variables.
2. The variance of coefficient is a measure of the uncertainty in the estimated coefficient. If the variance of coefficient is high, then we cannot be confident in the estimated coefficient. This means that we cannot be confident in the results of the test of determination.
The test of determination is a statistical test that is used to determine the proportion of the variance in the dependent variable that is explained by the independent variables. If the variance of coefficient is high, then we cannot be confident in the results of the test of determination, and we cannot conclude that the independent variables do a good job of explaining the variance in the dependent variable.
Here are some additional information about the two methods:
Least squares regression: Least squares regression is a statistical method that is used to fit a line to a set of data points. The line that is fit is the line that minimizes the sum of the squared residuals. The residuals are the difference between the observed values of the dependent variable and the predicted values of the dependent variable.
Test of determination: The test of determination is a statistical test that is used to determine the proportion of the variance in the dependent variable that is explained by the independent variables. The test is based on the coefficient of determination, which is a measure of the correlation between the independent variables and the dependent variable.
Learn more about variable here: brainly.com/question/15078630
#SPJ11
Build a function that models a relationship between two quantities.
Write a function that describes a relationship between two quantities.
A linear function can model a relationship between two quantities.
A linear function is a mathematical representation of a relationship between two variables that results in a straight-line graph. It is expressed in the form of y = mx + b, where y represents the dependent variable, x represents the independent variable, m represents the slope of the line, and b represents the y-intercept.
In a linear function, the relationship between the two quantities is constant and proportional. The slope of the line indicates the rate of change or the steepness of the relationship. If the slope is positive, it means that as the independent variable increases, the dependent variable also increases. Conversely, if the slope is negative, the dependent variable decreases as the independent variable increases.
The y-intercept represents the value of the dependent variable when the independent variable is zero. It provides a starting point for the relationship between the two quantities.
By using a linear function, we can easily analyze and predict the behavior of the two quantities involved. The linearity of the function allows us to determine the change in one variable based on the change in the other, making it a useful tool in various fields such as economics, physics, and finance.
Learn more about Quantities.
brainly.com/question/14581760
#SPJ11
You are planning a trip to Europe. you would like to visit 20 country, but you only have time yo visit 9 of them in how many ways can you choose which country you will visit
There are 167,960 ways to choose which countries to visit from a total of 20 countries when you can only visit 9 of them.
To calculate the number of ways you can choose which countries to visit from a total of 20 countries when you have time to visit only 9 of them, we can use the concept of combinations.
The number of ways to choose a subset of k elements from a set of n elements is given by the binomial coefficient, also known as "n choose k," denoted as C(n, k). The formula for C(n, k) is:
C(n, k) = n! / (k! * (n - k)!)
In this case, you want to choose 9 countries out of 20, so the number of ways to do this is:
C(20, 9) = 20! / (9! * (20 - 9)!)
Calculating the above expression:
C(20, 9) = (20 * 19 * 18 * 17 * 16 * 15 * 14 * 13 * 12) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1)
Simplifying the calculation:
C(20, 9) = 167,960
Therefore, there are 167,960 ways to choose which countries to visit from a total of 20 countries when you have time to visit only 9 of them.
To know more about combinations, refer to the link below:
https://brainly.com/question/30648446#
#SPJ11
If the distance covered by an object in time t is given by s(t)=t²+5t
, where s(t) is in meters and t is in seconds, what is the distance covered in the interval between 1 second and 5 seconds?
the vector
V1 = (-15, -15, 0, 6)
V2 = (-15, 0, -6, -3)
V3 = (10, -11, 0, -1)
in R4
are not linearly independent, that is, they are linearly dependent. This means there exists some real constants c1, c2, and cg where not all of them are zero, such that
C1V1+C2V2 + c3V3 = 0.
Your task is to use row reduction to determine these constants.
An example of such constants, in Matlab array notation, is
[c1, c2, c3] =
To determine the constants c1, c2, and c3 such that c1V1 + c2V2 + c3V3 = 0, we can set up an augmented matrix and perform row reduction to find the values.
The augmented matrix representing the system of equations is:
[ -15 -15 0 6 | 0 ]
[ -15 0 -6 -3 | 0 ]
[ 10 -11 0 -1 | 0 ]
Applying row reduction operations to this matrix, we aim to transform it into a reduced row-echelon form.
Using Gaussian elimination, we can perform the following row operations:
Row 2 = Row 2 - Row 1
Row 3 = Row 3 + (3/2)Row 1
[ -15 -15 0 6 | 0 ]
[ 0 15 -6 -9 | 0 ]
[ 0 -14 0 2 | 0 ]
Next, we can perform additional row operations:
Row 3 = Row 3 + (14/15)Row 2
[ -15 -15 0 6 | 0 ]
[ 0 15 -6 -9 | 0 ]
[ 0 0 0 0 | 0 ]
From the row-reduced form, we can see that the last row represents the equation 0 = 0, which does not provide any additional information.
From the above row-reduction steps, we can see that the variables c1 and c2 are leading variables, while c3 is a free variable. Therefore, c1 and c2 can be expressed in terms of c3.
c1 = -2c3
c2 = -3c3
Hence, the constants c1, c2, and c3 are related by:
[c1, c2, c3] = [-2c3, -3c3, c3]
In Matlab array notation, this can be represented as:
[c1, c2, c3] = [-2c3, -3c3, c3]
Learn more about linearly independent here
https://brainly.com/question/14351372
#SPJ11
Consider a discrete random variable X which takes 3 values {1,2,3} with probabilities 0.1,0.2,0.7, respectively. What is E(X) ? What is Var(X) ?
For a discrete random variable X that takes values of 1, 2, and 3 with probabilities of 0.1, 0.2, and 0.7, respectively, the expected value of X is 2.4 and the variance of X is 0.412.
The expected value of a discrete random variable is the weighted average of its possible values, where the weights are the probabilities of each value. Therefore, we have:
E(X) = 1(0.1) + 2(0.2) + 3(0.7) = 2.4
To find the variance of a discrete random variable, we first need to calculate the squared deviations of each value from the mean:
(1 - 2.4)^2 = 1.96
(2 - 2.4)^2 = 0.16
(3 - 2.4)^2 = 0.36
Then, we take the weighted average of these squared deviations, where the weights are the probabilities of each value:
Var(X) = 0.1(1.96) + 0.2(0.16) + 0.7(0.36) = 0.412
Therefore, the expected value of X is 2.4 and the variance of X is 0.412.
to know more about weighted average, visit:
brainly.com/question/28334973
#SPJ11
find the APY corresponding to the following nominal rate. ( 7 % \) compounded semiannually The APY is ( % ). (Type an integer or a decimal. Round to the nearest hundredth as needed. Do not round until the final answer
The APY corresponding to a nominal rate of 7% compounded semiannually is approximately 7.12%.
To calculate the Annual Percentage Yield (APY) corresponding to a nominal rate of 7% compounded semiannually, we can use the formula:
APY = (1 + (Nominal Rate / Number of compounding periods))^(Number of compounding periods) - 1
Nominal rate = 7%
Number of compounding periods = 2 (semiannually)
Let's calculate the APY:
APY = (1 + (0.07 / 2))^2 - 1
APY = (1 + 0.035)^2 - 1
APY = 1.035^2 - 1
APY = 1.071225 - 1
APY ≈ 0.0712 or 7.12%
The APY, then, is around 7.12% and corresponds to a nominal rate of 7% compounded semiannually.
Learn more about nominal rate
https://brainly.com/question/31580933
#SPJ11
A building is constructed using bricks that can be modeled as right rectangular prisms with a dimension of 7 1/2 in by 2 3/4 in by 2 1/2 in. If the bricks weigh 0.04 ounces per cubic inch and cost $0.09 per ounce, find the cost of 950 bricks. Round your answer to the nearest cent.
The cost of 950 bricks, rounded to the nearest cent, is approximately $1410.63.
To find the cost of 950 bricks, we need to calculate the total weight of the bricks and then multiply it by the cost per ounce. Let's break down the process step by step.
Calculate the volume of one brick:
The dimensions of the brick are given as 7 1/2 in by 2 3/4 in by 2 1/2 in.
Convert the mixed numbers to improper fractions:
7 1/2 = (2 * 7 + 1) / 2 = 15/2
2 3/4 = (4 * 2 + 3) / 4 = 11/4
2 1/2 = (2 * 2 + 1) / 2 = 5/2
Volume = length × width × height
= (15/2) × (11/4) × (5/2)
= 825/8 cubic inches
Calculate the total weight of one brick:
The weight of one cubic inch of brick is given as 0.04 ounces.
Weight of one brick = Volume × Weight per cubic inch
= (825/8) × 0.04
= 33/8 ounces
Calculate the total weight of 950 bricks:
Total weight = Weight of one brick × Number of bricks
= (33/8) × 950
= 31350/8 ounces
Calculate the cost of the total weight of bricks:
The cost per ounce is given as $0.09.
Cost of 950 bricks = Total weight × Cost per ounce
= (31350/8) × 0.09
= 2821.25/2 dollars
Rounding the answer to the nearest cent, we have:
Cost of 950 bricks ≈ $1410.63
Therefore, the cost of 950 bricks, rounded to the nearest cent, is approximately $1410.63.
for such more question on cost
https://brainly.com/question/25109150
#SPJ8
Simplify if possible. 3 √2 + 4 ³√2
The simplified form of 3√2 + 4³√2 is 11√2.
To simplify 3√2+4³√2 we will use the formula for combining like radicals, which is a√m + b√m = (a+b)√m.
So, 3√2 + 4³√2 = 3√2 + 4√8
Now, we will try to simplify the √8.
So, we will divide 8 by its largest perfect square factor. The largest perfect square factor of 8 is 4, as 4*2=8.√8 = √(4*2) = √4 * √2 = 2√2
We substitute this in 3√2 + 4√8 = 3√2 + 4*2√2 = 3√2 + 8√2 = (3+8)√2 = 11√2
Therefore, the simplified form of 3√2 + 4³√2 is 11√2.
Know more about perfect square here,
https://brainly.com/question/385286
#SPJ11
Two cars are travelling along a freeway. at time = 0 seconds, one of the cars is 50 feet ahead of the other. the lead car is accelerating in such a way that the distance, , in feet between the two cars at any time after = 0 seconds is 50 more than twice the square of . write down a mathematical relationship between the distance, , in feet between the two cars and the time, , in seconds.
The relationship between the distance S and time t is:2t^2 = (1/2)a1t^2 + v2t + (1/2)a2t^2.
Let the velocity and acceleration of the first car be v1 and a1 respectively.The velocity of the second car be v2 and acceleration be a2.Let the distance between the two cars at any time after t=0 be given by S.If the initial distance between them is 50 feet, then S=S0+50ft where S0 is the distance between them at time t=0.
From the given conditions, we can set up the following relationships for the two cars.1) For the first car:S=ut+(1/2)at^2 where u is the initial velocity.
2) For the second car:S=vt+(1/2)at^2 where v is the initial velocity.In the first equation, we can substitute u=0 (since it started from rest) and a=a1.
In the second equation, we can substitute v=50ft (since it is 50ft behind) and a=a2.
Substituting the above values in the above two equations, we get:S= (1/2)a1t^2 and
S= 50ft + v2t + (1/2)a2t^2
From the problem statement, we are also given that the lead car is accelerating in such a way that the distance S in feet between the two cars at any time t after t=0 seconds is 50 more than twice the square of t.
Therefore,S = 2t^2 + 50ft
We can now equate the above two expressions for S, and solve for t, to get the relationship between the distance S and time t:
S = 2t^2 + 50ft = (1/2)a1t^2 + 50ft + v2t + (1/2)a2t^2
Simplifying the above expression, we get:2t^2 = (1/2)a1t^2 + v2t + (1/2)a2t^2
Therefore, the relationship between the distance S and time t is:2t^2 = (1/2)a1t^2 + v2t + (1/2)a2t^2.
Know more about acceleration here,
https://brainly.com/question/2303856
#SPJ11
Solve for D 4d-7 need it asap !!!!!!!!!!!!! I got eddies mobile
Answer:
Where's the problem?
Step-by-step explanation:
Answer: 11
Step-by-step explanation:
4d-7
+7 +7
11d
11=d
Your welcome!
xcosa + ysina =p and x sina -ycosa =q
The equations can be represented as follows:
[tex]\displaystyle x\cos\alpha +y\sin\alpha =p[/tex]
[tex]\displaystyle x\sin\alpha -y\cos\alpha =q[/tex]
where [tex]\displaystyle \alpha[/tex] represents an angle, [tex]\displaystyle x[/tex] and [tex]\displaystyle y[/tex] are variables, and [tex]\displaystyle p[/tex] and [tex]\displaystyle q[/tex] are constants.
[tex]\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}[/tex]
♥️ [tex]\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}[/tex]
A d.c (direct current) circuit comprises of three closed loops. Applying Kirchhoff's laws to the closed loops gives the following equations for current flow. 21₁ +31₂ 413 = 26 Solve for I₁, I₂ and 13 using a. Inverse matrix b. Gauss elimination c. Cramer's Rule 1₁-51₂ 313 = -87 -71₁ +21₂ + 613 = 12
Based on the given equations, the correct method to solve for I₁, I₂, and I₃ is Gauss elimination.
Gauss elimination is a systematic method for solving systems of linear equations by performing row operations on the augmented matrix. By using row operations such as multiplying a row by a scalar, adding or subtracting rows, and swapping rows, we can transform the augmented matrix into a row-echelon form or reduced row-echelon form, which allows us to determine the values of the variables.
Since Gauss elimination is a widely used and efficient method for solving systems of linear equations, it is a suitable choice in this scenario. By performing the necessary row operations on the augmented matrix [A|B], we can reduce it to a form where the variables I₁, I₂, and I₃ can be easily determined.
Learn more about Gauss elimination here
https://brainly.com/question/30760531
#SPJ11
Question 3 3.1 Please read the information and then answer the questions that follow: Pulane wants to take her cell phone and tablet with her on a car trip. An hour before her family has planned to leave, she realised that she forgot to charge the batteries last night. At that point, she plugged in both devices, so they can charge as long as possible before they leave. Pulane knows that her cell phone has 40% of its battery life left and that the battery charges by an additional 12 percentage points every 15 minutes. Her tablet is new, so Pulane does not know how fast it is charging but she recorded the battery charge for the first 30 minutes after she has plugged it in. Time charging (minutes) 0 10 20 30 Tablet battery charge (%) 20 32 44 56 Use the following three solution techniques to answer the questions: 1. Find equations for both situations. 2. Use a table of values. 3. Use graphs. 3.1.1 If Pulane's family leaves as planned, what percentage of the battery will be charged for each of the two devices when they leave? (20) (10) (6) [36] 3.1.2 How much time would Pulane need to charge the battery 100% on both devices? 3.2 Ifp+q-2, show that p³ + q³ + 8 = 6pq
The cell phone will be charged to 88% and the tablet to 92% when Pulane's family leaves as planned.
If Pulane's family leaves as planned, the percentage of the battery that will be charged for each of the two devices when they leave is as follows:
For the cell phone:
The cell phone currently has 40% battery life left. It charges an additional 12 percentage points every 15 minutes. Since Pulane plugged in the cell phone an hour (60 minutes) before they planned to leave, we can calculate the total charge it will receive.
The total additional charge for the cell phone can be determined by dividing the charging time (60 minutes) by the charging rate (15 minutes) and multiplying it by the rate of charge increase (12 percentage points). Thus:
Total additional charge = (60 minutes / 15 minutes) * 12 percentage points = 48 percentage points
Therefore, the cell phone will have a total charge of 40% + 48% = 88% when they leave.
For the tablet:
Pulane recorded the battery charge for the first 30 minutes after plugging in the tablet. By analyzing the recorded data, we can determine the rate of charge increase for the tablet.
During the first 30 minutes, the tablet's battery charge increased from 20% to 56%, which is a total increase of 56% - 20% = 36 percentage points.
To find the rate of charge increase per minute, we divide the total increase by the charging time: 36 percentage points / 30 minutes = 1.2 percentage points per minute.
Since Pulane has 60 minutes until they plan to leave, we can calculate the total charge the tablet will receive:
Total additional charge = 1.2 percentage points per minute * 60 minutes = 72 percentage points
Therefore, the tablet will have a total charge of 20% + 72% = 92% when they leave.
In summary:
- The cell phone will be charged to 88% when they leave.
- The tablet will be charged to 92% when they leave.
Learn more about cell phone
brainly.com/question/28041325
#SPJ11
20 points! Does anyone know the answer to this?? Would be greatly appreciated if someone helped out :)
Answer:
74.1
Step-by-step explanation:
Lets split the integreal in accordance with f(x)
[tex]\int\limits^9_7 {f(x)} \, dx = \int\limits^8_7 {f(x)} \, dx +\int\limits^9_8 {f(x)} \, dx\\\\= \int\limits^8_7 {(8x + 1)} \, dx +\int\limits^9_8 {(-0.4x + 9)} \, dx\\\\= 8\int\limits^8_7 {x} \, dx + \int\limits^8_7 {} \, dx - 0.4 \int\limits^9_8 {x } \, dx + 9\int\limits^9_8 {} \, dx\\\\= 9 [\frac{x^2}{2} ]^{^{8}}_{_{7}} + [x]^{^{8}}_{_{7}} -0.4[\frac{x^2}{2} ]^{^{9}}_{_{8}} + 9 [x]^{^{9}}_{_{8}}\\\\= 9 [\frac{8^2 - 7^2}{2} ] + [8-7] -0.4[\frac{9^2 - 8^2}{2} ] + 9[9-8]\\[/tex]
[tex]= 9[\frac{15}{2} ] + 1 - 0.4[\frac{17}{2} ] + 9\\\\= \frac{135}{2} + 1 - \frac{6.8}{2} + 9\\\\=\frac{128.2}{2} + 10\\\\= 64.1 + 10\\\\= 74.1[/tex]
Suppose y varies directly with x , and y=-4 when x=5 . What is the constant of variation?
The constant of variation is -4/5.
Suppose y varies directly with x, and y=-4 when x=5. What is the constant of variation?
Suppose y varies directly with x. The formula for direct variation is:
y = kx
where
k is the constant of variation.
If y = -4 when x = 5, then we can substitute these values into the formula and solve for k as follows:-
4 = k(5)
Divide both sides by 5 to isolate k:
k = -4/5
Therefore, the constant of variation is -4/5.
Another way to check if the variation is direct is to use a ratio of the two sets of variables given: If the ratio is always the same, the variation is direct. Here is an example with the values given:
y1 / x1 = y2 / x2
where
y1 = -4, x1 = 5,
y2 = y, and
x2 = x.
Substitute the values and simplify:
y1 / x1 = y2 / x2(-4) / 5 = y / xy = (-4 / 5) x
Hence, the constant of variation is -4/5.
To know more about variation refer here:
https://brainly.com/question/29773899
#SPJ11