Answer:
0.9898 = 98.98% probability that there will not be more than one failure during a particular week.
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
3 failures every twenty weeks
This means that for 1 week, [tex]\mu = \frac{3}{20} = 0.15[/tex]
Calculate the probability that there will not be more than one failure during a particular week.
Probability of at most one failure, so:
[tex]P(X \leq 1) = P(X = 0) + P(X = 1)[/tex]
Then
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-0.15}*0.15^{0}}{(0)!} = 0.8607[/tex]
[tex]P(X = 1) = \frac{e^{-0.15}*0.15^{1}}{(1)!} = 0.1291[/tex]
Then
[tex]P(X \leq 1) = P(X = 0) + P(X = 1) = 0.8607 + 0.1291 = 0.9898[/tex]
0.9898 = 98.98% probability that there will not be more than one failure during a particular week.
(x-1)/(x-1)=1, what is the answer and explenation
Kamala marked the price of a cosmetic item as Rs 400. She offered her customers a discount of 20% and made a loss of Rs 30, what was the actual cost of the item to her?
Answer:
350
Step-by-step explanation:
400- 80 ( 20% discount)
=320+30(loss)
=350
2+2 ..................................needed 20 characters
Answer:
plese mark me brainlist
Step-by-step explanation:
thankyou and have nice day
In the following please select whether a hypothesis test or a confidence interval is most appropriate.
a. A business owner wants to know what proportion of sales occur online for their store.
b. A book publisher wants to know if more than 25% of customers buy an entire book series all at once instead of as individual books.
c. A professor wants to know the proportion of students who regularly show up to class.
d. A researcher is interested in seeing if less than 50% of Americans support the tariffs on Chinese goods.
Answer:
A. Confidence interval
B. Hypothesis test
C. Confidence interval
D. Hypothesis test
Step-by-step explanation:
A hypothesis a hypothesis test is done in statistics whereby the person carrying out the test, tests an assumption concerning a population interval.
Confidence interval can be gotten from the statistics of observed data it provides a given range of values for a parameter that is not known.
A.we use the confidence interval here
B. We use the hypothesis test
C. The confidence interval is the appropriate test
D. The hypothesis would be best
Find the perimeter of a football field which measures 90m by 60m
Hello!
[tex]\large\boxed{P = 300m}[/tex]
Use the following formula for the perimeter:
P = 2l + 2w, where:
l = length
w = width
Therefore:
P = 2(90) + 2(60)
Simplify:
P = 180 + 120 = 300 m
Answer:
well how about you use common sense 100 yards long on each side 200 yards then add 5o yards since the the that is how wide it is then add another 50 and you get 300 yards then convert that to meters
give me answer please don't skip
If a^2+b^2 = 58 and a-b = 4 then what is the value of ab
Answer:
ab = 21
Step-by-step explanation:
[tex](a - b)^2 = (a^2 + b^2 ) - 2ab\\\\4^2 = 58 - 2ab\\\\16 - 58 = - 2ab\\\\- 42 = - 2ab\\\\ab = \frac{-42}{-2} = 21[/tex]
Step-by-step explanation:
Th value of ab is 21
Explanation is in the attachment
hope it is helpful to you ☺️
thank you for giving me a chance to answer your question
find integer pairs for -18?
Answer:
Step-by-step explanation:
Factor pairs:
1, 18
2, 9
3, 6
3x+7>10
Solve for x.
Answer: x>1
Step-by-step explanation:
To solve for x, we want to isolate x.
3x+7>10 [subtract both sides by 7]
3x>3 [divide both sides by 3]
x>1
Therefore, we know that x>1.
Answer:
Step-by-step explanation:
3x + 7 > 10
3x > 10 - 7
3x > 3
x > 1
x ∈ ( 1, ∞ )
In the figure, polygon ABCD is dilated by a factor of 2 to produce A′B′C′D′ with the origin as the center of dilation.
Point A′ is at
, and point D′ is at
.
Answer:
b
Step-by-step explanation:
Mathematics I need help
Answer:A
Step-by-step explanation:
Suppose 44% of the children in a school are girls. If a sample of 727 children is selected, what is the probability that the sample proportion of girls will be greater than 41%
Answer:
0.9484 = 94.84% probability that the sample proportion of girls will be greater than 41%
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Suppose 44% of the children in a school are girls.
This means that [tex]p = 0.44[/tex]
Sample of 727 children
This means that [tex]n = 727[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.44[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.44*0.56}{727}} = 0.0184[/tex]
What is the probability that the sample proportion of girls will be greater than 41%?
This is 1 subtracted by the p-value of Z when X = 0.41. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.41 - 0.44}{0.0184}[/tex]
[tex]Z = -1.63[/tex]
[tex]Z = -1.63[/tex] has a p-value of 0.0516
1 - 0.0516 = 0.9884
0.9484 = 94.84% probability that the sample proportion of girls will be greater than 41%
The equation y - 5 = 6X + 1 is written as point-slope form. What is the equation written in slope intercept form
Answer:
y = 6x + 6
Step-by-step explanation:
The general formula is y = mx +cso; the y as seen will be constant as well as the x
With change of subject the 5 will be moved to the other side having y= 6x +1 + 5 .Given us y = 6x + 6.
Find the distance between the points (-5, -4) and (3, 1).
On a coordinate plane, points are at (3, 1), (negative 5, negative 4).
Step-by-step explanation:
it will help u
Tell whether the following two triangles can be
proven congruent through SAS.
A.Yes, the two triangles are congruent
because two sides and their included
angle are congruent in both triangles.
B.No, the two triangles don't have
corresponding sides marked congruent.
C. Yes, the two triangles are congruent because they’re both right triangles.
D.No, the two triangles can only be proven congruent through SSA.
Answer:
B. No, the two triangles don't have
corresponding sides marked congruent.
If the actual price in this market were below
the equilibrium price, what would drive the
market toward the equilibrium?
Step-by-step explanation:
If the price is below the equilibrium level, then the quantity demanded will exceed the quantity supplied. Excess demand or a shortage will exist. If the price is above the equilibrium level, then the quantity supplied will exceed the quantity demanded. Excess supply or a surplus will exist.Whenever markets experience imbalances—creating disequilibrium prices, surpluses, and shortages—market forces drive prices toward equilibrium. A surplus exists when the price is above equilibrium, which encourages sellers to lower their prices to eliminate the surplus.
As of 2012, the proportion of students who use a MacBook as their primary computer is 0.4. You believe that at your university the proportion is actually less than 0.4. If you conduct a hypothesis test, what will the null and alternative hypotheses be
Answer:
The null hypothesis is [tex]H_0: p = 0.4[/tex]
The alternative hypothesis is [tex]H_a: p < 0.4[/tex]
Step-by-step explanation:
As of 2012, the proportion of students who use a MacBook as their primary computer is 0.4.
At the null hypothesis, we test if the proportion is of 0.4, that is:
[tex]H_0: p = 0.4[/tex]
You believe that at your university the proportion is actually less than 0.4.
This means that at the alternative hypothesis, we test if the proportion is less than 0.4, that is:
[tex]H_a: p < 0.4[/tex]
Find the area of the following figure with the indicated dimensions.use pi.
Answer:
The answer is "47.5354".
Step-by-step explanation:
In the given graph it is a half-circle and a triangle.
So, the diameter of the circle is 6.2 so the radius is 3.1
[tex]\text{Area of a circle}= \pi r^2\\\\\text{Area of a triangle}= \frac{1}{2} b h\\\\[/tex]
Calculating the total area of the shape:
[tex]= \pi r^2+\frac{1}{2} \times b\times h\\\\ = 3.14 \times 3.1^2+\frac{1}{2} \times 6.2 \times 5.6\\\\ = 3.14 \times 3.1^2+\frac{1}{2} \times 6.2 \times 5.6\\\\=3.14 \times 9.61+\frac{1}{2} \times 34.72\\\\=3.14 \times 9.61+\frac{1}{2} \times 34.72\\\\= 30.1754+17.36\\\\=47.5354\\\\[/tex]
Hi, Friends,
please help me solve this problem.
Q. terms of a geometric sequence are found by the formula Tn = ar n-1 If a = 3 and r = 2 , find the 4 terms of the sequence.
9514 1404 393
Answer:
3, 6, 12, 24
Step-by-step explanation:
It helps if the formula is properly written.
Tn = a·r^(n-1)
Fill in the given values for a, r, and use n = 1 to 4.
T1 = 3·2^(1-1) = 3
T2 = 3·2^(2-1) = 6
T3 = 3·2^(3 -1) = 12
T4 = 3·2^(4 -1) = 24
__
Additional comment
The value a=3 tells you the first term is 3. The value r=2 tells you each term is 2 times the previous one. Knowing this, you can write down the sequence based on your knowledge of multiplication tables (×2). You can use the formula as we did above, but it isn't necessary.
3, 6, 12, 24, ...
A trucking company buys 25,275 gallons of gasoline. The federal excise tax is $0.195 per gallon. Find the amount of excise tax due. (Round your answer to the nearest cent if necessary)
Answer: 5,055
Step-by-step explanation
multiply the amount of gallons purchased by tax and round up
$4928.625 is the answer.
An Excise tax is an indirect tax, usually paid by the manufacturer or retailer of the product. then passes along in the price of the product to the consumer.
Amount of gasoline = 25,375 gallons.
The Excise tax = $0-195/gallon.
The amount of Excise tax dece = 25.875 X $0.195
= $4928.625
Se the amount of Excise tax due for 25975 gallons of gasoline is $ 4928.625
what is Excise tax?Excise tax is generally a tax levied on the sale of a particular good or service or for a particular purpose. State excise taxes are usually levied on the sale of gasoline, air tickets, heavy trucks, road tractors, tanning beds, tires, cigarettes, and other goods and services.
Excise can be used to charge prices for externalities or to discourage the consumption of goods by others. They can also be used as royalties to generate income from people who use certain government services. Income should be used to maintain those government services.
Learn more about excise tax here:https://brainly.com/question/2871942
#SPJ2
What is the amount f rainfall that Miami receives, round to the nearest half or whole? 55 9/10"
Answer:
56"
Step-by-step explanation:
In this diagram, ABAC – AEDF. If the
area of ABAC = 6 in?, what is the
area of AEDF?
Answer:
2.7 in²
Step-by-step explanation:
similar triangles have the same angles, and all side lengths (or other distances) of one triangle have the same scaling factor to the side lengths of the other triangle.
so, we know the relation between the 2 baselines is 2/3, as this is the factor to turn the baseline of the large triangle into the baseline of the smaller triangle.
in other words
EF = BC × 2/3
2 = 3 × 2/3
correct
how do we calculate the area of a triangle ?
Area = baseline × height / 2
from BAC we know
Area = 6
baseline = 3
height = ?
6 = 3 × height / 2
12 = 3 × height
height = 4
aha !
now, EDF has a height too that we need to calculate is Area. and this height has the same scaling factor compared to the larger triangle as the side lengths : 2/3
so, for EDF we know
Area = ?
baseline = 2
height = 4 × 2/3 = 8/3
therefore, the area is
Area = (2 × 8/3) / 2 = (16/3) / 2 = 8/3 = 2.66666... ≈ 2.7
the shirt answer would be :
we know from the 2 baselines that the scaling factor for each distance is 2/3.
for the area we need to multiply 2 distances, so that means we have to multiply both by 2/3. and so on the formula for the area we have to use 2/3 × 2/3.
2/3 × 2/3 = 4/9
=>
Area small = Area large × 4/9 = 6 × 4/9 = 24/9 = 8/3 ≈ 2.7
To add radical expressions, the expressions must have the same index and radicand,
True
False
Order the following decimals. State your method of choice and your reasons for choosing it. Explain how you know this order is accurate.
Answer:
.40 is the greatest .350 is the second greatest and last but not least .3456 is the lowest
Step-by-step explanation:
The square root of the variance is called the: standard deviation beta covariance coefficient of variation
Answer:
standard deviation
Step-by-step explanation:
This one is tricky! Imagine that you meet a new friend who is also a beginner, and she can run the 5k in 23.5 minutes. You wonder what percentage of the beginner running population could run the 5k faster than your new friend (that is, what percentage of the population has a time that is less than your new friend
Answer:
38.74%
Step-by-step explanation:
Given the data:
21 21 22 22 23 23 23 24 24 24 24 24 25 25 25 26 26 27 27
We obtain the beginner running population and standard deviation
Population mean, μ = Σx/n = 456/19 = 24
Standard deviation, σ = 1.747 (using calculator)
Friend's Runtime, x = 23.5 minutes
Obtaining the friend's Zscore :
Z = (x - μ) / σ
Z = (23.5 - 24) / 1.747
Z = - 0.286
Obtaining the Pvalue :
Using a standard normal distribution table :
P(Z < - 0.286) = 0.38744
Hence. Percentage of population that has lesser time :
0.38744 * 100% = 38.74%
A line passes through the point (-9, 4) and has a slope of 2/3.
Write an equation in slope-intercept for this line.
Answer:
y=(2/3)x+10
Hope it helps!
My graph isn't really clear
The slope-intercept of the line that passes through the point (-9, 4) and has a slope of 2/3 will be y = (2/3)x + 10.
What is a linear function?A straight line on the coordinate plane is represented by a linear function.
A linear function always has the same and constant slope.
The formula for a linear function is f(x) = ax + b, where a and b are real values.
A line is given as y = mx + c
Here m is the slope,
Put m = 2/3 and (-9, 4)
4 = (2/3)(-9) + c
c = 10
Thus equation will be y = (2/3)x + 10.
Hence "Y = (2/3)x + 10 is the slope-intercept of the line passing through the point (-9, 4), which has a slope of 2/3".
For more about the linear function,
brainly.com/question/21107621
#SPJ2
Jane has earned a 91, 85, and 84 on her first three quizzes of the semester. If she hopes to have an A quiz average (90 or above), what is the lowest score Jane can make on her fourth and final quiz?
She cannot earn an A quiz average*****
100
97
95
Answer:
100
Step-by-step explanation:
CalculationLet mark to be scored in fourth =x
but since the total will be more or above we will have the sign
[tex] \geqslant [/tex]
[tex]91 + 85 + 84 + x \div 4 \geqslant 90[/tex]
[tex]260 + x \div 4 \geqslant 90[/tex]
L.c.m =4 ( cross multiplying)
260+xtex 90*4
260+xtex 360
x tex 360-260
x tex 100
The value of the lowest score Jane can make on her fourth and final quiz is, 100
What is Addition?The process of combining two or more numbers is called the Addition. The 4 main properties of addition are commutative, associative, distributive, and additive identity.
We have to given that;
Jane has earned a 91, 85, and 84 on her first three quizzes of the semester.
And, she hopes to have an A quiz average (90 or above).
Let us assume that;
her fourth and final quiz = x
Hence, We get;
(91 + 85 + 84 + x) / 4 = 90
260 + x = 360
x = 360 - 260
x = 100
Thus, the lowest score Jane can make on her fourth and final quiz is,
x = 100
Learn more about the addition visit:
https://brainly.com/question/25421984
#SPJ2
eight times the reciprocal
of a number equals 4 times
the reciprocal of 10.
Answer:
8(1/x) = 4(1/10)
Step-by-step explanation:
lets say the number is x
eight times the reciprocal of a number equals 4 times the reciprocal of 10
8 * 1//x = 4 * 1/10
8/x = 4/10 , cross multiply
4x =8*10, divide both sides by 4
x= 80/4
x= 20
What is the value of the expression [-7] + [-4]
Answer:
11
Step-by-step explanation:
I'm assuming that [.] fldenote absolute value even tho the absolute value function is represented by (|.|)
value of [-7] will be positive that us 7.
= 7 + 4
= 11
The time spent waiting in the line is approximately normally distributed. The mean waiting time is 6 minutes and the variance of the waiting time is 9. Find the probability that a person will wait for more than 9 minutes.
Answer:
0.1587 = 15.87% probability that a person will wait for more than 9 minutes.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The mean waiting time is 6 minutes and the variance of the waiting time is 9.
This means that [tex]\mu = 6, \sigma = \sqrt{9} = 3[/tex]
Find the probability that a person will wait for more than 9 minutes.
This is 1 subtracted by the p-value of Z when X = 9. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{9 - 6}{3}[/tex]
[tex]Z = 1[/tex]
[tex]Z = 1[/tex] has a p-value of 0.8413.
1 - 0.8413 = 0.1587
0.1587 = 15.87% probability that a person will wait for more than 9 minutes.