Explanation:
If the particles that make up an object begin to move quickly, their average kinetic energy increases the object's temperature rises. Group of answer choices
The force that the left team pulls with is 1000 N. If the right team's total mass is 300 kg and they accelerate by 1.2 m/s2, what is the force of resistance on the right team
Answer:
the force of resistance on the right team is 360 N
Explanation:
Given;
force of the left team, = 1000 N
total mass of the right team, m = 300 kg
acceleration of the right team, a = 1.2 m/s²
The force of resistance of the right team is calculated as;
Force = mass x acceleration
Force, F = 300 x 1.2
Force = 360 N
Therefore, the force of resistance on the right team is 360 N
1.8kg 42J 9.8 how high is the shelf
Answer:
2.38m
Explanation:
Use potential energy
PE= mgh
42= 1.8*9.8*h
solve for h
to get h= 2.38 m
When extrication will involve cutting the roof off a vehicle, stabilization of the vehicle should include:
Answer:
Deflating the tires by pulling the valve stems
Explanation:
When an accident happens, the EMT process is to take off the top of the vehicle of the highly damaged vehicle so that it can easily be assessed to rescue the vehicle occupants. This creates a bigger exit for the rescuers to take out the people. Vehicle extrication means removing the vehicle from around someone involved in a fatal collision, when other other ways of exiting is not advised or possible. to stabilize the vehicle you have to deflate all tires by pulling the valve stems.
what force to be required to accelerate a car of mass 120 kg from 5 m/s to 25m/s in 2s
Answer:
[tex]f = m \frac{v1 - v2}{t} \\ = 120 \times \frac{25 - 5}{2} \\ = 120 \times \frac{20}{2} \\ = 120 \times 10 \\ = 1200N \\ thank \: you[/tex]
what is the relationship between Hectare and cubic meter
A mass that weighs 8 lb stretches a spring 24 in. The system is acted on by an external force of 4 sin 4t lb. If the mass is pulled down 6 in. and then released, determine the position of the mass at any time. Determine the first four times at which the velocity of the mass is zero
Answer:
[tex]t = \frac{\pi}{8}, \frac{\pi}{4}, \frac{3\pi}{8}, \frac{3 \pi}{4}[/tex]
Explanation:
The equation of force is
F = 4 sin 4 t
Compare with the standard equation
f = A sin wt
where, w is the angular frequency and A is the amplitude.
Now
w = 4 rad/s
Let the time period is T.
the relation for the time period is
[tex]T = \frac{2\pi}{w}\\\\T = \frac{2 \pi}{4}\\\\T = \frac{\pi}{2}[/tex]
the time period is defined as the time taken by the body to complete one oscillation.
So, the velocity is zero at the extreme points where the object is at time, T/4 and its odd T/2, 3T/4, 3T/2, etc.
So, the velocity is zero at time
[tex]t = \frac{\pi}{8}, \frac{\pi}{4}, \frac{3\pi}{8}, \frac{3 \pi}{4}[/tex]
How do space probes make it past the asteroid belt without crashing into asteroids?
Answer:
The thing is space is really vast like really big so even though the asteroid belt looks really cramped it isn't. There's a lot of space between asteriods and using simple navigation and maneuvering, space probes can easily make it through without the threat of crashing.
Explanation:
A satellite of mass 5460 kg orbits the Earth and has a period of 6520 s
A)Determine the radius of its circular orbit.
B)Determine the magnitude of the Earth's gravitational force on the satellite.
C)Determine the altitude of the satellite.
Answer:
what if I do and b then someone else c I don't have enough time pls
Students are completing a lab in which they let a lab cart roll down a ramp. The students record the mass of the cart, the height of the ramp, and the velocity at the bottom of the ramp. The students then calculate the momentum of the cart at the bottom of the ramp.
A 4 column table with 3 rows. The first column is labeled Trial with entries 1, 2, 3, 4. The second column is labeled Mass of Cart in kilograms with entries 200, 220, 240, 260. The third column is labeled Height of ramp in meters with entries 2.0, 2.1, 1.5, 1.2. The fourth column is labeled Velocity at Bottom in meters per second with entries 6.5, 5.0, 6.4, 4.8.
Which trial’s cart has the greatest momentum at the bottom of the ramp?
Answer:
second column
Explanation:
Answer:
Trial 3 is the answer.
Explanation:
What is an electric fuse? What is the working principle of electric fuse?
Why do scientists use science
Answer:
Firstly, science helps our understanding of the world around us. Everything we know about the universe, from how trees reproduce to what an atom is made up of, is the result of scientific research and experiment.
Scientists use the scientific method to collect measurable, experimental evidence in an experiment related to a term (often in the form of an if/then statement), the results aiming to support or differ a theory. In other words, scientific method helps scientists get accurate, repeatable results.
Each tire on a car has a radius of 0.330 m and is rotating with an angular speed of 11.7 revolutions/s. Find the linear speed v of the car, assuming that the tires are not slipping against the ground. v
Answer:
The linear speed of the car, v, is 24.26 m/s
Explanation:
Given;
radius of the car's tire, r = 0.330 m
angular speed of the car, ω = 11.7 revolutions/s
The angular speed of the car in radian per second:
[tex]\omega = 11.7 \ \frac{rev}{s} \times \frac{2\pi \ rad}{1 \ rev} \\\\\omega = 73.523 \ rad/s[/tex]
The linear speed of the car, v, is calculated as;
v = ωr
v = 73.523 rad/s x 0.33 m
v = 24.26 m/s
Therefore, the linear speed of the car, v, is 24.26 m/s
100 g of water are cooled and the enthalpy change is -12,540 J. What is the change in temperature of the water?
Answer:
-29.9907
Explanation:
c = Q / (mΔT)
You're looking for ΔT, so you would plug in what you already know and get C= -12540/(100 x ΔT)
then you would solve
If an object undergoes a change in momentum of 10 kg m/s in 3 s ,then the force acting on it is
Answer:
Force = 3.333 Newton
Explanation:
Given the following data;
Change in momentum = 10 Kgm/s
Time = 3 seconds
To find the force acting on it;
In Physics, the change in momentum of a physical object is equal to the impulse experienced by the physical object.
Mathematically, it is given by the formula;
Force * time = mass * change in velocity
Impulse = force * time
Substituting into the formula, we have;
10 = force * 3
Force = 10/3
Force = 3.333 Newton
After landing the aeroplane's momentum becomes zero. Explain how
the law of conservation holds here.
Answer:
The law of momentum conservation can be stated as follows. For a collision occurring between object 1 and object 2 in an isolated system, the total momentum of the two objects before the collision is equal to the total momentum of the two objects after the collision.
The 75.0 kg hero of a movie is pulled upward at a constant velocity by a rope. What is the tension on the rope?
Answer:
750 N
Explanation:
the tension on the rope is the weight of the hero
coulomb what is the meaning in physics??
Answer:
Coulomb, unit of electric charge in the metre- kilogram- second- ampere system, the basis of SI system of physics unit. The coulomb is defined as the quantity of electricity transported in one second by a current of one ampere.
Wavelengths of incoming solar radiation are __________________ the wavelengths of reradiated heat. Which term best completes the sentence
Explanation:
Hydraulic Pressure-Control, On-Off Deluge Valve
FP-400Y-5DC
The BERMAD model 400Y-5DC is an elastomeric, hydraulic line pressure operated deluge valve, designed specifically for advanced fire protection systems and the latest industry standards. The 400Y-5DC is activated by a hydraulically operated relay valve, through which opening and closing of the valve can be controlled either with a remote hydraulic command or with a wet pilot line with closed fusible plugs. An integral pressure reducing pilot valve ensures a precise, stable, pre-set downstream water pressure. The optional valve position indicator can include a limit switch suitable for Fire & Gas monitoring systems. The 400Y-5DC is ideal for systems that combine a remote wet pilot line with a high pressure water supply.
can anyone help me with this?
the question : find the value of the resistors
Answer:
Value of the resistors R = 2 ohm
Explanation:
Given:
Resistor R1 = 4 ohm
Resistor R2 = 4 ohm
Find:
Value of the resistors R
Computation:
We know that Resistor R1 and Resistor R2 connected in parallel series.
So,
Using common resistance in parallel series
⇒ 1/R = 1/R1 + 1/R2
⇒ 1/R = 1/4 + 1/4
⇒ 1/R = (1 + 1) / 4
⇒ 1/R = 2/4
⇒ R = 4/2
⇒ R = 2
Value of the resistors R = 2 ohm
A student attaches a rope to a box and pulls the box up a ramp as shown below. The ramp has a rough surface. When
drawing the free body diagram for the box, the friction force should be directed:
O up and to the right
down and to the left
up and to the left
to the left
NEXT QUESTION
ASK FOR HELP
TURN ITIN
A body weighing 50 N is placed on a wooden table. How much force is required to set it into motion? Coefficient of friction between the table and the body is 0.3.
If the coefficient of static friction is 0.3, then the minimum force required to get it moving is equal in magnitude to the maximum static friction that can hold the body in place.
By Newton's second law,
• the net vertical force is 0, since the body doesn't move up or down, and in particular
∑ F = n - mg = n - 50 N = 0 ==> n = 50 N
where n is the magnitude of the normal force; and
• the net horizontal force is also 0, since static friction keeps the body from moving, with
∑ F = F' - f = F' - µn = F' - 0.3 (50 N) = 0 ==> F' = 15 N
where F' is the magnitude of the applied force, f is the magnitude of static friction, and µ is the friction coefficient.
Internal energy of a diatomic gas consists of:
OA. kinetic energy due to vibration and rotation.
B. kinetic energy due to translation, vibration, and rotation.
C. potential energy due to intermolecular forces.
D. kinetic energy due to translation only.
Answer:
C) Potential energy due to intermolecular forces.
An unstrained horizontal spring has a length of 0.40 m and a spring constant of 340 N/m. Two small charged objects are attached to this spring, one at each end. The charges on the objects have equal magnitudes. Because of these charges, the spring stretches by 0.033 m relative to its unstrained length. Determine (a) the possible algebraic signs and (b) the magnitude of the charges.
Answer:
(a) Both the charges are positive or negative.
(b) Teh value of each charge is 1.53 x 10^-5 C.
Explanation:
Spring constant, K = 340 N/m
Natural length, L = 0.4 m
stretch, y = 0.033 m
(a) Let the charge on each sphere is q and they repel each other so the nature of charge of either sphere may be both positive or both negative.
(b) The electrostatic force is balanced by the spring force.
[tex]\frac{kq^2}{(L + y)^2}=Ky\\\\\\\frac{9\times 10^9 q^2}{(0.4 +0.033)^2} = 340\times0.033\\\\q= 1.53\times 10^{-5} C[/tex]
what are MA and VR of a lever?
Explanation:
Mechanical advantage (MA) = Load/Effort. Velocity ratio (VR) = distance effort moves/ distance load moves in the same time
How energy is obtained due to flow of charges?
A boy travels 12km east wards to a point B and then 5km southwards to another point C. Calculate the difference between the magnitude of the displacement of the boy and the distance travelled by him
The difference b/w the displacement and total distance traveled is 4km.
Explanation.
▪ total distance - displacement
= 17 km - 13 km
= 4 km...answer
a car is travelling at 36 km per hour if its velocity increases to 72 km per hour in 5 seconds then find the acceleration of car in SI unit
Answer:
36 km /h means 10 m/s. Increase in speed is 10m/s in 5 s . Acceleration is ( 10/5 ) = 2 m/s^ 2.
a= 2m/s²
Explanation:
U=36km/h
V=72km/h
T=5s
Conversion of Km to m and H to s
1km = 1000m
36km=36×1000 = 36000m
1H = 3600s
For U, 36000/3600
=10m/s
For V,
72km= 72×1000 =72000
72000/3600
20m/s
a=(V-U)/T
a=(20-10)/5
a= 10/5
a= 2m/s²
Use the ideal gas law, PV=nRT to solve. R=0.0821
If I have 15 moles of gas at a temperature of 299K and a volume of 92L, what is the pressure of the gas?
Answer:
The pressure of the gas=4.002 atm
Explanation:
We are given that
R=0.0821
Number of moles, n=15
Temperature, T=299 K
Volume of gas, V=92 L
We have to find the pressure of the gas.
[tex]PV=nRT[/tex]
Substitute the values
[tex]P\times 92=15\times 0.0821\times 299[/tex]
[tex]P=\frac{15\times 0.0821\times 299}{92}[/tex]
[tex]P=4.002 atm[/tex]
Hence, the pressure of the gas=4.002 atm
Answer:
According to the ideal gas law equation,
PV = nRT (here, P = 5.5 atm, V = 10L, T = 298K, R = 0.0821 atmL/mol K)
or, n = RT/PV = (0.0821 X 298)/(5.5 X 10) = 0.44 moles of He gas
Explanation:
This question is divided into two parts. This is part (a) of the question. A proton accelerates from rest in a uniform electric field of 580 N/C. At some later time, its speed is 1.00 x 106 m/s. (a) Find the magnitude of the acceleration of the proton. (Mass of the proton is 1.67 x 10-27 kg and charge is 1.60 x 10-19 C) (in the following options 10^10 m/s^2 is 1010 m/s2)
Answer:
The acceleration of proton is 5.56 x 10^10 m/s^2 .
Explanation:
initial velocity, u = 0
Electric field, E = 580 N/C
final speed, v = 10^6 m/s
(a) Let the acceleration is a.
According to the Newton's second law
F = m a = q E
where, q is the charge of proton and m is the mass.
[tex]a= \frac{q E}{m}\\\\a = \frac{1.6\times10^{-19}\times 580}{1.67\times 10^{-27}}\\\\a= 5.56\times 10^{10} m/s^2[/tex]
Connected to a battery that offers a d.d.p. of 3.0Volts, we have the four lamps, all identical with resistances equal to 2.0 Ohms. The association appears in the figure. Note that the switch is open, so it doesn't pass current in the circuit (it's like an off switch). When the key closes, the lamps come on. Determining the Req of the association and the total current flowing through the circuit, we will find:
Answer:
Option D. 5Ω e 0.6 A
Explanation:
1. Determination of the equivalent resistance.
We'll begin by calculating the equivalent resistance of resistor B and resistor C. This can be obtained as follow:
Resistor B (R₆) = 2 Ω
Resistor C (R꜀) = 2 Ω
Equivalent Resistance (R₆꜀) =?
R₆꜀ = R₆ × R꜀ / R₆ + R꜀ (parallel connection)
R₆꜀ = 2 × 2 / 2 + 2
R₆꜀ = 4 / 4
R₆꜀ = 1 Ω
Finally, we shall determine the equivalent resistance of the circuit. This can be obtained as follow:
Resistor A (Rₐ) = 2 Ω
Equivalent resistance of resistor B and C (R₆꜀) = 1 Ω
Resistor D (Rₔ) = 2 Ω
Equivalent Resistance (R) =?
R = Rₐ + R₆꜀ + Rₔ (series connection)
R = 2 + 1 + 2
R = 5 Ω
Thus, the equivalent resistance of the circuit is 5 Ω
2. Determination of the total current in the circuit.
Potential difference (V) = 3 V
Equivalent resistance (R) = 5 Ω
Total current (I) =?
V = IR
3 = I × 5
Divide both side by 5
I = 3 / 5
I = 0.6 A
Thus, the total current in the circuit is 0.6 A
Summary:
Equivalent resistance = 5 Ω
Current = 0.6 A
Option D gives the current answer to the question.