If a hose is capable of creating 85 lbs of force at a 25 ft distance, what is its initial PSI?

Answers

Answer 1

A hose is capable of creating 85 lbs of force at a 25 ft distance. Its initial PSI is approximately 10.82 PSI on a 25 feet distance based calculation.

To determine the initial PSI (Pounds per Square Inch) of a hose based on the force it generates and the distance, we need to use the concept of work done by the hose.

The work done by the hose can be calculated using the formula:

Work = Force × Distance

Given that the force is 85 lbs and the distance is 25 ft, we can substitute these values into the equation:

Work = 85 lbs × 25 ft

Now, to calculate the initial PSI, we need to convert the units. Since work is equal to force multiplied by distance, we can express work in foot-pounds (ft-lbs).

To convert foot-pounds (ft-lbs) to inch-pounds (in-lbs), we multiply by 12, as there are 12 inches in a foot:

Work (in-lbs) = Work (ft-lbs) × 12

So, the equation becomes:

Work (in-lbs) = (85 lbs × 25 ft) × 12

Given that 2.31 feet of head is equal to 1 PSI, and the distance is 25 feet, we can calculate the equivalent PSI.

Pressure (PSI) = Distance (feet) / 2.31

Pressure (PSI) = 25 feet / 2.31

Pressure (PSI) ≈ 10.82 PSI

Therefore, the initial PSI of the hose, based on a distance of 25 feet, is approximately 10.82 PSI.

Learn more about PSI  here:

https://brainly.com/question/14621647

#SPJ11


Related Questions

asteroid 2004 fh passed within a tenth of the earth-moon distance in march 2004. when its period was found to be about nine months, it was classified as a(n):

Answers

NEOs, or Near-Earth Objects, refer to asteroids and comets that have orbits that bring them close to Earth. These objects are of great interest to scientists and astronomers due to the potential threat they pose to our planet in the event of a collision. NEOs can be composed of rock, metal, ice, and dust, depending on whether they are asteroids or comets.

Asteroid 2004 FH, which passed within a tenth of the Earth-Moon distance in March 2004, was classified as a NEO. Its classification was based on the discovery that its period, or the time it takes to complete one orbit around the Sun, was about nine months. This close encounter with Earth and its relatively short period made it fall under the category of NEO.

NEOs are further classified into different groups based on their orbits. These classifications include Atens, Apollos, and Amors. Atens have orbits that primarily fall within the orbit of Earth, Apollos have orbits that cross Earth's orbit, and Amors have orbits that are mostly outside Earth's orbit but can still come close to our planet.

Studying NEOs is crucial for understanding the dynamics of our solar system and for developing strategies to mitigate potential asteroid impacts on Earth.

To Learn more about NEOs  Click this!

brainly.com/question/32956219

#SPJ11

eighteen days past new moon, the moon's phase is waning gibbous. (True or False)

Answers

Eighteen days past new moon, the moon's phase is waning gibbous is False.

The moon's phase 18 days past the new moon is not the waning gibbous phase. The waning gibbous phase occurs after the full moon, not the new moon.

The moon goes through the following phases in order:

New moon

Waxing crescent

First quarter

Waxing gibbous

Full moon

Waning gibbous

Third quarter

Waning crescent

Therefore, 18 days past the new moon would correspond to the waxing gibbous phase, not the waning gibbous phase.

Hence, Eighteen days past new moon, the moon's phase is waning gibbous is False.

To know more about moon's phase here

https://brainly.com/question/31392459

#SPJ4

Mass and weight ( 4 pts.) The largest piece of equipment that an astronaut on Earth can lift has a weight of 392 N. On the Moon, the acceleration due to gravity is g
moon

=1.67
s
2

m

. A. What is the mass of the equipment? B. What is the weight of the equipment on the Moon? C. What is the mass of the largest rock the astronaut can lift on the Moon?

Answers

Mass and weightMass is the measure of the quantity of matter present in a body. Weight is the force with which a body is attracted towards the earth or any other celestial object having a gravitational field.

It is directly proportional to the mass of an object. Let's solve the given problem:A. We have the weight of the equipment which is 392 N. As we know that the weight of the body is directly proportional to its mass. Therefore, we can write:F = mgWhere F is force, m is mass and g is the acceleration due to gravity.The acceleration due to gravity on earth is 9.8 m/s²

Therefore, the mass of the equipment is:

m = F/gm = 392 N / 9.8 m/s² = 40 kg

B. The acceleration due to gravity on the moon is 1.67 m/s².

The weight of the equipment on the moon can be found as follows:

F = mg

Where F is force, m is mass and g is the acceleration due to gravity.On the moon,

F = mgF = 40 kg * 1.67 m/s²F = 66.8 N

Therefore, the weight of the equipment on the moon is 66.8 N.C. The largest piece of equipment that an astronaut can lift on the earth weighs 392 N. This weight on the moon can be calculated as:

F = mg

Where F is force, m is mass and g is the acceleration due to gravity.On the moon,

F = mg392 N = m * 1.67 m/s²m = 392 N / 1.67 m/s²m = 235 kg

Therefore, the largest rock that the astronaut can lift on the moon has a mass of 235 kg.

To know more about weightMass visit:

https://brainly.com/question/845413

#SPJ11

The electric field intensity measured at a point from a source charge is 50kN/C. What would be the electric field intensity if the distance from the source doubles?
200kN/C
12.5kN/C
50.0kN/C
25.0kN/C

Answers

The electric field intensity would be 12.5 kN/C if the distance from the source doubles.

The electric field intensity (E) at a point due to a source charge follows an inverse square relationship with the distance (r) from the source. This relationship is given by the formula E = kQ/r^2, where k is the electrostatic constant and Q is the source charge.

If the distance from the source doubles, the new distance (2r) will replace the original distance (r) in the equation. Substituting this into the formula, we have E' = kQ/(2r)^2 = kQ/4r^2 = (1/4)(kQ/r^2) = 1/4 E.

From the equation obtained in step 2, we can see that the new electric field intensity (E') is one-fourth (1/4) of the original electric field intensity (E). Given that the original electric field intensity is 50 kN/C, we can calculate the new electric field intensity: E' = (1/4) * 50 kN/C = 12.5 kN/C.

Therefore, if the distance from the source doubles, the electric field intensity decreases to 12.5 kN/C.

Learn more about  Intensity

/brainly.com/question/17583145?

#SPJ11

An electron and a 0.0460−kg bullet each have a velocity of magnitude 470 m/s, accurate to within 0.0100%. Within what lower limit could we determine the position of each object along the direction of the velocity? electron mm bullet m

Answers

The lower limit of position determination for the electron is approximately 0.616 meters, and for the bullet, it is approximately 24.0 nanometers.

To determine the lower limit of position determination along the direction of velocity for each object, we can use the uncertainty principle, which states that there is a fundamental limit to the precision with which certain pairs of physical properties can be simultaneously known.

The uncertainty principle equation relevant to this scenario is:

Δx Δp ≥ ħ/2

where Δx represents the uncertainty in position and Δp represents the uncertainty in momentum.

For the electron:

Mass of electron (m₁) = [tex]9.11 × 10^(-31) kg[/tex]

Velocity of electron (v₁) = 470 m/s

For the bullet:

Mass of bullet (m₂) = 0.0460 kg

Velocity of bullet (v₂) = 470 m/s

To determine the lower limit of position determination, we need to calculate the uncertainties in momentum (Δp) for each object.

For the electron:

Δp₁ = m₁ * Δv₁ =[tex](9.11 × 10^(-31) kg)[/tex] * (0.0100/100 * 470 m/s) = [tex]4.27 × 10^(-35)[/tex] kg·m/s

For the bullet:

Δp₂ = m₂ * Δv₂ = (0.0460 kg) * (0.0100/100 * 470 m/s) = [tex]2.19 × 10^(-6)[/tex]kg·m/s

Now, using the uncertainty principle equation, we can determine the lower limit of position determination (Δx) for each object.

For the electron:

Δx₁ ≥ (ħ/2) / Δp₁ = [tex](1.05 × 10^(-34) J·s) / (2 * 4.27 × 10^(-35) kg·m/s)[/tex]≈ 0.616 m

For the bullet:

Δx₂ ≥ (ħ/2) / Δp₂ = [tex](1.05 × 10^(-34) J·s) / (2 * 2.19 × 10^(-6) kg·m/s)[/tex] ≈ 24.0 nm

To know more about electron refer to-

https://brainly.com/question/12001116

#SPJ11

he following questions will ask you to calculate the magnitude OR the direction of a force vector from its component forces. Pay attention to whether you are asked to provide magnitude or direction for each question. Question 5 (1 point) Calculate the magnitude of force F if it has the following X and Y components:
F
x

=15kN
F
y

=75kN

Report your answer to one decimal place. Y

Answers

The magnitude of the force F can be calculated by using the Pythagorean theorem,

which states that the square of the hypotenuse of a right-angled triangle is equal to the sum of the squares of the other two sides.

The force vector's X and Y components are given, respectively:

F x = 15 k NFy = 75 k N

Using these two values, we can calculate the force F's magnitude by squaring each component,

adding the two squares, and then taking the square root of the sum.

Here's how it looks mathematically:

F = √(Fx² + Fy²)

F = √(15² + 75²)

F = √(5625 + 5625)

F = √11250

F = 106.07 k N

The magnitude of the force F is 106.07 k N (rounded to one decimal place).

To know more about magnitude visit:

https://brainly.com/question/31022175

#SPJ11

Question 2 In a compound microscope O the image of the objective serves as the object for the eyepiece. O magnification is provided by the objective lens and not by the eyepiece. The eyepiece merely increases the resolution of the image viewed. O the magnification is my M₂, where my is the lateral magnification of the objective and M2 is the angular magnification of the eyepiece O both the objective and the eyepiece form real images. O magnification is provided by the objective and not by the eyepiece. The eyepiece merely increases the brightness of the image viewed. Question 3 Which one of the following is normally not a characteristic of a simple two-lens refracting astronomical telescope? 0.1 pts 0.1 pts

Answers

The characteristic that is normally not associated with a simple two-lens refracting astronomical telescope is the statement: "The eyepiece merely increases the brightness of the image viewed.

"In a simple two-lens refracting astronomical telescope, the objective lens is responsible for gathering and focusing light from distant objects. It forms a real, inverted image at the focal point.

\This image serves as the object for the eyepiece, which is responsible for magnifying the image and allowing the viewer to see it with greater detail.The eyepiece in a refracting telescope works by magnifying the image formed by the objective lens. It increases the angular size of the image, making it appear larger to the viewer's eye. However, the eyepiece itself does not affect the brightness of the image.

The brightness of the image primarily depends on the diameter of the objective lens and the amount of light it collects.In a refracting telescope, the objective lens gathers the light and forms a real image, which is then magnified by the eyepiece.

The eyepiece acts as a magnifying lens, allowing the viewer to observe the image with higher resolution and detail. The eyepiece does not contribute to the brightness of the image, as that is primarily determined by the objective lens.Therefore, the characteristic of increasing the brightness of the image is not associated with the eyepiece in a simple two-lens refracting astronomical telescope.

To know more about astronomical telescope click this link-https://brainly.com/question/31714108

#SPJ11

We fill water in a bucket with a cross-sectional area of ​​4.0 · 10^−2 m^2.Then we release a cube-shaped wooden block with mass 1.00 kg up in the water. The wooden block floats without touching the bucket. How highbwill the water rise in the bucket? The density of the water is 1.0 · 10^3 Kg/m^3 The density of the tree is 0.63 · 10^3 kg/m^3

Answers

The water will rise in the bucket to a height of approximately 1.58 meters.

What is the height to which the water will rise in the bucket when the wooden block is placed in it?

When the cube-shaped wooden block is released into the water-filled bucket, it floats without touching the sides or bottom of the bucket.

We need to determine the height to which the water will rise in the bucket due to the presence of the floating block.

To solve this problem, we can use Archimedes' principle, which states that the buoyant force experienced by an object submerged in a fluid is equal to the weight of the fluid displaced by the object.

The buoyant force acting on the wooden block is equal to the weight of the water displaced by the block.

The volume of water displaced can be calculated using the formula V = A * h, where A is the cross-sectional area of the bucket and h is the height to which the water rises.

Since the wooden block is floating, the buoyant force is equal to the weight of the block. The weight of the block can be calculated using the formula W = m * g, where m is the mass of the block and g is the acceleration due to gravity.

Setting the buoyant force equal to the weight of the block, we have:

[tex]\rho_{water}[/tex] * V * g = m * g

where [tex]\rho_{water}[/tex] is the density of water, V is the volume of water displaced, and g is the acceleration due to gravity.

Rearranging the equation to solve for h:

h = V / A

Substituting the values:

h = (m / ([tex]\rho_{water} - \rho_{block}[/tex])) / A

where [tex]\rho_{block}[/tex] is the density of the wooden block.

h = (1.00 kg / (1.0 × [tex]10^3 kg/m^3 - 0.63 \times 10^3 kg/m^3)) / (4.0 \times 10^-2 m^2)[/tex]

h ≈ 1.58 meters

Therefore, the water will rise in the bucket to a height of approximately 1.58 meters when the wooden block is placed in it.

Learn more about Archimedes' principle

brainly.com/question/787619

#SPJ11

: A pendulum consists of a mass 3 kg hanging from a massless string of length 1.2 m. It is being used on another planet. If the frequency of the pendulum is 0.4 /s, what is the acceleration due to gravity on that planet, in units of m/s?? a. 0.19 O b. 9.8 O c. 23 O d. 7.6 O e. 0.13 The position of an object attached to a spring is described by x(t) = 8.6 cos( 5.5 t + 2.9) What is the frequency of the oscillation? a. 0.88 s O b. 0.46 5 O c. 1.1 s O d. 5.5 s O e. 1.4 s

Answers

a. To determine the acceleration due to gravity on the planet, we can use the formula for the period of a pendulum:

T = 2π√(L/g),

where T is the period, L is the length of the string, and g is the acceleration due to gravity.

Given that the frequency of the pendulum is 0.4 Hz, the period can be calculated as:

T = 1/f = 1/0.4 = 2.5 s.

Substituting the known values into the equation, we have:

2.5 = 2π√(1.2/g).

Simplifying the equation, we get:

√(1.2/g) = 2.5/(2π).

Squaring both sides of the equation, we obtain:

1.2/g = (2.5/(2π))^2.

Solving for g, we find:

g = 1.2/[(2.5/(2π))^2] ≈ 0.19 m/s².

Therefore, the acceleration due to gravity on that planet is approximately 0.19 m/s².

b. To determine the frequency of the oscillation described by x(t), we can extract the coefficient in front of the t term inside the cosine function. In this case, the frequency is given by the coefficient 5.5.

Therefore, the frequency of the oscillation is 5.5 s⁻¹.

To learn more about pendulum motion and oscillations, you can visit the following link:

brainly.com/question/14856981

#SPJ11

what term describes the layers of the ocean into which sunlight penetrates?

Answers

The term that describes the layers of the ocean into which sunlight penetrates is the "euphotic zone."

The euphotic zone, also known as the sunlight zone or the photic zone, is the uppermost layer of the ocean where sunlight is able to penetrate and support photosynthesis.

In the euphotic zone, sunlight provides the energy necessary for photosynthetic organisms, such as phytoplankton and algae, to carry out photosynthesis. This zone extends from the ocean's surface down to varying depths, depending on factors such as water clarity, turbidity, and the angle of the Sun. On average, the euphotic zone can extend from around 200 meters (660 feet) to as deep as 1,000 meters (3,280 feet) below the surface.

Below the euphotic zone, the amount of sunlight diminishes rapidly, and the deeper layers of the ocean receive very little to no sunlight. These deeper regions are known as the disphotic zone (twilight zone) and aphotic zone (midnight zone), where sunlight is unable to penetrate and the environment becomes progressively darker.

It's within the euphotic zone that most of the primary productivity and photosynthetic activity in the ocean occur, making it a crucial layer for sustaining marine ecosystems.

Hence, The term that describes the layers of the ocean into which sunlight penetrates is the "euphotic zone."

To know more about euphotic zone here

https://brainly.com/question/31762688

#SPJ4

An object, initially at rest, accelerates constantly at 2 m/s
2
. How long did it take it to cover 16 m and what was its final velocity? V= m/s.

Answers

To solve this problem, we are given the acceleration and displacement of an object, and we are required to find out the time it took to cover 16 m and its final velocity.

Let us begin by listing out the given parameters, where:Initial velocity of the object = u = 0 m/sAcceleration of the object = a = 2 m/s²Displacement of the object = s = 16 m

We need to find out:Time taken by the object = t

Final velocity of the object = v

Using the equation of motion for displacement, s = ut + ½ at², we can get the value of t.

Rearranging the equation, we get:t = √(2s/a)Substituting the values, we get:t = √(2 × 16 / 2) = √16 = 4 s

Therefore, the object took 4 seconds to cover the given distance. Using the equation of motion for velocity, v = u + at, we can get the final velocity of the object. Substituting the values, we get:v = 0 + 2 × 4 = 8 m/s.

Therefore, the final velocity of the object was 8 m/s.To summarize, the object took 4 seconds to cover the distance of 16 m and its final velocity was 8 m/s.

To know more about  velocity visit:

https://brainly.com/question/30559316

#SPJ11

(a) What net force (in N) is acting on the skier? (tridicate the direction with the sign of pour answer?) (b) What is the acctieretion (in m
2
x
2
) experlenced by the skwer? (Indicabe the direction with ehe sign ef your answer.) ms
2
(c) How does the net force esperienced by the skier change if the swi slope becerties steeper?

Answers

The skier on a slope encounters frictional force that opposes the skier's forward motion, and gravitational force that pulls the skier downhill. These forces will be used to solve the problem.The net force acting on the skier can be found using the formula F_net = F_g - F_ friction.

The direction of the acceleration can be indicated by the sign of the answer.

a = (713.06 N)/80 kg = 8.91325 m/s² downhill.

Therefore, the acceleration experienced by the skier is 8.91325 m/s² downhill.If the ski slope becomes steeper, the component of the weight that acts parallel to the slope (i.e. the gravitational force that pulls the skier downhill) will become greater. As a result, the net force acting on the skier will also become greater. This will result in an increase in the acceleration experienced by the skier.

To know more about problem visit:

https://brainly.com/question/31816242

#SPJ11

temperature is a measure of the average energy of particles in a substance.
a. true
b. false

Answers

Temperature is a measure of the average energy of particles in a substance is true.

Temperature is indeed a measure of the average energy of particles in a substance. Temperature reflects the kinetic energy of the particles, which is related to their random motion. In a substance, the particles are in constant motion, and their individual energies contribute to the overall temperature of the substance. A higher temperature indicates that, on average, the particles possess greater energy and are moving more vigorously. Conversely, a lower temperature signifies lower average energy and slower particle motion. Temperature is typically measured using various scales, such as Celsius, Fahrenheit, or Kelvin, and it serves as a fundamental parameter in thermodynamics and many other scientific disciplines.

To learn more about Temperature

https://brainly.com/question/31197221

#SPJ11

Two tanks A and B are connected by a valve. Tank A contains 3.5 kg of CO at 15∘C and 300kPa. Tank B with a volume =4m3
contains N2​
at 50∘C and 500kPa. The valve connecting the two tanks is opened, and the two gases form a homogeneous mixture at 25∘C. Determine the final pressure in the Ranks.

Answers

The final pressure in the tanks will be determined by the partial pressures of the gases and their respective mole fractions.

When the valve connecting tanks A and B is opened, the CO and N2 gases mix together to form a homogeneous mixture. According to Dalton's Law of Partial Pressures, the total pressure exerted by this mixture is equal to the sum of the partial pressures of each gas. In this case, we need to calculate the partial pressures of CO and N2.

To determine the partial pressures, we first calculate the number of moles of CO and N2 in tanks A and B using the ideal gas law. This involves considering the mass, temperature, and molar mass of each gas. By dividing the number of moles of each gas by the total number of moles in the mixture, we obtain their respective mole fractions.

With the mole fractions in hand, we can calculate the partial pressures of CO and N2 by multiplying their mole fractions by the total pressure in the tanks. Adding these partial pressures together gives us the final pressure in the tanks.

Learn more about Pressure

brainly.com/question/30673967

#SPJ11

The mass density of a hypothetical straight cylindrical rod of length L meters is given by λ=(2x+3x
2
)kg/m, where x is the distance from the first end of the rod. Determine; 1. The mass m of the rod if L=1 m. (5 marks) 2. The location of the centre of mass.

Answers

1. The mass of the rod is 2 kg when L = 1 m.

2. The center of mass is located at x_cm = 17/24 of the rod's length.

To determine the mass and location of the center of mass of the cylindrical rod, we need to integrate the given mass density function.

1. The mass (m) of the rod can be calculated by integrating the mass density function (λ) over the length of the rod (L):

m = ∫λ dx

Given that λ = (2x + 3[tex]x^2[/tex]) kg/m, and L = 1 m, we can calculate the mass by integrating λ from 0 to 1:

m = ∫(2x + 3[tex]x^2[/tex]) dx

 = [[tex]x^2[/tex] + [tex]x^3[/tex]] evaluated from 0 to 1

 = ([tex]1^2[/tex] + [tex]1^3[/tex]) - ([tex]0^2[/tex] + [tex]0^3[/tex])

 = 1 + 1

 = 2 kg

Therefore, the mass of the rod is 2 kg.

2. The location of the center of mass (x_cm) can be determined by calculating the weighted average of the positions along the rod using the mass density function:

x_cm = (1/m) ∫(x * λ) dx

Substituting the given values:

x_cm = (1/2) ∫(x * (2x + 3[tex]x^2[/tex])) dx

    = (1/2) ∫(2[tex]x^2[/tex] + 3[tex]x^3[/tex]) dx

    = (1/2) [(2/3) * [tex]x^3[/tex] + (3/4) * [tex]x^4[/tex]] evaluated from 0 to 1

    = (1/2) [(2/3) *[tex]1^3[/tex] + (3/4) * [tex]1^4[/tex]] - [(2/3) * [tex]0^3[/tex] + (3/4) * [tex]0^4[/tex]]

    = (1/2) [(2/3) + (3/4)]

    = (1/2) [(8/12) + (9/12)]

    = (1/2) * (17/12)

    = 17/24

Therefore, the location of the center of mass is at x_cm = 17/24 of the length of the rod.

Learn more about mass

brainly.com/question/30434945

#SPJ11

Indicate the correct statement a. Plastic deformation takes place above the melting temperature b. Plastic deformation means permanent deformation c. Plastic strain is due to elastic deformations d. Elastic deformations do not follow Hooke's law e. NoA

Answers

The correct statement is: Plastic deformation means permanent deformation. The correct option is b.

Plastic deformation refers to the permanent change in shape or size of a material under applied external forces. When a material undergoes plastic deformation, it does not return to its original shape after the forces are removed. This is in contrast to elastic deformation, where the material can deform temporarily and then recover its original shape once the forces are removed.

Plastic deformation can occur below or above the melting temperature of a material. It is not limited to a specific temperature range. When a material is subjected to sufficient stress or strain, its atomic or molecular structure undergoes rearrangement, causing permanent deformation.

Plastic strain is indeed a result of plastic deformation, and it is distinct from elastic strain, which is associated with temporary deformations governed by Hooke's law.

In elastic deformation, the material exhibits a linear relationship between stress and strain, following Hooke's law. However, in plastic deformation, the relationship between stress and strain is nonlinear, and the material experiences permanent deformation.  The correct option is b.

To know more about Plastic deformation, refer here:

https://brainly.com/question/1114932#

#SPJ11

Question 15 ( 1 point) Which of the following is correct in AC circuits? In the inductor circuit, current is out of phase with voltage; in the capacitor circuit, current is in phase with voltage; in the resistor circuit, current is in phase with voltage. In the resistor circuit, current is out of phase with voltage; in the inductor circuit, current is in phase with voltage; in the capacitor circuit, current is out of phase with voltage. In the inductor circuit, current is out of phase with voltage; in the resistor circuit, current is in phase with voltage; in the capacitor circuit, current is out of phase with voltage. In the capacitor circuit, current is out of phase with voltage; in the inductor circuit, current is in phase with voltage; in the resistor circuit, current is in phase with voltage. Page 5 of 6

Answers

In AC circuits, the correct statement is: In the inductor circuit, current is out of phase with voltage; in the resistor circuit, current is in phase with voltage; in the capacitor circuit, current is out of phase with voltage.

In AC circuits, the behavior of current and voltage can differ based on the components present in the circuit: resistors, inductors, and capacitors.

1. Resistor Circuit:

In a resistor circuit, the current flowing through a resistor is in phase with the voltage across it. This means that the current and voltage reach their maximum and minimum values at the same time.

2. Inductor Circuit:

In an inductor circuit, when an AC voltage is applied, the current lags behind the voltage. This means that the current reaches its maximum and minimum values after the voltage has reached its maximum and minimum values. The phase shift between the current and voltage in an inductor circuit is 90 degrees, with the current lagging behind the voltage.

3. Capacitor Circuit:

In a capacitor circuit, when an AC voltage is applied, the current leads the voltage. This means that the current reaches its maximum and minimum values before the voltage has reached its maximum and minimum values. The phase shift between the current and voltage in a capacitor circuit is also 90 degrees, but in this case, the current leads the voltage.

Based on these explanations, the correct statement is that in the inductor circuit, current is out of phase with voltage; in the resistor circuit, current is in phase with voltage; in the capacitor circuit, current is out of phase with voltage.

To know more about AC circuits click here:

https://brainly.com/question/31391159

#SPJ11

what is the relationship between a decigram and a dekagram

Answers

A decigram and a dekagram are both units of mass in the metric system, but they differ in magnitude. A decigram is a smaller unit of mass, while a dekagram is a larger unit of mass.

The decigram (dg) is equal to one-tenth of a gram (1 dg = 0.1 g). It is commonly used for measuring small amounts of substances or for precise measurements in laboratory settings. For example, a typical paperclip has a mass of approximately 1 gram, which is equivalent to 10 decigrams.

On the other hand, the dekagram (dag) is equal to ten grams (1 dag = 10 g). It is a larger unit of mass and is often used to measure quantities of food or ingredients in cooking. For instance, a typical serving of meat may weigh around 100 grams, which is equivalent to 10 dekagrams.

Therefore, the relationship between a decigram and a dekagram is that a dekagram is ten times larger than a decigram. They represent different magnitudes of mass within the metric system, with the decigram being smaller and the dekagram being larger.

Learn more about magnitudes

https://brainly.com/question/30337362

#SPJ11

Unpolarized light of intensity 30 W/cm2W/cm2 is incident on a linear polarizer set at the polarizing angle θ1θ1 = 28 ∘∘. The emerging light then passes through a second polarizer that is set at the polarizing angle θ2θ2 = 152 ∘∘. Note that both polarizing angles are measured from the vertical.

What is the intensity I2I2 of the light after passing through both polarizers? I2 =

4.69
W/cm2W/cm2

Suppose the second polarizer is rotated so that θ2θ2 becomes 118 ∘∘. What is the intensity of the transmitted light I2 now?

Answers

The intensity of the transmitted light I₂ now is 12.31 W/cm². Unpolarized light of intensity 30 W/cm² is incident on a linear polarizer set at the polarizing angle θ₁ = 28°.

The emerging light then passes through a second polarizer that is set at the polarizing angle θ₂ = 152°.

Both polarizing angles are measured from the vertical.

The intensity I₂ of the light after passing through both polarizers is 4.69 W/cm².

So, 30 = I₁Cos²⁡28°I₁ = 38.83 W/cm²

Intensity of light after passing through the first polarizer is 38.83 Cos²⁡28° = 24.62 W/cm²

Then, 24.62 = I₂Cos²⁡30°I₂ = 21.32 W/cm²

Suppose the second polarizer is rotated so that θ₂ becomes 118°.

Angle between the polarizers is changed by 34° (i.e. 152° − 118°).

Hence, Intensity of the transmitted light I₂ = I₁/2 [Cos²⁡34°]I₂ = 12.31 W/cm².

Therefore, the intensity of the transmitted light I₂ now is 12.31 W/cm².

Learn more about light here ;

https://brainly.com/question/31064438

#SPJ11

Radio waves have wavelengths longer than 1 m. A: True B: False Blue light has a higher frequency than X-rays. A: True B: False Ultraviolet radiation causes common sunburn. A: True B: False A vertical automobile antenna is sensitive to electric fields polarized horizontally. A: True B: False Gamma rays travel in vacuum at the same speed as the visible light. A: True B: False X-rays can be produced in transitions involving inner electrons in an atom. A : True B : False The sun's radiation is most intense in the visible region. A: True B: False

Answers

The given statements majorly discusses about the various radiations as well as different wavelengths of the radiations. In the following statements, the statements 1,3,4,6,7 are true.

Radio waves have wavelengths longer than 1 m: This statement is true. Radio waves have wavelengths ranging from a few millimeters to hundreds of meters, and they include frequencies used for various forms of wireless communication.Blue light has a higher frequency than X-rays: This statement is false. Blue light has a higher frequency than red light, but X-rays have much higher frequencies than both visible light and blue light. Ultraviolet radiation causes common sunburn: This statement is true. Ultraviolet (UV) radiation, specifically UV-B and UV-C rays, can cause sunburn on exposed skin. Overexposure to UV radiation can damage skin cells. A vertical automobile antenna is sensitive to electric fields polarized horizontally: This statement is true. A vertical automobile antenna is designed to receive radio waves that have their electric fields polarized vertically. Gamma rays travel in a vacuum at the same speed as visible light: This statement is false. Gamma rays, which are high-energy electromagnetic radiation, do not travel at the same speed as visible light in a vacuum. X-rays can be produced in transitions involving inner electrons in an atom: This statement is true. X-rays can be generated when electrons undergo transitions from higher energy levels to lower energy levels within an atom. The sun's radiation is most intense in the visible region: This statement is true. The sun emits radiation across a broad spectrum, including radio waves, infrared, visible light, ultraviolet, X-rays, and gamma rays.

Learn more about radiations here:

https://brainly.com/question/31285748

#SPJ11

What is the effect of increasing the tension in the vibrating string to the frequency if linear mass density & vibrating length are held constant?
What is the effect of increasing the linear mass density of the vibrating string to the frequency if tension & vibrating length are held constant?
A 1.0 m long wire is of mass 2.0g is stretched by a tension of 15.0 N. When disturbed, it vibrates at its fundamental frequency mode.
(a) What is the frequency of vibration?
(b) How fast is the wave moving in the medium?
(c) If the length is reduced to half its original length with tension doubled, what would be the frequency of vibration?

Answers

The frequency of vibration decreases when the linear mass density of the string is increased while keeping the tension and vibrating length constant. a) Frequency of vibration is 1095.45 Hz. b) The wave moving in the medium is 2190.9 m/s. c) The frequency of vibration is 1545.3 Hz.

When the tension is increased, the frequency of the vibrating string also increases. This is because the tension in the string affects the speed at which waves travel along it, which affects the frequency of vibration. The frequency of a vibrating string is also affected by the linear mass density of the string.

When the linear mass density of the string is increased while keeping the tension and vibrating length constant, the frequency of vibration decreases. This is because the speed of waves travelling along the string is inversely proportional to the square root of the linear mass density.

If the linear mass density is doubled while keeping the tension and vibrating length constant, the frequency of vibration is halved, and if the linear mass density is halved, the frequency of vibration is doubled. The formula for the frequency of vibration of a vibrating string is:

[tex]f = (1/2L) \sqrt(T/\mu)[/tex]

where f is the frequency of vibration, L is the length of the string, T is the tension in the string, and μ is the linear mass density of the string.

(a)Frequency of vibration:

[tex]f= (1/2L) \sqrt(T/\mu)f = (1/2*1) \sqrt(15/0.002)= 1095.45 Hz[/tex]

(b)The wave velocity

v = fλ

Where λ is the wavelength of the wave velocity

v = fλ = f(2L) = 2fL= 2(1095.45)(1)= 2190.9 m/s

(c)When the length is reduced to half, the new length L′ = 1/2L.

The tension is doubled to 30 N. Frequency of vibration

[tex]f'= (1/2L') \sqrt(T'/\mu)[/tex]

The linear mass density is the same as before, so

μ′ = μ.

Substitute these values into the formula and solve for

[tex]f' = (1/2(1/2L)) \sqrt(30/0.002)= 1545.3 Hz[/tex]

Therefore, the frequency of vibration increases from 1095.45 Hz to 1545.3 Hz when the length of the wire is halved and the tension is doubled.

Learn more about linear mass density here:

https://brainly.com/question/13262805

#SPJ11

7. A man applies a force of 330 N at an angle 60 degrees relative to a door. If the door is 2 meters wide, and a wedge is placed 1.5 m from the center of door rotation, how much force must the wedge exert to prevent the applied force from opening the door?

Answers

A man applies a force of 330 N at an angle 60 degrees relative to a door. The wedge must exert a force of 214.5 N to prevent the applied force from opening the door.

To determine the force required from the wedge to prevent the door from opening, we need to analyze the torque acting on the door. Torque is the rotational force that causes an object to rotate.

The torque exerted by the applied force can be calculated using the equation:

Torque = Force * Distance * sin(θ)

where:

Force is the magnitude of the applied force (330 N),

Distance is the distance from the point of rotation to the point of force application (1.5 m),

θ is the angle between the applied force and the lever arm (60 degrees).

Calculating the torque exerted by the applied force:

Torque = 330 N * 1.5 m * sin(60 degrees)

= 330 N * 1.5 m * √3/2

= 330 N * 1.5 m * √3/2

= 214.5 Nm

To prevent the door from opening, an equal and opposite torque must be exerted by the wedge. The distance from the point of rotation to the point of wedge application is half the width of the door, so it is 1 meter.

Therefore, the force required from the wedge to counteract the applied force is:

Force = Torque / Distance

= 214.5 Nm / 1 m

= 214.5 N

Hence, the wedge must exert a force of 214.5 N to prevent the applied force from opening the door.

Learn more about torque here:

https://brainly.com/question/28220969

#SPJ11

What is an inversion? When summer seasons have many heat waves A cap on the atmosphere Pressure and density increase with height Cold air is trapped above warm air

Answers

Inversion is defined as the weather event in which a layer of warm air is trapped above a layer of cool air. It is a type of atmospheric condition in which air temperature rises as altitude increases instead of the opposite.

This causes a phenomenon in which cold air is trapped below warm air. In other words, an inversion happens when the normal air temperature structure is flipped upside down, and a layer of warm air is on top of a layer of cold air.

A cap on the atmosphere is created by an inversion. The increase in pressure and density with height in the atmosphere creates this cap. As a result of this layer, the air near the ground is trapped and unable to rise, resulting in the formation of fog or smog.

Cold air is trapped above warm air because of inversion, which causes heatwaves during the summer season. Because the warm air above acts as a seal or lid, trapping the cooler air beneath, this occurs.

The atmosphere's temperature usually decreases as the altitude increases. However, during an inversion, temperature and pressure increase with altitude.

Learn more about smog here ;

https://brainly.com/question/15728274

#SPJ11

what kind of charge does an object acquire when electrons are stripped from it?

Answers

Explanation:

When one or more electrons is stripped away from an atom, it becomes positively charged

step as in the figure. A beam of electrons of energy E = 8 eV is moving from the left to the right in this potential. There are 10 elect in the beam. Assume that the thickness a of the first step is very large. E 6 eV 0 a (a) What is the probability that an electron will be reflected back from the firs and from the second step? (b) How many electrons will return back from the second step? (c) What is the probability that an electron will pass the second step? (d) How many electrons will pass the second step? 2 eV

Answers

Energy of electrons, E = 8 eVNumber of electrons in the beam, n = 10The thickness of the first step is very large.The given potential can be represented by the following diagram:

8 eV |__________________| 6 eV |___| 0 |___| a |___| 2 eV Let us solve the given parts:

(a) The probability that an electron will be reflected back from the first step and from the second step:

The probability of reflection from the first step is given as \text{Probability of reflection from the first step} = \left(\frac{E_1-E_2}{E_1+E_2}\right)^2 Where, E1 = 8 eV, and E2 = 6 eVSo, putting the values in the above formula, we get:{Probability of reflection from the first step} = \left(\frac{8-6}{8+6}\right)^2 = \frac{1}{25} Therefore, the probability of reflection from the first step is 1/25.Now, let's find the probability of reflection from the second step:For the second step, E1 = 6 eV and E2 = 0 eVSo, using the formula given above, we can find the probability of reflection from the second step.= \left(\frac{6-0}{6+0}\right)^2= 1Therefore, the probability of reflection from the second step is 1.

(b) The number of electrons that will return back from the second step The number of electrons that will be reflected back from the second step is given by:

n_2 = n_1 × \left(\frac{E_1-E_2}{E_1+E_2}\right)^2 × PWhere n1 = 10 (number of electrons in the beam), E1 = 8 eV, E2 = 6 eV, and P = 1 (probability of reflection from the second step).

n_2 = 10 × \left(\frac{8-6}{8+6}\right)^2 × 1= 0.16Therefore, the number of electrons that will return back from the second step is 0.16.

(c) The probability that an electron will pass the second step The probability of transmission through the second step is given by:

{Probability of transmission} = 1 - \text{Probability of reflection}= 1 - 1= 0Therefore, the probability that an electron will pass the second step is 0.

(d) The number of electrons that will pass the second step:The number of electrons that will pass through the second step is given by:

n_3 = n_2 × \text{Probability of transmission}Where n2 = 0.16 and the probability of transmission is 0. n_3 = 0.16 × 0= 0 Therefore, the number of electrons that will pass the second step is 0.

About Electron

Electron are sub-atomic particles that have a negative charge and are generally written as e⁻. The electron has no known basic components or substructures, so it is believed to be an elementary particle. The electron has a mass of about 1/1836 the mass of the proton. What is the function of the electron? Electrons are electrical charges that are negatively charged and have the function of carrying a charge to move to another place.

Learn More About Electron at https://brainly.com/question/860094

#SPJ11

Which among the choices does the speed of a sinusoidal wave on a string depend on? No need to show solution. 1pt A the length of the string B the amplitude of the wave C the tension in the string D the frequency of the wave E the wavelength of the wave Đ

Answers

Among the choices does the speed of a sinusoidal wave on a string depend on C. the tension in the string.

The other variables listed such as the length of the string, the amplitude of the wave, the frequency of the wave and the wavelength of the wave affect the properties of the wave in different ways but do not affect its speed. The speed of a wave is defined as the distance travelled by a point on the wave in a given interval of time. It is a scalar quantity that has both magnitude and direction. The velocity of a wave is affected by the properties of the medium through which it travels.

For example, the speed of sound waves in air is different from their speed in water. In the case of a wave on a string, the speed of the wave is affected by the tension in the string. If the tension in the string is increased, the speed of the wave increases. If the tension in the string is decreased, the speed of the wave decreases, this is because the tension in the string affects the restoring force that is responsible for the wave motion. So therefore the speed of a sinusoidal wave on a string depends on C. the tension in the string

Learn more about wave motion at:

https://brainly.com/question/15006260

#SPJ11

what effect did increasing glass layers have on both the
concentration of light photons and on the temperature.

Answers

Increasing the number of glass layers in a system can have several effects on the concentration of light photons and temperature, depending on the specific configuration and purpose of the setup.

Concentration of light photons: Increasing the number of glass layers alone generally does not have a direct impact on the concentration of light photons. The primary role of glass is to transmit light, and each additional layer should transmit a similar amount of light as the previous layers.

Temperature: The impact of increasing glass layers on temperature depends on the specific conditions and application. Glass is generally known to have good thermal insulation properties. Therefore, adding more glass layers can enhance the thermal insulation of a system, reducing heat transfer between different environments.

However, if the glass layers are exposed to direct sunlight or other external heat sources, the additional layers may result in increased heat absorption and retention. In such cases, the temperature inside the system may rise, especially if there is insufficient ventilation or if the glass layers have poor thermal properties.

To learn more about light photons follow:

https://brainly.com/question/29415147

#SPJ11

A particle composed of three quarks is classified as a A. baryon. B. meson. C. photon. D. lepton. E. antiparticle.

Answers

A particle composed of three quarks is classified as a Baryon. They are not to be confused with mesons, which are made up of two quarks.

Baryons are a class of particles that include protons and neutrons, which are composed of three quarks. Mesons are a class of particles made up of two quarks, whereas leptons, such as electrons, do not contain quarks at all. Photons are particles of light, which have no mass and are not made up of quarks.

Antiparticles are the opposites of particles and can be made up of quarks or other subatomic particles. Baryons are identified as particles that contain three quarks, and these quarks are held together by a strong nuclear force. The protons and neutrons in atomic nuclei are examples of baryons. The three quarks that makeup baryons can be the same or different types of quarks, depending on the specific particle being considered.

Therefore,  the Baryons are particles that consist of three quarks, which are held together by strong nuclear force. They include protons and neutrons and are not to be confused with mesons, which are composed of two quarks.

To know more about Baryon, visit:

https://brainly.com/question/32980367

#SPJ11

What is the electric potential produced by a point charge of +2C at a distance of 2 m ? [ K=9

10

9Nm

2/C

2 ] 9

10

9 V 4.5

10

9 J 4.5

10

9 V 1.8

10

10 V

Answers

The electric potential produced by a point charge of +2C at a distance of 2 m is 9 × 10^9 V.

Electric potential is defined as the amount of work required to move a unit positive test charge from a reference point to a specific point against the electric field.

Electric potential is a scalar quantity and is denoted by V. The SI unit of electric potential is volt(V).

Given,

Charge, q = +2C.K = 9 × 10^9 Nm^2/C^2

Distance, r = 2m.

Electric potential at distance, V = ?

Formula used for electric potential due to a point charge is given as;

V = kq/r

Where, k = Coulomb's constant = 9 × 10^9 Nm^2/C^2.

Substituting the given values in the above formula,

V = (9 × 10^9 Nm^2/C^2) × (+2C)/(2m) = 9 × 10^9 × 1 C × 1 m/1 C × 1 mV = 9 × 10^9 V

The electric potential produced by a point charge of +2C at a distance of 2 m is 9 × 10^9 V.

To learn more about electric follow the given link

https://brainly.com/question/1100341

#SPJ11

Starting from rest, a motorboat travels around a circular path of r = 50 m at a speed that increases with time, v = 0.2 t^2 m/s. what is the magnitude of its total acceleration at t = 3 s? 8 m/s^2 O 1.2 m/s^2 O 6.2 m/s^2 O 5.02 m/s^2

Answers

the magnitude of the total acceleration of the motorboat at t = 3 s is approximately 1.27 m/s². Therefore, the correct option is 1.2 m/s².

Substituting the given velocity function and radius into the centripetal acceleration formula:

ac = (0.2t²)² / 50 = 0.04t⁴ / 50 m/s²

At t = 3 s, we can calculate the tangential acceleration (at) and the centripetal acceleration (ac):

at = 0.4(3) = 1.2 m/s²

ac = 0.04(3)⁴ / 50 ≈ 0.432 m/s²

To find the total acceleration (a), we can use the Pythagorean theorem:

a = √((at)² + (ac)²)

= √(1.2² + 0.432²)

≈ √(1.44 + 0.186624)

≈ √1.626624

1.27 m/s²

To know more about acceleration  please  click :-

brainly.com/question/2303856

#SPJ11

Other Questions
3. What happens when a bond's expected cash flows are discounted at a rate lower than the bond's coupon rate?A) The price of the bond increases.B) The coupon rate of the bond increases.C) The par value of the bond decreases.D) The coupon payments will be adjusted to the new discount rate.4. When an investor purchases a $1,000 par value U.S. Treasury bond that was quoted at 97.5, the investor:A) Receives 97.5% of the stated coupon payments.B) Receives $975 upon the maturity date of the bond.C) Pays 97.5% of face value for the bond.D)Pays $1,025 for the bond. Find the Expectation of a Hypergeometric Distribution such that the probability that a 8-trial hypergeometric experiment results in exactly 2 successes, when the population consists of 64 itemsa. 1/2 b. 1/3 c. 1/4 d. 1/8 An example of investment income that would be subject to the net investment income tax is: A. Rental or royalty income B. Tax exempt interest C. Wages D. Self employment income What is unique about Eleanor Rigby? O The use of orchestra instead of traditional rock instrumentation O The Latin-American rhythms had not been used in British pop music before this song. O Her bright red scarf O Paul McCartney sang every other verse in Spanish O It was a highly successful cover of an very unsuccessful Bob Dylan b-side. A tocree player kicks a rock horizontally off a 35 m High ciff info a pool of watec. If the player hears the sound of the splash 2.83 s latec, what was the initial speed aiven to the rock (in m/s)? Assiante the speed of soond in air is 343 m/s. x player to hear the sound of the splash 2.83 s after kicking the rock? A m/s Which market or business model best describes azuremarketplace.microsoft.com? (visit the site and then decide) Select one: a. Peer to peer market b. Platform c. Ecosystem d. Two-sided market In the list of top ten activities Canadians perform on a smartphone, the first one is: a) sending/receiving email or text b) messaging c) connecting to a social network d) listening to music Whilst at the Faroes you overheard a heated conversation at a pub. Numbers were all over! It was a discussion about investment at 500 000 in fish cleansing machinery. Now fishing is a tough business and there were three possible outcomes during the first year at 200 000, 400 000, 600 000 and the probability for them were 40%, 20%, and 40% respectively. Then during the following year, the outcome could be either 250 000 or 125 000 at a probability of 60% and 40% respectively. The machinery would only last for two years and it is assumed that the cash flow will be received at the end of each year. You heard that the required rate was 15% for an investment like this. feasibility reports answer such questions as will this plan or proposal work? True or False, medical identity thieves exclusively consist of computer hackers or members of organized crime rings. What is the annual discount rate if a cashflow of 52 million in 5 years' time is currently valued at 25 million? a. 86.37\% b. 15.77% c. 21.60% d. 115.77% e. 108.00% the term for wasting away (no development of muscle) is: 1. Which one of the following is NOT true about polynomial functions f(x) and g(x) if deg (f) = man * d deg * (g) =n? A. deg (f + g) = max(m, n)B. deg (f_{g}) The three charges are located at the vertices of an isosceles triangle. Calculate: - (a) The electric potential at the midpoint of the base taking q=7.00C. (b) The electric field at the midpoint of the base taking q=7.00C 1. E Boiling and condensation At the critical maximum nucleate boiling heat flux, the heating element may experiences a sudden temperature jump. 2. In Film Boiling the presence of a vapor film between the heater surface and the liquid is responsible for the low heat transfer rates in the film boiling region. 3. Condensation releases latent heat, which acts to cool the air. 4. The excess temperature, used in pool boiling problem is equal to Ts-Too. Answer with True or False Briefly Explain with examples the employee selection process Operating cash flow is not the same as net income. Essential reason(s): a Expenses are matched to revenue b Revenue is booked at sale c Capital expenditures don't count against profit d All of the above Ethical values serve the ends of human well-being in impartial, rather thanpersonal or selfish, ways.Define values and determine the different types of values.Explain the important elements of ethical values. c) Create a information steward policy which address the topic of: i. controlling access to customer information: ii. handling information disposal, destruction, or dispensation; and iii. what to do in the event something goes wrong. Goodyear maintains a constant debt-equity ratio. a. What is Goodyear's WACC? b. What is Goodyear's unlevered cost of capital? c. Explain, intuitively, why Goodyear's unlevered cost of capital is less than its equity cost of capital and higher than its WACC.