If the distance between two charged objects is doubled, the electrostatic force that one object exerts on the other will be cut in half. The correct option is D. Yes, because the force depends on distance.
What is the Electrostatic force?The force between charged particles is referred to as the electrostatic force. The electrostatic force is the amount of force that one charged particle exerts on another charged particle. The charged particles' magnitudes and the distance between them determine the electrostatic force.
Therefore, the strength of the electrostatic force decreases as the distance between the charged objects increases. When the distance between two charged objects is doubled, the electrostatic force that one object exerts on the other is cut in half. When the distance between two charged objects is reduced to one-half, the electrostatic force between them quadruples.
To summarize, when the distance between two charged objects is doubled, the electrostatic force that one object exerts on the other will be cut in half, as the force is inversely proportional to the square of the distance between the charged particles. The correct option is D. Yes, because the force depends on distance.
Learn more About electrostatic force from the given link
https://brainly.com/question/20797960
#SPJ11
How much voltage was applied to a 6.00 mF capacitor if it stores
432mJ of energy?
The voltage applied to the 6.00 mF capacitor to store 432 mJ of energy is 12 volts.
To find the voltage applied to a capacitor, you can use the formula:
Energy (E) = (1/2) * C * V^2
Where:
E = Energy stored in the capacitor
C = Capacitance
V = Voltage applied to the capacitor
In this case, the energy stored in the capacitor (E) is given as 432 mJ (millijoules), and the capacitance (C) is given as 6.00 mF (millifarads).
Let's substitute the given values into the formula and solve for V:
432 mJ = (1/2) * 6.00 mF * V^2
First, let's convert the energy and capacitance to joules and farads:
432 mJ = 0.432 J
6.00 mF = 0.006 F
Now, we can rewrite the equation:
0.432 J = (1/2) * 0.006 F * V^2
Divide both sides of the equation by (1/2) * 0.006 F:
0.432 J / [(1/2) * 0.006 F] = V^2
Simplify the left side:
0.432 J / (0.003 F) = V^2
V^2 = 144 V^2
Take the square root of both sides to solve for V:
V = √(144 V^2)
V = 12 V
Learn more about capacitors at https://brainly.com/question/21851402
#SPJ11
A wire has a resistivitiy of 3.00×10 −8
Ωm with a diameter of 600 mm and length of 20,0 m. A) What is the resistance of the wire B) With a 12.0 V battery connected across the ends of the wire, find the current in the wire? c) What is the power loss in the wire?
The resistance of the wire is 6.33 Ω.The current in the wire when a 12.0 V battery is 1.90A..the power loss in the wire is 22.9 W.
The resistance of the wire The resistance of the wire is given by:
R = ρL/A where;ρ is the resistivity of the wire, A is the cross-sectional area of the wire and L is the length of the wire. Substituting the given values,
R = ([tex]3.00 \times 10^{-8}[/tex] Ωm × 20.0 m) / [(π / 4) × (0.6 m)²],
R = 6.33 Ω.
The current in the wire when a 12.0 V battery is connected is given by:I = V/R where;V is the voltage across the wire and R is the resistance of the wire.
Substituting the given values,
I = 12 V / 6.33 Ω.
I = 1.90 A.
Power loss in the wireWhen current flows through a wire, energy is dissipated in the form of heat due to the resistance of the wire. The power loss in the wire is given by:P = I²R where;I is the current through the wire and R is the resistance of the wire.Substituting the given values, P = (1.90 A)² × 6.33 Ω = 22.9 W,
A wire with a resistivity of [tex]3.00 \times 10^{-8}[/tex] Ωm, a diameter of 600 mm and a length of 20.0 m has a resistance of 6.33 Ω. When a 12.0 V battery is connected across the ends of the wire, the current in the wire is 1.90 A. The power loss in the wire is 22.9 W.
The power loss in a wire can be calculated using the formula P = I²R where P is the power loss, I is the current flowing through the wire and R is the resistance of the wire. Alternatively, the power loss can be calculated using the formula P = V²/R where V is the voltage across the wire.
This formula is obtained by substituting Ohm's law V = IR into the formula P = I²R. The power loss in a wire can also be calculated using Joule's law, which states that the power loss is proportional to the square of the current flowing through the wire.
Thus, the power loss in the wire is 22.9 W.
To know more about resistance visit:
brainly.com/question/33728800
#SPJ11
ultrasound in the range of intensities used for deep heating Calculate the intentary or surround on w/m) W/m2 Compare this intensity with values quoted in the text The intensity of 155 de ultrasound is within the deep heating range The intensity of 155 de otrasound is not within the deep heating range
The intensity of 155 deHz ultrasound at 2.5 W/cm² exceeds the typical range mentioned in the text.
Ultrasound is a form of medical treatment that utilizes high-frequency sound waves to generate heat deep within the body. The range of intensities commonly employed for deep heating purposes is approximately 1-3 W/cm².
To calculate the power density or intensity of ultrasound in watts per square meter (W/m²), the following formula can be used:
Power density = (Intensity of ultrasound × Speed of sound in the medium) / 2
For ultrasound with a frequency of 155 deHz and an intensity of 2.5 W/cm², the power density can be determined as follows:
Power density = (2.5 × 10⁴ × 155 × 10⁶) / (2 × 10³) = 4.8 × 10⁸ W/m²
This calculated power density falls within the range commonly employed for deep heating. It is worth noting that the given text mentions typical ultrasound intensities ranging from 0.1-3 W/cm². Converting this range to watts per square meter (W/m²), it corresponds to approximately 10⁴-3 × 10⁵ W/m².
Therefore, the intensity of 155 deHz ultrasound at 2.5 W/cm² exceeds the typical range mentioned in the text.
Learn more about ultrasound waves here:
brainly.com/question/29887791
#SPJ11
(a) In brief terms, provide an account of nuclear instability, making use of the Nuclear chart "Segré chart" to illustrate your answer. (a) A particular expression of the semi-empirical formula for the binding energy of a nucleus is (in MeV): B-15.5 A-16.842) - 0.72 Z+/A!) – 19(N=Z)'/A Discuss the origin of each ten
Nuclear instability refers to the tendency of certain atomic nuclei to undergo decay or disintegration due to an imbalance between the forces that hold the nucleus together and the forces that repel its constituents.
The Segré chart, also known as the nuclear chart, is a graphical representation of all known atomic nuclei, organized by their number of protons (Z) and neutrons (N). It provides a visual representation of the stability or instability of nuclei.
The semi-empirical formula for the binding energy of a nucleus provides insights into the origin of nuclear stability. The formula is given by B = (15.5A - 16.842) - 0.72Z^2/A^(1/3) - 19(N-Z)^2/A, where B represents the binding energy of the nucleus, A is the mass number, Z is the atomic number, and N is the number of neutrons.
The terms in the formula have specific origins. The first term, 15.5A - 16.842, represents the volume term and is derived from the idea that each nucleon (proton or neutron) contributes a certain amount to the binding energy.
The second term, -0.72Z^2/A^(1/3), is the Coulomb term and accounts for the electrostatic repulsion between protons. It is inversely proportional to the cube root of the mass number, indicating that larger nuclei with more nucleons experience weaker Coulomb repulsion.
The third term, -19(N-Z)^2/A, is the symmetry term and arises from the observation that nuclei with equal numbers of protons and neutrons (N = Z) tend to be more stable. The asymmetry between protons and neutrons reduces the binding energy.
In summary, nuclear instability refers to the tendency of certain atomic nuclei to decay due to an imbalance between attractive and repulsive forces. The Segré chart provides a visual representation of nuclear stability.
The semi-empirical formula for binding energy reveals the origin of stability through its terms: the volume term, Coulomb term, and symmetry term, which account for the contributions of nucleons, electrostatic repulsion, and asymmetry, respectively.
Learn more about asymmetry here
brainly.com/question/30639121
#SPJ11
A is 67.0 m long at a 35.0' angle with respect to the +x-axis. B is 50.0 m long at a 65.0' angle above the-x-axis. What is the magnitude of the sum of vectors A and B? What angle does the sum of vectors A and B make with the x-axis?
The magnitude of the sum of vectors A and B is 90.7 m, and the angle that the sum of vectors A and B makes with the x-axis is 67.8 degrees.
To solve the problem, we have to add vector A and B, to find the magnitude and angle of the sum of the two vectors. Here's how we can do that. Let's begin by plotting the vectors on a graph. We'll have vector A on the positive side of the x-axis, and vector B above the negative side of the x-axis. We know that vector A is 67.0 m long at a 35.0-degree angle with respect to the positive x-axis.
Using trigonometry, we can find the components of vector A along the x and y axes. We can use the sine and cosine functions, as shown below.sin(35) = y/67cos(35) = x/67x = 67cos(35)y = 67sin(35)x = 54.42 m (to 2 decimal places)y = 38.14 m (to 2 decimal places) So, the components of vector A are (54.42 m, 38.14 m).
We also know that vector B is 50.0 m long at a 65.0-degree angle above the negative x-axis. Again, using trigonometry, we can find the components of vector B along the x and y axes. We can use the sine and cosine functions, as shown below.sin(65) = y/50cos(65) = x/50x = 50cos(65)y = 50sin(65)x = 20.07 m (to 2 decimal places)y = 46.41 m (to 2 decimal places)So, the components of vector B are (–20.07 m, 46.41 m) (since vector B is above the negative x-axis).
Now, we can add the components of vector A and B along the x and y axes to find the components of their sum. We get:x(sum) = x(A) + x(B) = 54.42 – 20.07 = 34.35 my(sum) = y(A) + y(B) = 38.14 + 46.41 = 84.55 mSo, the components of the sum of vectors A and B are (34.35 m, 84.55 m).
The magnitude of the sum of vectors A and B is the square root of the sum of the squares of its components, which is given by: Magnitude = [tex]sqrt[(x(sum))^2 + (y(sum))^2] = sqrt[(34.35)^2 + (84.55)^2[/tex]] = 90.7 m (to 2 decimal places).
To find the angle that the sum of vectors A and B makes with the x-axis, we can use the arctangent function. This gives us the angle in degrees. We get:theta = arctan(y(sum)/x(sum)) = arctan(84.55/34.35) = 67.8 degrees (to 1 decimal place). Therefore, the magnitude of the sum of vectors A and B is 90.7 m, and the angle that the sum of vectors A and B makes with the x-axis is 67.8 degrees.
Know more about vectors here:
https://brainly.com/question/30958460
#SPJ11
13. The photoelectric effect is (a) due to the quantum property of light (b) due to the classical theory of light (c) independent of reflecting material (d) due to protons. 14. In quantum theory (a) t
13. The photoelectric effect is (a) due to the quantum property of light.
The photoelectric effect is a phenomenon in which electrons are emitted from a material when it is exposed to light. This effect can only be explained by considering light as consisting of discrete packets of energy called photons, which is a fundamental concept in quantum theory.
According to the quantum property of light, each photon carries a specific amount of energy, and when it interacts with matter, it can transfer this energy to electrons, causing them to be ejected from the material. Therefore, the photoelectric effect is due to the quantum property of light.
14. In quantum theory (a) the wave-particle duality of matter and energy is explained.
In quantum theory, the wave-particle duality of matter and energy is explained. This principle suggests that particles, such as electrons, can exhibit both wave-like and particle-like properties depending on the context of observation.
This duality is a fundamental concept in quantum mechanics, which describes the behavior of particles and energy at the microscopic level. It means that particles can display wave-like characteristics, such as interference and diffraction, as well as particle-like characteristics, such as position and momentum. This concept is central to understanding the behavior of subatomic particles and the interactions between matter and energy.
To know more about the quantum theory refer here:
https://brainly.com/question/15069197?#
#SPJ11
An object 2.00 mm tall is placed 59.0 cm from a convex lens. The focal length of the lens has magnitude 30.0 cm. What is the height of the image in mm ? If a converging lens forms a real, inverted image 17.0 cm to the right of the lens when the object is placed 46.0 cm to the left of a lens, determine the focal length of the lens in cm.
An object 2.00 mm tall is placed 59.0 cm from a convex lens. The focal length of the lens has magnitude 30.0 cm.
The height of the image is 2.03 mm.
If a converging lens forms a real, inverted image 17.0 cm to the right of the lens when the object is placed 46.0 cm to the left of a lens, the focal length of the lens is 26.93 cm.
To find the height of the image formed by a convex lens, we can use the lens equation:
1/f = 1/[tex]d_o[/tex] + 1/[tex]d_i[/tex]
where:
f is the focal length of the lens,
[tex]d_o[/tex] is the object distance,
[tex]d_i[/tex] is the image distance.
We can rearrange the lens equation to solve for [tex]d_i[/tex]:
1/[tex]d_i[/tex] = 1/f - 1/[tex]d_o[/tex]
Now let's calculate the height of the image.
Height of the object ([tex]h_o[/tex]) = 2.00 mm = 2.00 × 10⁻³ m
Object distance ([tex]d_o[/tex]) = 59.0 cm = 59.0 × 10⁻² m
Focal length (f) = 30.0 cm = 30.0 × 10⁻² m
Plugging the values into the lens equation:
1/[tex]d_i[/tex] = 1/f - 1/[tex]d_o[/tex]
1/[tex]d_i[/tex] = 1/(30.0 × 10⁻²) - 1/(59.0 × 10⁻²)
1/[tex]d_i[/tex] = 29.0 / (1770.0) × 10²
1/[tex]d_i[/tex] = 0.0164
Taking the reciprocal:
[tex]d_i[/tex] = 1 / 0.0164 = 60.98 cm = 60.98 × 10⁻² m
Now, we can use the magnification equation to find the height of the image:
magnification (m) = [tex]h_i / h_o = -d_i / d_o[/tex]
hi is the height of the image.
m = [tex]-d_i / d_o[/tex]
[tex]h_i / h_o = -d_i / d_o[/tex]
[tex]h_i[/tex] = -m × [tex]h_o[/tex]
[tex]h_i[/tex] = -(-60.98 × 10⁻² / 59.0 × 10⁻²) × 2.00 × 10⁻³
[tex]h_i[/tex] = 2.03 × 10⁻³ m ≈ 2.03 mm
Therefore, the height of the image formed by the convex lens is approximately 2.03 mm.
Now let's determine the focal length of the converging lens.
Given:
Image distance ([tex]d_i[/tex]) = 17.0 cm = 17.0 × 10⁻² m
Object distance ([tex]d_o[/tex]) = -46.0 cm = -46.0 × 10⁻² m
Using the lens equation:
1/f = 1/[tex]d_o[/tex] + 1/[tex]d_i[/tex]
1/f = 1/(-46.0 × 10⁻²) + 1/(17.0 × 10⁻²)
1/f = (-1/46.0 + 1/17.0) × 10²
1/f = -29.0 / (782.0) × 10²
1/f = -0.0371
Taking the reciprocal:
f = 1 / (-0.0371) = -26.93 cm = -26.93 × 10⁻² m
Since focal length is typically positive for a converging lens, we take the absolute value:
f = 26.93 cm
Therefore, the focal length of the converging lens is approximately 26.93 cm.
To know more about focal length here
https://brainly.com/question/2194024
#SPJ4
The height of the image is 3.03 mm (rounded off to two decimal places). Given the provided data:
Object height, h₁ = 2.00 mm
Distance between the lens and the object, d₀ = 59.0 cm
Focal length of the lens, f = 30.0 cm
Using the lens formula, we can calculate the focal length of the lens:
1/f = 1/d₀ + 1/dᵢ
Where dᵢ is the distance between the image and the lens. From the given information, we know that when the object is placed at a distance of 46 cm from the lens, the image formed is at a distance of 17 cm to the right of the lens. Therefore, dᵢ = 17.0 cm - 46.0 cm = -29 cm = -0.29 m.
Substituting the values into the lens formula:
1/f = 1/-46.0 + 1/-0.29
On solving, we find that f ≈ 18.0 cm (rounded off to one decimal place).
Part 1: Calculation of the height of the image
Using the lens formula:
1/f = 1/d₀ + 1/dᵢ
Substituting the given values:
1/30.0 = 1/59.0 + 1/dᵢ
Solving for dᵢ, we find that dᵢ ≈ 44.67 cm.
The magnification of the lens is given by:
m = h₂/h₁
where h₂ is the image height. Substituting the known values:
h₂ = m * h₁
Using the calculated magnification (m) and the object height (h₁), we can find:
h₂ = 3.03 mm
Therefore, the height of the image is 3.03 mm (rounded off to two decimal places).
Learn more about lens formula the given link
https://brainly.com/question/30241853
#SPJ11
A harmonic wave travels in the positive x direction at 14 m/s along a taught string. A fixed point on the string oscillates as a function of time according to the equation y = 0.026 cos(6t) where y is the displacement in meters and the time t is in seconds.
a) What is the amplitude of the wave, in meters?
b) What is the frequency of the wave, in hertz?
c) What is the wavelength of the wave, in meters?
Amplitude of the wave is 0.013 meters.
Frequency of the wave is 0.955 Hz
Wavelength of the wave is 14.65 meters.
Harmonic wave travels in the positive x direction at 14 m/s along a taught string. Fixed point on the string oscillates as a function of time according to the equation y = 0.026 cos(6t) where y is the displacement in meters and the time t is in seconds.
a) Amplitude is given by the equation;
A = maximum displacement/2A = 0.026/2 = 0.013 m
Amplitude of the wave is 0.013 meters.
b) From the equation of y; y = 0.026 cos(6t)
The frequency is given by the equation;
f = n/2πf = 6/2πf = 0.955 Hz
Frequency of the wave is 0.955 Hz.
c) The wave equation is given by;
y = A sin(kx - ωt) where
A = Amplitude,
k = Wave number,
ω = Angular frequency and
λ = wavelength.
Amplitude, A = 0.013 mω = 6 k = ω/v = 6/14 = 0.429 m-1λ = 2π/k = 2π/0.429 = 14.65 m
Wavelength of the wave is 14.65 meters.
Thus :
Amplitude of the wave is 0.013 meters.
Frequency of the wave is 0.955 Hz
Wavelength of the wave is 14.65 meters.
Learn more about amplitude https://brainly.com/question/3613222
#SPJ11
A heat engine takes in a quantity of heat equals 10 kJ from a hot reservoir at 900 °C and rejects a quantity of heat Qc to a cold reservoir at a temperature 400 °C. The maximum possible efficiency of this engine is
The maximum possible efficiency of this heat engine is approximately 42.69%. It can be calculated using the Carnot efficiency formula.
The maximum possible efficiency of a heat engine can be calculated using the Carnot efficiency formula, which is given by:
Efficiency = 1 - (Tc/Th), where Tc is the temperature of the cold reservoir and Th is the temperature of the hot reservoir.
In this case, the temperature of the hot reservoir (Th) is 900 °C, which needs to be converted to Kelvin (K) by adding 273.15 to the Celsius value. So Th = 900 + 273.15 = 1173.15 K.
Similarly, the temperature of the cold reservoir (Tc) is 400 °C, which needs to be converted to Kelvin as well. Tc = 400 + 273.15 = 673.15 K. Now, we can calculate the maximum possible efficiency:
Efficiency = 1 - (Tc/Th)
Efficiency = 1 - (673.15 K / 1173.15 K)
Efficiency ≈ 1 - 0.5731
Efficiency ≈ 0.4269
Therefore, the maximum possible efficiency of this heat engine is approximately 42.69%.
Learn more about the Carnot efficiency formula here:
https://brainly.com/question/31430273
#SPJ11
A ball with an initial speed of 5.0 m/s rolls up an incline, sometime later, at a distance of 5.5 m up the incline, it has a speed of 1.5 m/s down the incline. (a) Determine: (i) its acceleration, (ii) its average velocity and (iii) the time taken to acquire this velocity. (b) At some point of the balls journey the velocity had to be zero. Where and when did this occur?
ai) the acceleration of the ball is approximately [tex]-1.73 m/s^2.[/tex] aii) the average velocity is also zero. aii) it takes approximately 2.89 seconds for the ball to acquire the velocity of 1.5 m/s.
How to determine the acceleration of the ball(a) (i) To determine the acceleration of the ball, we can use the equation:
[tex]v^2 = u^2 + 2as,[/tex]
where v is the final velocity, u is the initial velocity, a is the acceleration, and s is the displacement.
Plugging in the given values:
v = 1.5 m/s,
u = 5.0 m/s,
s = 5.5 m,
We can rearrange the equation to solve for the acceleration:
a =[tex](v^2 - u^2) / (2s)[/tex]
Substituting the values:
a =[tex](1.5^2 - 5.0^2) / (2 * 5.5)[/tex]
a = (-19) / 11
a ≈ -1.73 m/s^2
Therefore, the acceleration of the ball is approximately [tex]-1.73 m/s^2.[/tex]
(ii) The average velocity of the ball can be calculated using the formula:
average velocity = total displacement / total time
In this case, the ball moves 5.5 m up the incline. Since it returns to the starting point, the total displacement is zero. Therefore, the average velocity is also zero.
(iii) The time taken to acquire the velocity of 1.5 m/s can be found using the equation:
v = u + at,
where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time taken.
Plugging in the values:
v = 1.5 m/s,
u = 5.0 m/s,
[tex]a = -1.73 m/s^2,[/tex]
We can rearrange the equation to solve for time:
t = (v - u) / a
Substituting the values:
t = (1.5 - 5.0) / (-1.73)
t ≈ 2.89 seconds
Therefore, it takes approximately 2.89 seconds for the ball to acquire the velocity of 1.5 m/s.
(b) The point where the velocity of the ball is zero can be found by analyzing the motion of the ball. Since the ball rolls up the incline and then returns to the starting point, the point where the velocity is zero occurs at the highest point of its motion, which is the point of maximum height on the incline.
Learn more about velocity at https://brainly.com/question/80295
#SPJ4
One long wire lies along an x axis and carries a current of 48 A in the positive x direction. A second long wire is perpendicular to the xy plane, passes through the point (0,6.0 m,0), and carries a current of 50 A in the positive z direction. What is the magnitude of the resulting magnetic field at the point (0,1.5 m,0) ?
The magnitude of the resulting magnetic field at the point (0,1.5 m,0) is 1.27 μT.
The magnetic field due to a long straight current carrying wire is given by the Biot-Savart law:
B = μ0 I / 2 π r sin θ
where μ0 is the permeability of free space, I is the current, r is the distance from the wire, and θ is the angle between the wire and the direction of the magnetic field.
In this case, the current in the first wire is 48 A and the distance from the point (0,1.5 m,0) to the wire is 1.5 m. The angle between the wire and the direction of the magnetic field is 90 degrees. Therefore, the magnitude of the magnetic field due to the first wire is:
B1 = μ0 I / 2 π r sin θ = 4π × 10-7 T m/A × 48 A / 2 π × 1.5 m × sin 90° = 1.27 μT
The current in the second wire is 50 A and the distance from the point (0,1.5 m,0) to the wire is 6.0 m. The angle between the wire and the direction of the magnetic field is 45 degrees.
Therefore, the magnitude of the magnetic field due to the second wire is:
B2 = μ0 I / 2 π r sin θ = 4π × 10-7 T m/A × 50 A / 2 π × 6.0 m × sin 45° = 0.63 μT
The direction of the magnetic field due to the first wire is into the page. The direction of the magnetic field due to the second wire is out of the page.
The two magnetic fields are perpendicular to each other and add together to form a resultant magnetic field that points into the page. The magnitude of the resultant magnetic field is:
B = B1 + B2 = 1.27 μT + 0.63 μT = 1.9 μT
Learn more about magnitude with the givem link,
https://brainly.com/question/30337362
#SPJ11
An iceberg with a cuboid shape is floating on the sea. The density of ice is 917 kg/m3, and the density of seawater is 1030 kg/m3. If the volume of the iceberg under the sea is 10 cubic miles and the height of the iceberg above the sea is 100 ft, how many acres is the horizontal area of the iceberg?
The horizontal area of the iceberg is approximately 3.674 × 10^7 acres.
Let's calculate the horizontal area of the iceberg:
Density of ice, ρ_ice = 917 kg/m^3
Density of seawater, ρ_seawater = 1030 kg/m^3
Volume of the iceberg under the sea, V_iceberg = 10 cubic miles
Height of the iceberg above the sea, h_iceberg = 100 ft
First, let's convert the volume of the iceberg to cubic meters:
1 cubic mile ≈ (1609.34 m)^3 ≈ 4.168 × 10^9 m^3
Volume of the iceberg under the sea ≈ 10 cubic miles ≈ 4.168 × 10^10 m^3
Next, we can calculate the mass of the iceberg:
Mass of the iceberg = Volume of the iceberg under the sea × Density of seawater
= 4.168 × 10^10 m^3 × 1030 kg/m^3
≈ 4.289 × 10^13 kg
Now, let's calculate the base area of the iceberg:
Base area = Mass of the iceberg / (Density of ice × height)
= (4.289 × 10^13 kg) / (917 kg/m^3 × 100 ft)
= (4.289 × 10^13 kg) / (917 kg/m^3 × 30.48 m)
≈ 1.487 × 10^11 m^2
Finally, we can convert the base area to acres:
Base area in acres = Base area / 4046.86 m^2
= (1.487 × 10^11 m^2) / 4046.86 m^2
≈ 3.674 × 10^7 acres
Learn more about density at https://brainly.com/question/1354972
#SPJ11
an A car initially Travelling at 24 mith slows to rest in sos. What is the car's acceleration ? take smile - 460g 3m, 1 hour = 60 min, Aminubes 60 seconds. A Force, applied boane care se A to object of ma produces an acceleration of honums the same forces is applied to a second object of mass me produces an acceleration , of 4, 81 mls. What is the value of the Tralis malme?
A car initially Travelling at 24 mith slows to rest in sos, The car's acceleration is -4 m/s².
To determine the car's acceleration, we can use the equation of motion:
v² = u² + 2as
where:
v = final velocity (0 m/s, since the car comes to rest)
u = initial velocity (24 m/s)
a = acceleration (unknown)
s = displacement (unknown)
Rearranging the equation, we have:
a = (v² - u²) / (2s)
Since v = 0 and u = 24 m/s, the equation becomes:
a = (0 - 24²) / (2s)
To find the value of s, we need to use the equation of motion:
s = ut + (1/2)at²
Given that t = 5 seconds, we have:
s = 24(5) + (1/2)(-4)(5²)
s = 120 - 50
s = 70 meters
Now we can substitute the values into the initial equation to calculate the acceleration:
a = (0 - 24²) / (2 * 70)
a = -576 / 140
a ≈ -4 m/s²
Therefore, the car's acceleration is approximately -4 m/s², indicating that it decelerates at a rate of 4 m/s². The negative sign indicates that the acceleration is in the opposite direction of the initial velocity.
To know more about acceleration, refer here:
https://brainly.com/question/30499732#
#SPJ11
quick answer
please
QUESTION 22 Plane-polarized light with an intensity of 1,200 watts/m2 is incident on a polarizer at an angle of 30° to the axis of the polarizer. What is the resultant intensity of the transmitted li
Resultant intensity of the transmitted light through the polarizer, we need to consider the angle between the incident plane-polarized light and the axis of the polarizer. The transmitted intensity can be calculated using Malus' law.
Malus' law states that the transmitted intensity (I_t) through a polarizer is given by:
I_t = I_i * cos²θ, where I_i is the incident intensity and θ is the angle between the incident plane-polarized light and the polarizer's axis.
Substituting the given values:
I_i = 1,200 watts/m² (incident intensity)
θ = 30° (angle between the incident light and the polarizer's axis)
Calculating the transmitted intensity:
I_t = 1,200 watts/m² * cos²(30°)
I_t ≈ 1,200 watts/m² * (cos(30°))^2
I_t ≈ 1,200 watts/m² * (0.866)^2
I_t ≈ 1,200 watts/m² * 0.75
I_t ≈ 900 watts/m²
Therefore, the resultant intensity of the transmitted light through the polarizer is approximately 900 watts/m².
To learn more about polarizer click here.
brainly.com/question/29217577
#SPJ11
You are building a roller coaster and you want the first hill
to have a maximum speed of 35.76 m/s (about 80 mph) at the bottom?
How high must the first hill be to accomplish this?
The first hill of the roller coaster must be approximately 64.89 meters high to achieve a maximum speed of 35.76 m/s (about 80 mph) at the bottom.
To determine the required height of the first hill of a roller coaster to achieve a maximum speed of 35.76 m/s at the bottom, we can use the principle of conservation of energy.
At the top of the hill, the roller coaster has gravitational potential energy (due to its height) and no kinetic energy (as it is momentarily at rest). At the bottom of the hill, all of the initial potential energy is converted into kinetic energy.
The total mechanical energy (E) of the roller coaster is the sum of its potential energy (PE) and kinetic energy (KE):
E = PE + KE
The potential energy of an object at height h is given by the formula:
PE = m * g * h
Where:
m is the mass of the roller coaster
g is the acceleration due to gravity (approximately 9.8 m/s^2)
h is the height of the hill
At the bottom of the hill, when the roller coaster reaches the maximum speed of 35.76 m/s, all the potential energy is converted into kinetic energy:
PE = 0
KE = (1/2) * m * v^2
Substituting these values into the total mechanical energy equation:
E = PE + KE
0 = 0 + (1/2) * m * v^2
Simplifying the equation:
(1/2) * m * v^2 = m * g * h
Canceling out the mass term:
(1/2) * v^2 = g * h
Solving for h:
h = (1/2) * v^2 / g
Substituting the given values:
h = (1/2) * (35.76 m/s)^2 / 9.8 m/s^2
h ≈ 64.89 meters
Learn more about the speed at https://brainly.com/question/13943409
#SPJ11
When an atom undergoes beta+ decay (positron emission) or beta- decay (electron emission) the positron or electron must come from the nucleus. These particles do not normal reside in the nucleus and are actually formed inside the nucleus. An electron is formed when a _________ decays to become a(n) _________ and a(n) _________. This occurs as a result of the re-arrangement of the fundamental particles that neutrons and protons are made from. These particles are called ________.
During beta decay, an electron is formed when a neutron decays to become a proton and an electron. This process involves the rearrangement of fundamental particles called quarks.
Beta decay occurs when an atom undergoes either beta+ decay (positron emission) or beta- decay (electron emission). In beta- decay, a neutron in the nucleus decays to become a proton, and in the process, an electron is formed. The neutron is composed of three fundamental particles called quarks (two down quarks and one up quark), while the proton is composed of two up quarks and one down quark.
During the decay process, one of the down quarks in the neutron changes into an up quark, converting the neutron into a proton. Simultaneously, an electron is formed as a result of this rearrangement. The electron is emitted from the nucleus with high energy, carrying away the excess energy released during the decay.
The formation of an electron during beta- decay is a consequence of the re-arrangement of quarks within the neutron and proton. Quarks are elementary particles that make up protons, neutrons, and other subatomic particles. They have electric charges and different flavors (up, down, charm, strange, top, bottom). In beta- decay, the transformation of a neutron into a proton involves the conversion of one type of quark into another, accompanied by the emission of an electron.
During beta- decay, an electron is formed when a neutron decays to become a proton and an electron. This process involves the rearrangement of fundamental particles known as quarks.
To learn more about neutron.
Click here:brainly.com/question/9798531
#SPJ11
A camera lens used for taking close-up photographs has a focal length of 26.0 mm. The farthest it can be placed from the film is 33.5 mm. What is the closest object that can be photographed? 116 mm You are correct. Previous Tries Your receipt no. is 162-480 What is the magnification of this closest object? Submit Answer Incorrect. Tries 2/40 Previous Tries
The magnification of the closest object is approximately -1.29.
The magnification of an object can be determined using the formula:
Magnification = -Image Distance / Object Distance
In this case, since the lens is used for close-up photographs, the object distance is equal to the focal length (26.0 mm). The image distance is the distance at which the object is in focus, which is the closest the lens can be placed from the film (33.5 mm).
Substituting the values into the formula:
Magnification = -(33.5 mm) / (26.0 mm) ≈ -1.29
The magnification of the closest object is approximately -1.29. Note that the negative sign indicates that the image is inverted.
Learn more about magnification:
https://brainly.com/question/30402564
#SPJ11
ertically polarized light of intensity l, is incident on a polarizer whose transmission axis is at an angle of 70° with the vertical. If the intensity of the transmitted light is measured to be 0.34W/m2, the intensity lo of the incident light is O 0.99 W/m2 O 0.43 W/m2 O 1.71 W/m2 O 2.91 W/m2
The intensity lo of the incident light is determined to be 1.71 W/m2. So, the correct option is c.
According to the question, vertically polarized light of intensity l, is incident on a polarizer whose transmission axis is at an angle of 70° with the vertical. If the intensity of the transmitted light is measured to be 0.34 W/m2, the intensity lo of the incident light can be calculated as follows:
Given, Intensity of transmitted light, I = 0.34 W/m²
Intensity of incident light, I₀ = ?
We know that the intensity of the transmitted light is given by:
I = I₀cos²θ
Where θ is the angle between the polarization direction of the incident light and the transmission axis of the polarizer.
So, by substituting the given values in the above equation, we have:
I₀ = I/cos²θ = 0.34/cos²70°≈1.71 W/m²
Therefore, the intensity lo of the incident light is 1.71 W/m2.
Learn more about intensity of the light at https://brainly.com/question/28145811
#SPJ11
A large gambling wheel turning
at a speed of 1.5 rev/s comes to rest in an agonizing time of 12s.
Find its deceleration in radians per second per second
The angular deceleration of the gambling wheel is -0.785 rad/s².
The initial angular velocity, ω₀ = 1.5 rev/s
The final angular velocity, ω = 0
Time taken, t = 12 s
The relation between angular velocity, angular acceleration and angular displacement is given by
ω = ω₀ + αt
Also, angular displacement, θ = ω₀t + ½αt²
If the wheel comes to rest, ω = 0
The first equation becomes α = -ω₀/t = -1.5/12 = -0.125 rev/s²
The value of α is negative because it is deceleration and opposes the initial direction of motion of the wheel (i.e. clockwise).
To find the angular deceleration in radians per second per second, we can convert the angular acceleration from rev/s² to rad/s².
1 rev = 2π rad
Thus, 1 rev/s² = 2π rad/s²
Therefore, the angular deceleration is
α = -0.125 rev/s² × 2π rad/rev = -0.785 rad/s² (to three significant figures)
Hence, the angular deceleration of the gambling wheel is -0.785 rad/s².
Learn more about angular deceleration :
https://brainly.com/question/12956978
#SPJ11
A400 ohm resistor is connected in series with a 0.35 H inductor and AC-source. The potential difference across the resistor is VR-6.8 cos (680rad/s)t a) What is the circuit current at t-1.6s? t in Volts. b) Determine the inductive reactance of the inductor? c) What is the voltage across the inductor (V₁) at t=3.2s? J₁ = 2
In this series circuit, a 400-ohm resistor is connected with a 0.35 H inductor and an AC source.
The potential difference across the resistor is given by VR = 6.8 cos(680 rad/s)t. To solve the given questions, we need to determine the circuit current at t = 1.6 s, calculate the inductive reactance of the inductor, and find the voltage across the inductor (V₁) at t = 3.2 s.
a) To find the circuit current at t = 1.6 s, we can use Ohm's law. The potential difference across the resistor is VR = 6.8 cos(680 rad/s)(1.6 s). Since the resistor and inductor are in series, the current flowing through both components is the same. Therefore, the circuit current at t = 1.6 s is I = VR / R, where R is the resistance value of 400 ohms.
b) The inductive reactance of an inductor can be calculated using the formula XL = 2πfL, where f is the frequency and L is the inductance. In this case, the frequency is given by ω = 680 rad/s. Thus, the inductive reactance of the 0.35 H inductor is XL = 2π(680)(0.35).
c) To determine the voltage across the inductor (V₁) at t = 3.2 s, we need to consider the relationship between voltage and inductive reactance. The voltage across the inductor can be calculated using the formula V₁ = IXL, where I is the circuit current at t = 3.2 s, and XL is the inductive reactance determined in part (b).
By applying the necessary calculations, we can find the circuit current at t = 1.6 s, the inductive reactance of the inductor, and the voltage across the inductor at t = 3.2 s using the given information.
Learn more about resistor here: brainly.com/question/30672175
#SPJ11
Two forces are acting on an object, a force F1=<-3,6,0-N and a force F2=<2,-3,0-N. Visually find the net force acting on the object.
The term "net force" refers to the vector sum of all the individual forces acting on an object. The net force acting on the object is <-1, 3, 0> N.
When multiple forces act on an object, they can either work together (in the same direction) or in opposite directions. The net force represents the overall effect of these combined forces on the object's motion.
Mathematically, the net force is determined by adding the vector components of all the individual forces acting on the object. Each force is represented as a vector with magnitude and direction. The net force is obtained by summing up the corresponding components of all the forces in each direction.
To find the net force acting on the object, we can add the individual forces vectorially. This can be done by adding the corresponding components of the forces together.
Given:
Force F1 = <-3, 6, 0> N
Force F2 = <2, -3, 0> N
To find the net force, we add the corresponding components:
Net Force = F1 + F2
Net Force = <-3, 6, 0> + <2, -3, 0>
Performing the vector addition:
Net Force = <-3 + 2, 6 + (-3), 0 + 0>
Net Force = <-1, 3, 0> N
Therefore, the net force acting on the object is <-1, 3, 0> N.
For more details regarding net force, visit:
https://brainly.com/question/29261584
#SPJ4
(16 points) A 125 cm³ cube of ice at -40 °C is immediately dropped into an insulated beaker containing 1000 mL of 20 °C water. (Here are some constants that you may find helpful: Cice 2.09 J/g°C, Cwater = 4.186 J/g°C, Lice-333 J/g, acu 1.67×10.5 °C-¹) A) What is the final temperature of the ice cube? B) How much water (originally at 20 °C) could have been frozen with the original cube? C) What would the initial temperature of the ice cube need to be in order to freeze all 1000 mL of the 20 °C water? D) If a copper cube of the same dimensions as the ice cube is cooled down by 40 °C, what is the change in length of the side of the copper cube?
A 125 cm³ cube of ice at -40 °C is immediately dropped into an insulated beaker containing 1000 mL of 20 °C water.
A) The final temperature of the ice cube is 34.6°C.
B) 1241.42 grams (or 1241.42 mL) of water could have been frozen with the original ice cube.
C) The initial temperature of the ice cube need to be in order to freeze all 1000 mL of the 20 °C water is -42.46°C.
D) If a copper cube of the same dimensions as the ice cube is cooled down by 40 °C, the change in length of the side of the copper cube is -6.68 × 10⁻⁴ times the initial length.
A) To find the final temperature of the ice cube, we can use the principle of energy conservation. The energy lost by the water must be gained by the ice cube when they reach thermal equilibrium.
The energy lost by the water can be calculated using the formula:
[tex]Q_w = m_w * C_w *[/tex] Δ[tex]T_w[/tex]
where [tex]m_w[/tex] is the mass of water, [tex]C_w[/tex] is the specific heat capacity of water, and Δ[tex]T_w[/tex] is the change in temperature of the water.
The energy gained by the ice cube can be calculated using the formula:
[tex]Q_i = m_i * C_i *[/tex] Δ[tex]T_i+ m_i * L_i[/tex]
where [tex]m_i[/tex] is the mass of the ice cube, [tex]C_i[/tex] is the specific heat capacity of ice, Δ[tex]T_i[/tex] is the change in temperature of the ice, and [tex]L_i[/tex] is the latent heat of fusion of ice.
Since the system is isolated, the energy lost by the water is equal to the energy gained by the ice cube:
[tex]Q_w = Q_i[/tex]
Let's calculate the values:
[tex]m_w[/tex] = 1000 g = 1000 mL
[tex]C_w[/tex] = 4.186 J/g°C
Δ[tex]T_w[/tex] = [tex]T_f[/tex] - 20°C
[tex]m_i[/tex] = 125 g = 125 cm³
[tex]C_i[/tex] = 2.09 J/g°C
Δ[tex]T_i = T_f[/tex]- (-40)°C (change in temperature from -40°C to[tex]T_f[/tex])
[tex]L_i[/tex] = 333 J/g
Setting up the equation:
[tex]m_w * C_w * (T_f - 20) = m_i * C_i * (T_f - (-40)) + m_i * L_i[/tex]
Simplifying and solving for [tex]T_f[/tex]:
[tex]1000 * 4.186 * (T_f - 20) = 125 * 2.09 * (T_f - (-40)) + 125 * 333\\4186 * (T_f - 20) = 261.25 * (T_f + 40) + 41625\\4186T_f - 83720 = 261.25T_f + 10450 + 41625\\4186T_f - 261.25T_f = 83720 + 10450 + 41625\\3924.75T_f = 135795\\T_f = 34.6°C[/tex]
Therefore, the final temperature of the ice cube is approximately 34.6°C.
B) To calculate the amount of water that could have been frozen with the original cube, we need to find the mass of the water that would have the same amount of energy as the ice cube when it reaches its final temperature.
[tex]Q_w = Q_i[/tex]
[tex]m_w * C_w *[/tex] Δ[tex]T_w = m_i * C_i *[/tex] Δ[tex]T_i + m_i * L_i[/tex]
Solving for [tex]m_w[/tex]:
[tex]m_w = (m_i * C_i *[/tex] Δ[tex]T_i+ m_i * L_i) / (C_w[/tex] * Δ[tex]T_w)[/tex]
Substituting the given values:
[tex]m_w[/tex]= (125 * 2.09 * (34.6 - (-40)) + 125 * 333) / (4.186 * (34.6 - 20))
[tex]m_w[/tex] = 1241.42 g
Therefore, approximately 1241.42 grams (or 1241.42 mL) of water could have been frozen with the original ice cube.
C) To find the initial temperature of the ice cube needed to freeze all 1000 mL of the 20°C water, we can use the same energy conservation principle:
[tex]Q_w = Q_i[/tex]
[tex]m_w * C_w *[/tex] Δ[tex]T_w = m_i * C_i *[/tex] Δ[tex]T_i + m_i * L_i[/tex]
Setting [tex]m_w[/tex] = 1000 g, [tex]C_w[/tex] = 4.186 J/g°C, Δ[tex]T_w[/tex] = ([tex]T_f[/tex]- 20)°C, and solving for Δ[tex]T_i[/tex]:
Δ[tex]T_i[/tex] = [tex](m_w * C_w *[/tex] Δ[tex]T_w - m_i * L_i) / (m_i * C_i)[/tex]
Substituting the values:
Δ[tex]T_i[/tex] = (1000 * 4.186 * (0 - 20) - 125 * 333) / (125 * 2.09)
Δ[tex]T_i[/tex] = -11102.99 / 261.25
Δ[tex]T_i[/tex] = -42.46°C
The initial temperature of the ice cube would need to be approximately -42.46°C to freeze all 1000 mL of the 20°C water.
D) To find the change in length of the side of the copper cube when it is cooled down by 40°C, we need to consider the coefficient of linear expansion of copper.
The change in length (ΔL) can be calculated using the formula:
ΔL = α * [tex]L_0[/tex] * ΔT
where α is the coefficient of linear expansion, [tex]L_0[/tex] is the initial length, and ΔT is the change in temperature.
Given that α for copper is approximately 1.67 × 10⁻⁵ °C⁻¹ and ΔT = -40°C, we can calculate the change in length.
ΔL = (1.67 × 10⁻⁵) * [tex]L_0[/tex] * (-40)
ΔL = -6.68 × 10⁻⁴ * [tex]L_0[/tex]
Therefore, the change in length of the side of the copper cube is -6.68 × 10⁻⁴ times the initial length.
To know more about insulated here
https://brainly.com/question/14363642
#SPJ4
Two forces acting on an object, F1=30 N, F2=40 N. The angle between is 90°. To make the object move in uniform linear motion in the direction of F1, a force F3 must be applied. Find the magnitude"
The magnitude of the force F3 required to make the object move in uniform linear motion in the direction of F1 is 50 N, given that F1 = 30 N and F2 = 40 N with a 90° angle between them.
To find the magnitude of the force F3 required to make the object move in uniform linear motion in the direction of F1, we can use vector addition. Since the angle between F1 and F2 is 90°, we can treat them as perpendicular components.
We can represent F1 and F2 as vectors in a coordinate system, where F1 acts along the x-axis and F2 acts along the y-axis. The force F3 will also act along the x-axis to achieve uniform linear motion in the direction of F1.
By using the Pythagorean theorem, we can find the magnitude of F3:
F3 = √(F1² + F2²).
Substituting the given values:
F1 = 30 N,
F2 = 40 N,
we can calculate the magnitude of F3:
F3 = √(30² + 40²).
F3 = √(900 + 1600).
F3 = √2500.
F3 = 50 N.
Therefore, the magnitude of the force F3 required to make the object move in uniform linear motion in the direction of F1 is 50 N.
To learn more about Pythagorean theorem, Visit:
https://brainly.com/question/343682
#SPJ11
a long circular solenoid is 3 m long and has 5 cm radius. the solenoid has 6000 turns of wire and carries a current of 40 A. placed inside the solenoid is a flat circular 20 turn coil, of radius 2cm, having a current 5A. The plane of this coil is also tilted 30 degrees from the axis of the solenoid. the plane of the coil is also perpendicular to the page.
a)find the magnitude of the torque acting on the coil.
b) state the direction of the axis that the coil will rotate around, if it is free to move
a) The magnitude of the torque acting on the coil is approximately 0.019 N·m.
b) If the coil is free to move, it will rotate around an axis perpendicular to the plane of the coil and the solenoid.
a) To find the magnitude of the torque acting on the coil, we can use the formula:
τ = NIAB sinθ
where: τ is the torque,
N is the number of turns in the coil,
I is the current in the coil,
A is the area of the coil, and
B is the magnetic field strength.
First, let's calculate the area of the coil:
A = πr²
A = π(0.02m)²
A = 0.00126 m²
Next, let's calculate the magnetic field strength at the location of the coil. For a long solenoid, the magnetic field inside is approximately uniform, and the formula for the magnetic field strength inside a solenoid is:
B = μ₀nI
where:
B is the magnetic field strength,
μ₀ is the permeability of free space (4π × 10⁻⁷ T·m/A),
n is the number of turns per unit length (n = N/L, where N is the total number of turns and L is the length of the solenoid), and
I is the current in the solenoid.
n = N/L = 6000/3 = 2000 turns/m
B = (4π × 10⁻⁷ T·m/A) × (2000 turns/m) × (40 A)
B = 0.008 T
Now we can calculate the torque:
τ = (20 turns) × (5 A) × (0.00126 m²) × (0.008 T) × sin(30°)
τ ≈ 0.019 N·m
Therefore, the magnitude of the torque acting on the coil is approximately 0.019 N·m.
b) The direction of the axis that the coil will rotate around, if it is free to move, can be determined using the right-hand rule. If you point your thumb in the direction of the magnetic field (B), and your fingers in the direction of the current (I) in the coil, the direction in which your palm faces gives the direction of the torque (τ) and the axis of rotation.
In this case, the magnetic field (B) points along the axis of the solenoid, from one end to the other. The current (I) in the coil flows in a circular path around the coil, following the right-hand rule for current in a circular loop. Given that the plane of the coil is perpendicular to the page, and the coil is tilted at a 30-degree angle, the torque (τ) will cause the coil to rotate around an axis perpendicular to the plane of the coil and the solenoid.
Therefore, if the coil is free to move, it will rotate around an axis perpendicular to the plane of the coil and the solenoid.
Read more on Solenoid here: https://brainly.com/question/1873362
#SPJ11
For the given equation of state of a gas, derive the parameters, a, b, and c in terms of the critical constants (Pc and Tc) and R.
P = RT/(V-b) a/TV(V-b) + c/T2V³ Show complete solution no shortcuts please
The parameters can be derived as follows: a = RTc^3/Pc, b = RTc^2/Pc, and c = aV - ab.
How can the parameters a, b, and c be derived in terms of the critical constants (Pc and Tc) and R for the given equation of state?To derive the parameters a, b, and c in terms of the critical constants (Pc and Tc) and R for the given equation of state, we start by expanding the equation and manipulating it algebraically.
The equation of state given is:
P = RT/(V - b) - a/(TV(V - b)) + c/(T^2V^3)
Step 1: Eliminate the fraction in the equation by multiplying through by the common denominator T^2V^3:
P(T^2V^3) = RT(T² V^3)/(V - b) - a(V - b) + c
Step 2: Rearrange the equation:
P(T^2V^3) = RT^3V^3 - RT² V² b - aV + ab + c
Step 3: Group the terms and factor out common factors:
P(T^2V^3) = (RT^3V^3 - RT²V²b) + (ab + c - aV)
Step 4: Compare the equation with the original form:
We equate the coefficients of the terms on both sides of the equation to determine the values of a, b, and c.
From the term involving V^3, we have: RT^3V^3 = a
From the term involving V^2, we have: RT² V² = ab
From the constant term, we have: ab + c = aV
Simplifying the equations further, we can express a, b, and c in terms of the critical constants (Pc and Tc) and R:
a = RTc^3/Pc
b = RTc²/Pc
c = aV - ab
This completes the derivation of the parameters a, b, and c in terms of the critical constants (Pc and Tc) and R for the given equation of state.
Learn more about parameters
brainly.com/question/29911057
#SPJ11
Six
moles of an ideal gas, initially at 178°C, are compressed to one
third of their initial volume at a constant pressure of 2.00 atm.
What is the final temperature of the gas?
Seis moles de un gas ideal, inicialmente a 178 °C, se comprimen a un tercio de su volumen inicial a presión constante de 2.00 atm. ¿Cuál es la temperatura final del gas? Select one: a.-123 °C b.-
The final temperature of the gas after compression is approximately 150.38°C.
To determine the final temperature of the gas after compression, using the combined gas law:
(P₁ ×V₁) / T₁= (P₂ × V₂) / T₂
Where:
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Given:
P₁ = 2.00 atm (constant pressure)
V₁ = Initial volume
T₁ = 178°C + 273.15
P₂ = 2.00 atm (constant pressure)
V₂ = (1/3) × V₁
T₂ = Final temperature
Substituting the values and solving for T₂
(2.00 atm × V₁) / (178°C + 273.15) = (2.00 atm × (1/3) × V₁) / T₂
V₁ / (178°C + 273.15) = (1/3) × V₁ / T₂
T₂ = (178°C + 273.15) × (1/3)
T₂ ≈ 150.38°C
Therefore, the final temperature of the gas after compression is approximately 150.38°C.
To know more about Combined gas law, click here:
https://brainly.com/question/30458409
#SPJ4
Suppose the magnetic field along an axis of a cylindrical region is given by B₂ = Bo(1 + vz²) sin wt, where is a constant. Suppose the o-component of B is zero, that is B = 0. (a) Calculate the radial B,(s, z) using the divergence of the magnetic field. (b) Assuming there is zero charge density p, show the electric field can be given by 1 E = (1 + vz²) Bow coswto, using the divergence of E and Faraday's Law. (c) Use Ampere-Maxwell's Equation to find the current density J(s, z).
a) The radial component of the magnetic field is:
B_r = Bo(2vwtz + C₁)
b) The radial component of the electric field is:
E_r = -2v Bow (vz/wt) sin(wt) - 2v Bow C₂
Comparing this with the given expression (1 + vz²) Bow cos(wt), we can equate the corresponding terms:
-2v Bow (vz/wt) sin(wt) = 0
This implies that either v = 0 or w = 0. However, since v is given as a constant, it must be that w = 0.
c) The current density J:
J = ε₀ Bow (1 + vz²) sin(wt)
Explanation:
To solve the given problem, we'll go step by step:
(a) Calculate the radial B(r, z) using the divergence of the magnetic field:
The divergence of the magnetic field is given by:
∇ · B = 0
In cylindrical coordinates, the divergence can be expressed as:
∇ · B = (1/r) ∂(rB_r)/∂r + ∂B_z/∂z + (1/r) ∂B_θ/∂θ
Since B does not have any θ-component, we have:
∇ · B = (1/r) ∂(rB_r)/∂r + ∂B_z/∂z = 0
We are given that B_θ = 0, and the given expression for B₂ can be written as B_z = Bo(1 + vz²) sin(wt).
Let's find B_r by integrating the equation above:
∂B_z/∂z = Bo ∂(1 + vz²)/∂z sin(wt) = Bo(2v) sin(wt)
Integrating with respect to z:
B_r = Bo(2v) ∫ sin(wt) dz
Since the integration of sin(wt) with respect to z gives us wtz + constant, we can write:
B_r = Bo(2v) (wtz + C₁)
where C₁ is the constant of integration.
So, the radial component of the magnetic field is:
B_r = Bo(2vwtz + C₁)
(b) Assuming zero charge density p, show the electric field can be given by E = (1 + vz²) Bow cos(wt) using the divergence of E and Faraday's Law:
The divergence of the electric field is given by:
∇ · E = ρ/ε₀
Since there is zero charge density (ρ = 0), we have:
∇ · E = 0
In cylindrical coordinates, the divergence can be expressed as:
∇ · E = (1/r) ∂(rE_r)/∂r + ∂E_z/∂z + (1/r) ∂E_θ/∂θ
Since E does not have any θ-component, we have:
∇ · E = (1/r) ∂(rE_r)/∂r + ∂E_z/∂z = 0
Let's find E_r by integrating the equation above:
∂E_z/∂z = ∂[(1 + vz²) Bow cos(wt)]/∂z = -2vz Bow cos(wt)
Integrating with respect to z:
E_r = -2v Bow ∫ vz cos(wt) dz
Since the integration of vz cos(wt) with respect to z gives us (vz/wt) sin(wt) + constant, we can write:
E_r = -2v Bow [(vz/wt) sin(wt) + C₂]
where C₂ is the constant of integration.
So, the radial component of the electric field is:
E_r = -2v Bow (vz/wt) sin(wt) - 2v Bow C₂
Comparing this with the given expression (1 + vz²) Bow cos(wt), we can equate the corresponding terms:
-2v Bow (vz/wt) sin(wt) = 0
This implies that either v = 0 or w = 0. However, since v is given as a constant, it must be that w = 0.
(c) Use Ampere-Maxwell's Equation to find the current density J(s, z):
Ampere-Maxwell's equation in differential form is given by:
∇ × B = μ₀J + μ₀ε₀ ∂E/∂t
In cylindrical coordinates, the curl of B can be expressed as:
∇ × B = (1/r) ∂(rB_θ)/∂z - ∂B_z/∂θ + (1/r) ∂(rB_z)/∂θ
Since B has no θ-component, we can simplify the equation to:
∇ × B = (1/r) ∂(rB_z)/∂θ
Differentiating B_z = Bo(1 + vz²) sin(wt) with respect to θ, we get:
∂B_z/∂θ = -Bo(1 + vz²) w cos(wt)
Substituting this back into the curl equation, we have:
∇ × B = (1/r) ∂(rB_z)/∂θ = -Bo(1 + vz²) w (1/r) ∂(r)/∂θ sin(wt)
∇ × B = -Bo(1 + vz²) w ∂r/∂θ sin(wt)
Since the cylindrical region does not have an θ-dependence, ∂r/∂θ = 0. Therefore, the curl of B is zero:
∇ × B = 0
According to Ampere-Maxwell's equation, this implies:
μ₀J + μ₀ε₀ ∂E/∂t = 0
μ₀J = -μ₀ε₀ ∂E/∂t
Taking the time derivative of E = (1 + vz²) Bow cos(wt), we get:
∂E/∂t = -Bow (1 + vz²) sin(wt)
Substituting this into the equation above, we have:
μ₀J = μ₀ε₀ Bow (1 + vz²) sin(wt)
Finally, dividing both sides by μ₀, we obtain the current density J:
J = ε₀ Bow (1 + vz²) sin(wt)
To know more about Faraday's Law, visit:
https://brainly.com/question/32089008
#SPJ11
A 1.65 kg book is sliding along a rough horizontal surface. At point A it is moving at 3.22 m/s , and at point B it has slowed to 1.47 m/s.
How much work was done on the book between A and B? If -0.660 J of work is done on the book from B to C, how fast is it moving at point C? How fast would it be moving at C if 0.660 J of work were done on it from B to C?
The work done between points A and B is -6.159 J. The book is moving at approximately 1.214 m/s at point C when -0.660 J of work is done on it from point B and if 0.660 J of work were done on the book from point B to point C, it would be moving at approximately 1.968 m/s at point C.
Given:
m, the mass of the book = 1.65 kg
v₁, velocities at points A = 3.22 m/s
v₂, velocity = 1.47 m/s
The work done on an object is equal to its change in kinetic energy.
W = ΔKE
ΔKE: change in kinetic energy.
ΔKE = KE₂ - KE₁
KE₁: initial kinetic energy
KE₂: final kinetic energy.
Calculating the initial and final kinetic energies:
KE₁ = (1/2) × m × v₁²
KE₂ = (1/2) × m × v₂²
Calculating the initial and final kinetic energies:
KE₁ = (1/2) × 1.65 × (3.22)²
KE₁ = 8.034 J
KE₂ = (1/2) × 1.65 × (1.47)²
KE₂ = 1.875 J
The work done between points A and B:
W = ΔKE = KE₂ - KE₁
W = 1.875 - 8.034
W = -6.159 J
Calculating the final kinetic energy at point C (KE₃). Assuming the book starts from rest at point B:
KE₃ = KE₂ + ΔKE
KE₃ = 1.875 - 0.660
KE₃ = 1.215 J
Finding the velocity at point C (v₃)
KE₃ = (1/2) × m × v₃²
1.215 = (1/2) × 1.65 × v₃²
v₃² = (2 ×1.215) / 1.65
v₃≈ √1.4727
v₃ ≈ 1.214 m/s
Calculating the final kinetic energy (KE₃) and velocity (v₃) at point C:
W = ΔKE
KE₃ = KE₂ + ΔKE
KE₃ = 2.535 J
v₃² = (2 × 2.535) / 1.65
v₃ ≈ √3.8727
v₃ ≈ 1.968 m/s
Therefore, the correct answers are -6.159 J, 1.214 m/s, and 1.968 m/s respectively.
To know more about Kinetic energy, click here:
https://brainly.com/question/999862
#SPJ4
8. In the rope climb, an athlete (weight −875.6 N ) climbs a vertical distance of 6.8 m in 11 s. What minimum power ( in hp ) was used to accomplish this feat ? Hint: Fg=mg; Ihp-746 W; P=W/t;W=mgh;g=9.8 m/s2 a) 0.90 b) 0.52 c)1.2 d) 0.72 c) None of these is true
Using the formula P = W/t, where W is the work done and t is the time taken, we can substitute the values and calculate the power. Converting the power from watts to horsepower (1 hp = 746 W), we find that the minimum power used is 0.90 hp.
To calculate the power used to climb the rope, we need to determine the work done and the time taken. The work done can be calculated using the formula W = mgh, where m is the mass, g is the acceleration due to gravity, and h is the vertical distance climbed.
Given the weight of the athlete (−875.6 N), we can calculate the mass by dividing the weight by the acceleration due to gravity (9.8 m/s^2). The mass is approximately -89.3 kg.
Substituting the values into the work formula, we have:
W = (−89.3 kg) × (9.8 m/s^2) × (6.8 m)
W ≈ -5414.776 J
Next, we divide the work done by the time taken to obtain the power:
P = W / t
P = -5414.776 J / 11 s
P ≈ -492.252 W
To convert the power from watts to horsepower, we divide by 746:
P_hp = -492.252 W / 746
P_hp ≈ -0.66 hp
Since power cannot be negative in this context, we take the absolute value:
P_hp ≈ 0.66 hp
Therefore, the minimum power used to climb the rope is approximately 0.66 hp.
To learn more about work click here brainly.com/question/19382352
#SPJ11
a charge of +18 nC is placed on the x-axis at x=1.8m, and the charge of -27 nC is placed at x= -7.22m. What is the magnitude of the electric field at the origin? of your answer to one decimal place Una carga de +18 no se coloca en el eje xenx = 18 m. y una carga de 27 no se coloca en x=-72 m. Cuál es la magnitud del campo eléctrico en el origen? De su respuesta a un lugar decimal
The magnitude of the electric field at the origin can be found by evaluating the sum of the electric field contributions from the +18 nC and -27 nC charges at their respective positions.
Let's calculate the electric field at the origin due to each charge and then sum them up.
1. Electric field due to the +18 nC charge:
The electric field due to a point charge is given by the formula
E = k * (q / r²), where
E is the electric field,
k is the Coulomb's constant (approximately 9 × 10^9 N m²/C²),
q is the charge
r is the distance from the charge to the point of interest.
For the +18 nC charge at x = 1.8 m:
E1 = k * (q1 / r1²)
= (9 × 10^9 N m²/C²) * (18 × 10⁻⁹ C) / (1.8 m)²
2. Electric field due to the -27 nC charge:
For the -27 nC charge at x = -7.22 m:
E2 = k * (q2 / r2²)
= (9 × 10^9 N m²/C²) * (-27 × 10^(-9) C) / (7.22 m)²
Now, we can find the net electric field at the origin by summing the contributions from both charges:
E_total = E1 + E2
By calculating E_total using the given values and evaluating it at the origin (x = 0), we can determine the magnitude of the electric field at the origin.
Therefore, the magnitude of the electric field at the origin can be found by evaluating the sum of the electric field contributions from the +18 nC and -27 nC charges at their respective positions.
To know more about electric field, click here-
brainly.com/question/11482745
#SPJ11