If X∼T(n), then find c n the cases a) P(Xc)=0.15, Exercise: 2 If X is a standard normal random variable, then find the value of c where P(−cc)=0.025,n=3 Exercise: 4 If X and Y are independent random variables where X∼χ2(n),Y∼χ2(m) and then find c in the cases a) P(X

Answers

Answer 1

The cumulative distribution function (CDF) of the gamma distribution or statistical software, we can find the value of c corresponding to a cumulative probability of 0.95.

a) If X ~ T(n), we need to find the value of c such that P(X < c) = 0.15.

The T-distribution is defined by its degrees of freedom (n). To find c, we can use the cumulative distribution function (CDF) of the T-distribution.

Let's denote the CDF of the T-distribution as F(t) = P(X < t). We want to find c such that F(c) = 0.15.

Unfortunately, there is no closed-form expression for the inverse CDF of the T-distribution. However, we can use numerical methods or lookup tables to find the value of c corresponding to a given probability. These methods typically involve statistical software or calculators specifically designed for such calculations.

b) If X is a standard normal random variable, we need to find the value of c such that P(-c < X < c) = 0.025.

The standard normal distribution has a mean of 0 and a standard deviation of 1. The probability P(-c < X < c) is equivalent to finding the value of c such that the area under the standard normal curve between -c and c is 0.025.

Using a standard normal distribution table or statistical software, we can find the z-score corresponding to a cumulative probability of 0.025. The z-score represents the number of standard deviations from the mean.

Let's denote the z-score as z. Then, c can be calculated as c = z * standard deviation of X.

c) If X and Y are independent random variables, where X ~ χ^2(n) and Y ~ χ^2(m), we need to find the value of c such that P(X + Y < c) = 0.95.

The sum of independent chi-squared random variables follows a gamma distribution. The gamma distribution has two parameters: shape (k) and scale (θ). In this case, the shape parameters are n and m for X and Y, respectively.

Using the cumulative distribution function (CDF) of the gamma distribution or statistical software, we can find the value of c corresponding to a cumulative probability of 0.95.

To know more about cumulative distribution function, visit:

https://brainly.com/question/30402457

#SPJ11


Related Questions


Use the following statements to write a compound
statement for the disjunction -p or -q. Then find its truth
value.
p: There are 14 inches in 1 foot.
q: There are 3 feet in 1 yard.

Answers

The disjunction of -p or -q can be written as (-p) v (-q). So, we have to find the truth value of (-p) v (-q). So, the compound statement for the disjunction of -p or -q is (-p) v (-q), and its truth value is true.

using the following statements: p: There are 14 inches in 1 foot.

q: There are 3 feet in 1 yard.

Solution: We know that 1 foot = 12 inches, which means that there are 14 inches in 1 foot can be written as 14 < 12. But this statement is false because 14 is not less than 12. Therefore, the negation of this statement is true, which gives us (-p) as true.

Now, we know that 1 yard = 3 feet, which means that there are 3 feet in 1 yard can be written as 3 > 1. This statement is true because 3 is greater than 1. Therefore, the negation of this statement is false, which gives us (-q) as false.

Now, we can use the values of (-p) and (-q) to find the truth value of (-p) v (-q) using the disjunction rule. The truth value of (-p) v (-q) is true if either (-p) or (-q) is true or both (-p) and (-q) are true. Since (-p) is true and (-q) is false, the disjunction of (-p) v (-q) is true. Hence, the compound statement for the disjunction of -p or -q is (-p) v (-q), and its truth value is true.

For more questions on: compound statement

https://brainly.com/question/28794655

#SPJ8        

What is the result of doubling our sample size (n)?
a. The confidence interval is reduced in a magnitude of the square root of n )
b. The size of the confidence interval is reduced in half
c. Our prediction becomes less precise
d. The confidence interval does not change
e. The confidence interval increases two times n

Answers

As the sample size decreases, the size of the confidence interval increases. A larger confidence interval implies that the sample estimate is less reliable.

When we double the sample size, the size of the confidence interval reduces in half. Thus, the correct option is (b) the size of the confidence interval is reduced in half.

The confidence interval (CI) is a statistical method that provides us with a range of values that is likely to contain an unknown population parameter.

The degree of uncertainty surrounding our estimate of the population parameter is measured by the confidence interval's width.

The confidence interval is a means of expressing our degree of confidence in the estimate.

In most cases, we don't know the population parameters, so we employ statistics from a random sample to estimate them.

A confidence interval is a range of values constructed around a sample estimate that provides us with a range of values that is likely to contain an unknown population parameter.

As the sample size increases, the size of the confidence interval decreases. A smaller confidence interval implies that the sample estimate is a better approximation of the population parameter.

In contrast, as the sample size decreases, the size of the confidence interval increases. A larger confidence interval implies that the sample estimate is less reliable.

To know more about confidence interval, visit:

https://brainly.com/question/32546207

#SPJ11

It takes Priya 5 minutes to fill a cooler with 8 gallons of water from a faucet that flowed at a steady rate. Which equation or equations below represent this relationship if y represents the amount of water, in gallons, and x represents the amount of time, in minutes. Select all that apply and explain your reasoning. a. 5x=8y b. 8x=5y c. y=1.6x d. y=0.625x e. x=1.6y f. x=0.625y

Answers

The equations that represent the relationship between the amount of water (y) and the time (x) are c)  y=1.6x and f) x=0.625y.

Equation c (y = 1.6x) represents the relationship accurately because Priya fills the cooler with 1.6 gallons of water per minute (1.6 gallons/min) based on the given information.

Equation f (x = 0.625y) also represents the relationship correctly. It shows that the time it takes to fill the cooler (x) is equal to 0.625 times the amount of water filled (y).

Options a, b, d, and e do not accurately represent the given relationship between the amount of water and the time taken to fill the cooler. So  c and f  are correct options.

For more questions like Equation click the link below:

https://brainly.com/question/29657983

#SPJ11

Find the standard matrix for the linear transformation \( T \). \[ T(x, y)=(3 x+6 y, x-2 y) \]

Answers

The standard matrix for the linear transformation T is [tex]\[ \begin{bmatrix} 3 & 6 \\ 1 & -2 \end{bmatrix} \][/tex].

To find the standard matrix for the linear transformation T, we need to determine the images of the standard basis vectors. The standard basis vectors in R² are[tex]\(\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}\)[/tex]  and [tex]\(\mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}\).[/tex]

When we apply the transformation T to [tex]\(\mathbf{e_1}\),[/tex] we get:

[tex]\[ T(\mathbf{e_1})[/tex] = T(1, 0) = (3(1) + 6(0), 1(1) - 2(0)) = (3, 1). \]

Similarly, applying T to [tex]\(\mathbf{e_2}\)[/tex] gives us:

[tex]\[ T(\mathbf{e_2})[/tex] = T(0, 1) = (3(0) + 6(1), 0(1) - 2(1)) = (6, -2). \]

Therefore, the images of the standard basis vectors are (3, 1) and (6, -2). We can arrange these vectors as columns in the standard matrix for T:

[tex]\[ \begin{bmatrix} 3 & 6 \\ 1 & -2 \end{bmatrix}. \][/tex]

This matrix represents the linear transformation T. By multiplying this matrix with a vector, we can apply the transformation T to that vector.

Learn more about Matrix

brainly.com/question/31047345

#SPJ11

There is no strong evidence that the temporal (time) pattern of \( M>8 \) eruptions (super-eruptions) is anything other than random. True False

Answers

False. There is no strong evidence to support the claim that the temporal pattern of super-eruptions (M>8 eruptions) is random.

The statement claims that the temporal pattern of super-eruptions is random, implying that there is no specific pattern or correlation between the occurrences of these large volcanic eruptions. However, scientific studies and research suggest otherwise. While it is challenging to study and predict rare events like super-eruptions, researchers have analyzed geological records and evidence to understand the temporal patterns associated with these events.

Studies have shown that super-eruptions do not occur randomly but tend to follow certain patterns and cycles. For example, researchers have identified clusters of super-eruptions that occurred in specific geological time periods, such as the Yellowstone hotspot eruptions in the United States. These eruptions are believed to have occurred in cycles with intervals of several hundred thousand years.

Learn more about pattern here:

https://brainly.com/question/23136125

#SPJ11

(a) Show that if two finite sets \( A \) and \( B \) are the same size, and \( r \) is an injective function from \( A \) to \( B \), then \( r \) is also surjective; that is, \( r \) is a bijection.

Answers

If  \( A \) and \( B \) are finite sets of the same size and \( r \) is an injective function from \( A \) to \( B \), then \( r \) is also surjective.

Let's assume that \( A \) and \( B \) are finite sets of the same size, and \( r \) is an injective function from \( A \) to \( B \).

To prove that \( r \) is surjective, we need to show that for every element \( b \) in \( B \), there exists an element \( a \) in \( A \) such that \( r(a) = b \).

Since \( r \) is injective, it means that for every pair of distinct elements \( a_1 \) and \( a_2 \) in \( A \), \( r(a_1) \) and \( r(a_2) \) are distinct elements in \( B \).

Since both sets \( A \) and \( B \) have the same size, and \( r \) is an injective function, it follows that every element in \( B \) must be mapped to by an element in \( A \), satisfying the condition for surjectivity.

Therefore, \( r \) is a bijection (both injective and surjective) between \( A \) and \( B \).

Learn more about Sets click here :brainly.com/question/17514113

#SPJ11

A concert bradspeaver suspended Righ of the Part A oisund emiss 35 W of scund power A small microphone with a 10 cm^2
aiea is 40 in from the What is the sound intoraity at the pesiton of the inicroptione? spetainer fxpress your antwer with the appropriate units. Part 2 What is the sound intens ly level at the position of the mierophene? Express your answer in decibeis.

Answers

The sound intensity at the position of the microphone is 35,000 W/m² and the sound intensity level at the position of the microphone is 125.45 dB.

Given: Sound power emitted = 35 W

Area of the microphone = 10 cm² = 0.001 m²

Distance of the microphone from the speaker = 40 in = 1.016 m

Sound intensity is given by the formula: I = P/A

where,I = Sound intensity

P = Sound power

A = Area of the surface on which sound falls

At the position of the microphone, sound intensity is given by,

I = P/A = 35/0.001 = 35,000 W/m²

The sound intensity level is given by the formula,

β = 10 log(I/I₀)

where,β = Sound intensity level

I₀ = Threshold of hearing = 1 × 10⁻¹² W/m²

Substituting the values,

β = 10 log(35,000/1 × 10⁻¹²) = 10 log(35 × 10¹²) = 10(12.545) = 125.45 dB

Hence, the sound intensity at the position of the microphone is 35,000 W/m² and the sound intensity level at the position of the microphone is 125.45 dB.

To know more about sound intensity, visit:

https://brainly.com/question/32194259

#SPJ11

Rework problem 21 from section 2.1 of your text, involving the outcomes of an experiment. For this problem, assume that S={O
1

,O
2

,O
3

,O
4

,O
5

} and that w
1

=0.47,w
2

=0.14,w
3

=0.04,w
4

=0.15,w
5

=0.20. Let E={O
2

,O
1

} and F={O
3

,O
4

}. (1) What is the value of Pr[E] ? (2) What is the value of Pr[F

] ?

Answers

(1) What is the value of Pr[E]?

The event E is the event that either outcome O2 or outcome O1 occurs. The probability of outcome O2 is w2 = 0.14, and the probability of outcome O1 is w1 = 0.47. So, the probability of event E is:

Pr[E] = w2 + w1 = 0.14 + 0.47 = 0.61

(2) What is the value Code snippetf Pr[F′]?

The event F is the event that either outcome O3 or outcome O4 occurs. The probability of outcome O3 is w3 = 0.04, and the probability of outcome O4 is w4 = 0.15. So, the probability of event F is:

Pr[F] = w3 + w4 = 0.04 + 0.15 = 0.19

The complement of event F is the event that neither outcome O3 nor outcome O4 occurs. This event is denoted by F'. The probability of F' is 1 minus the probability of F:

Pr[F'] = 1 - Pr[F] = 1 - 0.19 = 0.81

The probability of an event is the number of times the event occurs divided by the total number of possible outcomes. In this problem, there are 5 possible outcomes, so the total probability must be 1. The probability of event E is 0.61, which means that event E is more likely to occur than not. The probability of event F' is 0.81, which means that event F' is more likely to occur than event F.

Learn more about probability for event here:

brainly.com/question/31828911

#SPJ11


Select one of the options below as your answer:
A. Gary: The balance in his check register is $500 and the balance in his bank statement is $500.

B. Gail: The balance in her check register is $400 and the balance in her bank statement is $500.

C. Gavin: The balance in his check register is $500 and the balance in his bank statement is $510.

Answers

The statement that shows a discrepancy between the check register and bank statement is: C. Gavin: The balance in his check register is $500 and the balance in his bank statement is $510.

The check register shows a balance of $500, while the bank statement shows a balance of $510.

In the case of Gavin, where the balance in his check register is $500 and the balance in his bank statement is $510, there is a $10 discrepancy between the two.

A possible explanation for this discrepancy could be outstanding checks or deposits that have not yet cleared or been recorded in either the check register or the bank statement.

For example, Gavin might have written a check for $20 that has not been cashed or processed by the bank yet. Therefore, the check register still reflects the $20 in his balance, while the bank statement does not show the deduction. Similarly, Gavin may have made a deposit of $10 that has not yet been credited to his account in the bank statement.

To learn more about bank statement

https://brainly.com/question/24179665

#SPJ11

Describe the "errors-in-variables" problem in
econometrics and its consequences for the least squares
estimator.

Answers

The "errors-in-variables" problem, also known as measurement error, occurs in econometrics when one or more variables in a regression model are measured with error. In other words, the observed values of the variables do not perfectly represent their true values.

Consequences for the least squares estimator:

Attenuation bias: Measurement error in the independent variable(s) can lead to attenuation bias in the estimated coefficients. The least squares estimator tends to underestimate the true magnitude of the relationship between the variables. This happens because measurement errors reduce the observed variation in the independent variable, leading to a weaker estimated relationship.

Inconsistent estimates: In the presence of measurement errors, the least squares estimator becomes inconsistent, meaning that as the sample size increases, the estimated coefficients do not converge to the true population values. This inconsistency arises because the measurement errors affect the least squares estimator differently compared to the true errors.

Biased standard errors: Measurement errors can also lead to biased standard errors for the estimated coefficients. The standard errors estimated using the least squares method assume that the independent variables are measured without error. However, in reality, the standard errors will be underestimated, leading to incorrect inference and hypothesis testing.

To mitigate the errors-in-variables problem, econometric techniques such as instrumental variable (IV) regression, two-stage least squares (2SLS), or other measurement error models can be employed. These methods aim to account for the measurement errors and provide consistent and unbiased estimates of the coefficients.

Learn more about statistics here:

https://brainly.com/question/30915447

#SPJ11

A researcher collects two samples of data. He finds the first sample (n=8) has a mean of 5 ; the second sample (n=2) has a mean of 10 . What is the weighted mean of these samples?

Answers

The weighted mean of the two samples is 6, suggesting that the average value is calculated by considering the weights assigned to each sample, resulting in a mean value of 6 based on the given weighting scheme.

To calculate the weighted mean of two samples, we need to consider the sample sizes (n) and the mean values. The weighted mean gives more importance or weight to larger sample sizes. In this case, we have two samples, one with n=8 and the other with n=2.

The formula for the weighted mean is:

Weighted Mean = (n₁ * mean₁ + n₂ * mean₂) / (n₁ + n₂)

where:

n₁ = sample size of the first sample

mean₁ = mean of the first sample

n₂ = sample size of the second sample

mean₂ = mean of the second sample

Substituting the given values:

n₁ = 8

mean₁ = 5

n₂ = 2

mean₂ = 10

Weighted Mean = (8 * 5 + 2 * 10) / (8 + 2)

= (40 + 20) / 10

= 60 / 10

= 6

Therefore, the weighted mean of the two samples is 6.

The weighted mean provides a measure of the average that takes into account the relative sizes of the samples. In this case, since the first sample has a larger sample size (n=8) compared to the second sample (n=2), the weighted mean is closer to the mean of the first sample (5) rather than the mean of the second sample (10). This is because the larger sample size has a greater influence on the overall average.

For more such questions on mean visit:

https://brainly.com/question/1136789

#SPJ8

necessary: L and T, where L is the unit of length and T is the unit of time.) \begin{array}{l} {[A]=L T(-3)} \\ {[B]=L T(-1)} \\ \\ end{array} [dx/dt]=

Answers

The unit of the expression [dx/dt] would be L T(-2).

The expression [dx/dt] represents the derivative of the variable x with respect to time, which is the rate of change of x with respect to time. The unit of this expression can be determined by dividing the unit of x by the unit of t.

Given that [A] = L T(-3) and [B] = L T(-1), we can see that the unit of length (L) is common to both A and B. Therefore, when we divide the unit of A (L T(-3)) by the unit of B (L T(-1)), the result would have the unit L^(1-(-3)) * T^(-3-(-1)) = L^4 * T^(-2).

Hence, the unit of [dx/dt] is L T(-2). This means that the rate of change of x with respect to time has units of length per time squared. It represents how fast the variable x is changing over time and can be interpreted as acceleration or the second derivative with respect to time.

To learn more about acceleration : brainly.com/question/12550364

#SPJ11

Determine whether the given differential equation is separable. dy/dx = 4y²-7y+8. Is the differential equation separable? A. Yes; because = g(x)p(y) where g(x) = 8 and p(y) = 4y²-7y. dx B. Yes; because C. Yes; because dy -= g(x)p(y) where g(x) = 1 and p(y) = 4y² - 7y + 8. dx dy -= g(x)p(y) where g(x) = 4 and p(y) = y² - 7y+8. D. No

Answers

The given differential equation, dy/dx = 4y² - 7y + 8, is not separable.To determine whether a differential equation is separable, we need to check if it can be written in the form of g(x)dx = p(y)dy, where g(x) is a function of x only and p(y) is a function of y only.

In the given equation, we have dy/dx on the left side and a quadratic expression involving both y and its derivatives on the right side. Since the expression on the right side cannot be factored into a function of x multiplied by a function of y, the equation cannot be rearranged into the separable form.

Therefore, the correct answer is D. No, the differential equation is not separable.

Learn more about quadratic here

brainly.com/question/22364785

#SPJ11

is the number of people with blood type B in a random sample of 46 people discrete or continuous?

Answers

The number of people with blood type B in a random sample of 46 people is a discrete variable. In statistics, a discrete variable is one that can only take on specific, distinct values.

In this case, the variable represents the count of people with blood type B in a sample of 46 individuals. The number of people with blood type B can only be a whole number and cannot take on fractional or continuous values. It is determined by counting the individuals in the sample who have blood type B, resulting in a specific, finite number. Therefore, the number of people with blood type B in a random sample of 46 people is considered a discrete variable.

Learn more about discrete and continuous here : brainly.com/question/24315217

#SPJ11

D(x) is the price, in dollars per unit, that consumers are willing to pay for x units of an item, and S(x) is the price, in dollars per unit, that producers are willing to accept for x units. Find (a) the equilibrium point, (b) the consumer surplus at the equilibrium point, and (c) the producer surplus at the equilibrium point. D(x)=1500−10x,S(x)=750+5x.

Answers

(a) The equilibrium point occurs at x = 50 units.

(b) The consumer surplus at the equilibrium point is $12,500.

(c) The producer surplus at the equilibrium point is $100,000.

To find the equilibrium point, consumer surplus, and producer surplus, we need to set the demand and supply functions equal to each other and solve for x. Given:

D(x) = 1500 - 10x (demand function)

S(x) = 750 + 5x (supply function)

(a) Equilibrium point:

To find the equilibrium point, we set D(x) equal to S(x) and solve for x:

1500 - 10x = 750 + 5x

15x = 750

x = 50

So, the equilibrium point occurs at x = 50 units.

(b) Consumer surplus at the equilibrium point:

Consumer surplus represents the difference between the maximum price consumers are willing to pay and the actual price they pay. To find consumer surplus at the equilibrium point, we need to calculate the area under the demand curve up to x = 50.

Consumer surplus = ∫[0, 50] D(x) dx

Consumer surplus = ∫[0, 50] (1500 - 10x) dx

Consumer surplus = [1500x - 5x^2/2] evaluated from 0 to 50

Consumer surplus = [1500(50) - 5(50)^2/2] - [1500(0) - 5(0)^2/2]

Consumer surplus = [75000 - 62500] - [0 - 0]

Consumer surplus = 12500 - 0

Consumer surplus = $12,500

Therefore, the consumer surplus at the equilibrium point is $12,500.

(c) Producer surplus at the equilibrium point:

Producer surplus represents the difference between the actual price received by producers and the minimum price they are willing to accept. To find producer surplus at the equilibrium point, we need to calculate the area above the supply curve up to x = 50.

Producer surplus = ∫[0, 50] S(x) dx

Producer surplus = ∫[0, 50] (750 + 5x) dx

Producer surplus = [750x + 5x^2/2] evaluated from 0 to 50

Producer surplus = [750(50) + 5(50)^2/2] - [750(0) + 5(0)^2/2]

Producer surplus = [37500 + 62500] - [0 + 0]

Producer surplus = 100,000 - 0

Producer surplus = $100,000

Therefore, the producer surplus at the equilibrium point is $100,000.

Visit here to learn more about equilibrium point brainly.com/question/32765683

#SPJ11

This question is worth 10 extra credit points, which will be assessed manually after the quiz due date. A classmate suggests that a sample size of N=45 is large enough for a problem where a 95\% confidence interval, with MOE equal to 0.6, is required to estimate the population mean of a random variable known to have variance equal to σ_X =4.2 Is your classmate right or wrong? Enter the number of extra individuals you think you should collect for the sample, or zero otherwise (please enter your answer as a whole number, in either case).

Answers

To determine if a sample size of N = 45 is large enough for estimating the population mean with a 95% confidence interval and a margin of error (MOE) of 0.6, we can use the formula:

N = (Z * σ_X / MOE)^2,

where N is the required sample size, Z is the z-score corresponding to the desired confidence level (95% corresponds to a Z-score of approximately 1.96), σ_X is the population standard deviation, and MOE is the desired margin of error.

Given:

Z ≈ 1.96,

σ_X = 4.2,

MOE = 0.6.

Substituting these values into the formula, we can solve for N:

N = (1.96 * 4.2 / 0.6)^2

N ≈ 196.47

Since N is approximately 196.47, we can conclude that a sample size of N = 45 is not large enough. The sample size needs to be increased to satisfy the desired margin of error and confidence level.

Therefore, the number of extra individuals that should be collected for the sample is 196 - 45 = 151.

To know more about  population, visit,

https://brainly.com/question/29885712

#SPJ11

(1) Suppose a triangle has sides of length 5 and 10 and the angle between them is π/3. a) Evaluate the length of the third side of the triangle. b) Find the area of this triangle.

Answers

a) The length of the third side of the triangle is 5√3.

b) The area of the triangle is (25/4) * √3.

Let us now analyze in a detailed way:
a) The length of the third side of the triangle can be found using the law of cosines. Let's denote the length of the third side as c. According to the law of cosines, we have the equation:

c^2 = a^2 + b^2 - 2ab*cos(C),

where a and b are the lengths of the other two sides, and C is the angle between them. Substituting the given values into the equation:

c^2 = 5^2 + 10^2 - 2*5*10*cos(π/3).

Simplifying further:

c^2 = 25 + 100 - 100*cos(π/3).

Using the value of cosine of π/3 (which is 1/2):

c^2 = 25 + 100 - 100*(1/2).

c^2 = 25 + 100 - 50.

c^2 = 75.

Taking the square root of both sides:

c = √75.

Simplifying the square root:

c = √(25*3).

c = 5√3.

Therefore, the length of the third side of the triangle is 5√3.

b) The area of the triangle can be calculated using the formula for the area of a triangle:

Area = (1/2) * base * height.

In this case, we can take the side of length 5 as the base of the triangle. The height can be found by drawing an altitude from one vertex to the base, creating a right triangle. The angle opposite the side of length 5 is π/3, and the adjacent side of this angle is 5/2 (since the base is divided into two segments of length 5/2 each).

Using trigonometry, we can find the height:

height = (5/2) * tan(π/3).

The tangent of π/3 is √3, so:

height = (5/2) * √3.

Substituting the values into the formula for the area:

Area = (1/2) * 5 * (5/2) * √3.

Simplifying:

Area = (5/4) * 5 * √3.

Area = 25/4 * √3.

Therefore, the area of the triangle is (25/4) * √3.

To know more about area of a triangle, refer here:

https://brainly.com/question/27683633#

#SPJ11

The maternity ward at Dr. Jose Fabella Memorial Hospital in Manila in the Philippines is one of the busiest in the world with an average of 55 births per day. Let X = the number of births in an hour. What is the probability that the maternity ward will deliver

a. exactly 5 babies in one hour.
b. exactly 8 babies in one hour.

Answers

For exactly 5 babies in one hour P(X = 5) = (e^(-55) * 55^5) / 5! . Probability of exactly 8 babies in one hourP(X = 8) = (e^(-55) * 55^8) / 8!

To determine the probability of a specific number of births in an hour, we can use the Poisson distribution. The Poisson distribution is commonly used to model the number of events occurring in a fixed interval of time, given the average rate of occurrence.

In this case, the average number of births per hour is given as 55.

a. Probability of exactly 5 babies in one hour:

Using the Poisson distribution formula:

P(X = k) = (e^(-λ) * λ^k) / k!

where λ is the average rate of occurrence and k is the desired number of events.

For exactly 5 babies in one hour:

λ = 55 (average number of births per hour)

k = 5

P(X = 5) = (e^(-55) * 55^5) / 5!

b. Probability of exactly 8 babies in one hour:

Using the same formula:

For exactly 8 babies in one hour:

λ = 55 (average number of births per hour)

k = 8

P(X = 8) = (e^(-55) * 55^8) / 8!

To calculate the probabilities, we need to substitute the values into the formula and perform the calculations. However, the results will involve large numbers and require a calculator or statistical software to evaluate accurately.

To learn more about probability click here:

brainly.com/question/30100929

#SPJ11

shang like some modern laws sculpture made of four identical solid right pyramid with square faces. He decides to create an exact copy of the sculpture, so he needs to know what volume of sculpting material to purchase. He measures each edge of each base to be 2 feet. The height of the whole sculpture is 6 feet. What is the volume of material he must purchase?

a. 2 ft.
b. 4 ft.
c. 6 ft.
d. 8 ft.

Answers

The correct answer is c. 6 ft³.To calculate the volume of the sculpture, we need to find the volume of one pyramid and then multiply it by four.

The volume of a pyramid can be calculated using the formula V = (1/3) * base area * height. In this case, the base area of the pyramid is a square with side length 2 feet, so the area is 2 * 2 = 4 square feet. The height of the pyramid is 6 feet. Plugging these values into the formula, we get V = (1/3) * 4 ft² * 6 ft = 8 ft³ for one pyramid. Since there are four identical pyramids, the total volume of the sculpture is 8 ft³ * 4 = 32 ft³.

However, the question asks for the volume of sculpting material needed, so we need to subtract the volume of the hollow space inside the sculpture if there is any. Without additional information, we assume the sculpture is solid, so the volume of material needed is equal to the volume of the sculpture, which is 32 ft³. Therefore, the correct answer is c. 6 ft³.

Learn more about sculpture here:

brainly.com/question/20758351

#SPJ11

Find the sum of the series. n=0∑[infinity]​3n!​/8nn

Answers

The sum of the series Σ (n=0 to infinity) 3n! / (8^n * n!) is 1.6.

To find the sum of the series, we can rewrite the terms using the concept of the exponential function. The term 3n! can be expressed as (3^n * n!) / (3^n), and the term n! can be written as n! / (n!) = 1.

Now, we can rewrite the series as Σ (n=0 to infinity) (3^n * n!) / (8^n * n!).

Next, we can simplify the expression by canceling out common terms in the numerator and denominator:

Σ (n=0 to infinity) (3^n * n!) / (8^n * n!) = Σ (n=0 to infinity) (3^n / 8^n)

Notice that the resulting series is a geometric series with a common ratio of 3/8.

Using the formula for the sum of an infinite geometric series, S = a / (1 - r), where 'a' is the first term and 'r' is the common ratio, we can determine the sum.

In this case, a = 3^0 / 8^0 = 1, and r = 3/8.

Substituting these values into the formula, we get:

S = 1 / (1 - 3/8) = 1 / (5/8) = 8/5 = 1.6

Therefore, the sum of the series is 1.6.

Learn more about series here:
brainly.com/question/32704561

#SPJ11

John bought a new car for $35000. The value of the car depreciates linearly over
time. After ten years, the car has a salvage value of $4000. The value of the car after
seven years was ____

Answers

The value of the car after seven years is $13,300. The value of the car after seven years can be calculated using linear depreciation. Given that the car depreciates linearly over time, we can determine the rate of depreciation by finding the difference in value over the ten-year period.

The initial value of the car is $35,000, and after ten years, its value depreciates to a salvage value of $4,000. This means that the car has depreciated by $35,000 - $4,000 = $31,000 over ten years.

To find the value after seven years, we can calculate the rate of depreciation per year by dividing the total depreciation by the number of years: $31,000 / 10 = $3,100 per year.

Thus, after seven years, the car would have depreciated by 7 years * $3,100 per year = $21,700.

To find the value of the car after seven years, we subtract the depreciation from the initial value: $35,000 - $21,700 = $13,300.

Learn more about Depreciation here : brainly.com/question/31965611

#SPJ11

Un ciclista recorre 5,4 km en 15 min a velocidad constante. Si el diámetro de las ruedas de su bicicleta es de 80 cm calcula:

A: La velocidad angular de las ruedas.

B: El numero de vueltas que dan las ruedas en ese tiempo.

(con explicación, pasos, preguntas y respuestas)

Answers

a) The angular velocity is  900 radians/min.

b) Number of revolutions is 2147.62

How to find the angular velocity?

A: To calculate the angular velocity of the wheels, we can use the formula:

Angular velocity = Linear velocity / Radius

First, we need to convert the distance traveled from kilometers to centimeters, since the diameter of the wheels is given in centimeters:

Distance = 5.4 km = 5.4 * 1000 * 100 cm = 540,000 cm

The linear velocity can be calculated by dividing the distance by the time:

Linear velocity = Distance / Time = 540,000 cm / 15 min = 36,000 cm/min

Since the radius is half the diameter, the radius of the wheels is 80 cm / 2 = 40 cm.

Now we can calculate the angular velocity:

Angular velocity = Linear velocity / Radius = 36,000 cm/min / 40 cm = 900 radians/min

Therefore, the angular velocity of the wheels is 900 radians/min.

B: To calculate the number of revolutions made by the wheels in that time, we can use the formula:

Number of revolutions = Distance / Circumference

The circumference of a wheel can be calculated using the formula:

Circumference = 2 * π * Radius

Plugging in the values, we have:

Circumference = 2 * 3.14 * 40 cm = 251.2 cm

Now we can calculate the number of revolutions:

Number of revolutions = Distance / Circumference = 540,000 cm / 251.2 cm = 2147.62

Learn more about angular velocity at:

https://brainly.com/question/20432894

#SPJ1

: 1. Deniz used red and purple flowers in her garden. Her garden was a rectangle, so she put down 27 rows of flowers with 18 flowers in each row. If 259 of the flowers were purple, how many of the flowers were red? 2. Deniz decided she has not planted enough flowers so she increased her garden size. Her garden was now 48 rows of flowers with 18 flowers in each row. Her sister, Audrey, had her own garden with half as many rows but the same number of flowers in each row. How many flowers were in Audrey's garden? Write an expression to represent your strategy.

Answers

There are 227 red flowers in Deniz's garden and there are 432 flowers in Audrey's garden.

1. To find the number of red flowers in Deniz's garden, we can subtract the number of purple flowers from the total number of flowers in the garden.

Total number of flowers = 27 rows * 18 flowers/row = 486 flowers.

Number of red flowers = Total number of flowers - Number of purple flowers = 486 - 259 = 227 red flowers.

Therefore, there are 227 red flowers in Deniz's garden.

2. To find the number of flowers in Audrey's garden, we can use the information given that Audrey's garden has half as many rows as Deniz's garden but the same number of flowers in each row.

Number of rows in Audrey's garden = 48 rows / 2 = 24 rows.

Number of flowers in each row in Audrey's garden is the same as Deniz's garden, which is 18 flowers.

To calculate the total number of flowers in Audrey's garden, we multiply the number of rows by the number of flowers in each row:

Total number of flowers in Audrey's garden = 24 rows * 18 flowers/row = 432 flowers.

Therefore, there are 432 flowers in Audrey's garden.

Expression: Number of flowers in Audrey's garden = (Number of rows in Deniz's garden / 2) * (Number of flowers in each row in Deniz's garden).

To learn more about  expression click here:

brainly.com/question/18719674

#SPJ11

The unit tangent vector T and the principal unit nomial vector N for the parameterized curve r(0) = t^3/3,t^2/2), t>0 are shown below . Use the definitions to compute the unit binominal vector B and torsion T for r(t) .
T = (1/√t^2+1 , 1/√t^2+1) N = ((1/√t^2+1 , -1/√t^2+1)
The unit binominal vector is B = _______

Answers

The unit binomial vector B can be computed using the definitions of the unit tangent vector T and the principal unit normal vector N. The unit binomial vector B is perpendicular to both T and N and completes the orthogonal triad.

Given that T = (1/√(t^2+1), 1/√(t^2+1)) and N = (1/√(t^2+1), -1/√(t^2+1)), we can compute B as follows:

B = T × N

The cross product of T and N gives us the unit binomial vector B. Since T and N are in the plane, their cross product simplifies to:

B = (T_ y * N_ z - T_ z * N_ y, T_ z * N_ x - T_ x * N_ z , T_ x * N_ y  - T_ y * N_ x)

Substituting the given values, we have:

B = (1/√(t^2+1) * (-1/√(t^2+1)) - (1/√(t^2+1)) * (1/√(t^2+1)), (1/√(t^2+1)) * (1/√(t^2+1)) - 1/√(t^2+1) * 1/√(t^2+1))

Simplifying further:

B = (0, 0)

Therefore, the unit binomial vector B is (0, 0).

In this context, the parameterized curve r(t) represents a path in two-dimensional space. The unit tangent vector T indicates the direction of the curve at any given point and is tangent to the curve. The principal unit normal vector N is perpendicular to T and points towards the center of curvature of the curve. These vectors T and N form an orthogonal basis in the plane.

To find the unit binomial vector B, we use the cross product of T and N. The cross product is a mathematical operation that yields a vector that is perpendicular to both input vectors. In this case, B is the vector perpendicular to both T and N, completing the orthogonal triad.

By substituting the given values of T and N into the cross product formula, we calculate B. However, after the calculations, we find that the resulting B vector is (0, 0). This means that the unit binomial vector is a zero vector, indicating that the curve is planar and does not have any torsion.

Torsion, denoted by the symbol τ (tau), measures the amount of twisting or "twirl" that a curve undergoes in three-dimensional space. Since B is a zero vector, it implies that the curve lies entirely in a plane and does not exhibit torsion. Torsion becomes relevant when dealing with curves in three-dimensional space that are not planar.

Learn more about three-dimensional click here: brainly.com/question/27271392

#SPJ11

Assume that the probability of a being born with Genetic Condition B is p = 1/12 . A study looks at a random sample of 729 volunteers.
Find the most likely number of the 729 volunteers to have Genetic Condition B. (Round answer to one decimal place.) μ =
Let X represent the number of volunteers (out of 729) who have Genetic Condition B. Find the standard deviation for the probability distribution of X . (Round answer to two decimal places.) σ =
Use the range rule of thumb to find the minimum usual value μ–2σ and the maximum usual value μ+2σ. Enter answer as an interval using square-brackets only with whole numbers. usual values =

Answers

Minimum usual value = μ – 2σ = 60.75 – 2(4.33) ≈ 52.09maximum usual value = μ + 2σ = 60.75 + 2(4.33) ≈ 69.41The usual values are [52, 69].

The probability of a person being born with Genetic Condition B is given by p = 1/12, and a random sample of 729 volunteers are studied.Using the binomial probability formula, the probability of exactly x successes in n trials is given by: P(x) = C(n, x) * p^x * q^(n-x)Where, C(n, x) denotes the number of ways to choose x items from n items.

The most likely number of the 729 volunteers to have Genetic Condition B is the mean or expected value of the probability distribution of X. The mean of a binomial distribution is given by:μ = np = 729 * (1/12) ≈ 60.75The most likely number of the 729 volunteers to have Genetic Condition B is 60.8 (rounded to one decimal place).

The standard deviation of a binomial distribution is given by:σ = sqrt(npq)where, q = 1-p = 11/12σ = sqrt(729 * (1/12) * (11/12)) ≈ 4.33The standard deviation for the probability distribution of X is 4.33 (rounded to two decimal places).Using the range rule of thumb, the minimum usual value is μ – 2σ and the maximum usual value is μ + 2σ.minimum usual value = μ – 2σ = 60.75 – 2(4.33) ≈ 52.09maximum usual value = μ + 2σ = 60.75 + 2(4.33) ≈ 69.41The usual values are [52, 69].

Learn more about Genetic here,

https://brainly.com/question/12111570

#SPJ11

A study is to be conducted to estimate the proportion of all college students who do not have a sibling. How many college ufudentis need in be contacted in order to estimate this proportion with 95% confidence to within a 2.00% margin of error? Aistume it is reasonable te use 0.56 as a prior ostimate in this calculation.

Answers

Approximately 2,401 college students need to be contacted to estimate the proportion of all college students who do not have a sibling with a 95% confidence level and a 2.00% margin of error.

To determine the sample size required for estimating a proportion with a specified confidence level and margin of error, we can use the formula.

Confidence level (1 - α) = 95% (corresponding to a Z-value of 1.96)

Margin of error (E) = 2.00% or 0.02

Estimated proportion (p) = 0.56

n ≈ (3.8416 * 0.56 * 0.44) / 0.0004

n ≈ 0.876544 / 0.0004

n ≈ 2,191.36

Rounding up to the nearest whole number, the required sample size is approximately 2,401 college students.

To estimate the proportion of college students who do not have a sibling with a 95% confidence level and a 2.00% margin of error, approximately 2,401 college students need to be contacted. This estimation is based on assuming a prior estimate of 0.56 for the proportion.

To know more about Proportion, visit

brainly.com/question/1496357

#SPJ11

The television habits of 30 children were observed. The sample standard deviation was 12.4 hours per week. a) Find the 95% confidence interval of the population standard deviation. b) Test the claim that the standard deviation was less than 16 hours per week (use alpha =0.05).

Answers

The 95% confidence interval for the population standard deviation is approximately [9.38, 30.57]. There is enough evidence to support the claim that the standard deviation is less than 16 hours per week.

a) To find the 95% confidence interval of the population standard deviation, we'll use the Chi-Square distribution. The Chi-Square distribution is used to construct confidence intervals for the population standard deviation σ when the population is normally distributed. The formula for this confidence interval is as follows:

{(n-1) s^2}/{\chi^2_{\alpha}/{2},n-1}},

{(n-1) s^2}/{\chi^2_{1-{\alpha}/{2},n-1}}

Where, n = 30, s = 12.4, α = 0.05 and df = n - 1 = 30 - 1 = 29.

The values of the chi-square distribution are looked up using a table or a calculator.

The value of a chi-square with 29 degrees of freedom and 0.025 area to the right of it is 45.722.

The value of a chi-square with 29 degrees of freedom and 0.025 area to the left of it is 16.047.

The 95% confidence interval for the population standard deviation is:[9.38,30.57].

b) To test the claim that the standard deviation was less than 16 hours per week, we use the chi-square test. It is a statistical test used to determine whether the observed data fit the expected data.

The null hypothesis H0 for this test is that the population standard deviation is equal to 16, and the alternative hypothesis H1 is that the population standard deviation is less than 16.

That is, H0: σ = 16 versus H1: σ < 16.

The test statistic is calculated as follows:

chi^2 = {(n-1) s^2}/{\sigma_0^2}

Where, n = 30, s = 12.4, and σ0 = 16.

The degrees of freedom are df = n - 1 = 30 - 1 = 29.

The p-value can be found from the chi-square distribution with 29 degrees of freedom and a left tail probability of α = 0.05.

Using a chi-square table, we get the following results:

Chi-square distribution with 29 df, at the 0.05 significance level has a value of 16.047.

The calculated value of the test statistic is:

chi^2 = {(30-1) (12.4)^2}/{(16)^2} = 21.82

Since the calculated test statistic is greater than the critical value, we reject the null hypothesis.

The conclusion is that there is enough evidence to support the claim that the standard deviation is less than 16 hours per week.

Learn more about confidence intervals at:

brainly.com/question/17212516

A random sample of size 500 is obtained from a population in which 20% of adults are diabetic. What is the standard deviation of the sample proportion of adults with diabetes? Give your answer to four decimal places.

Answers

The standard deviation of the sample proportion of adults with diabetes is approximately `0.0179`.The answer is given to four decimal places, which is within the margin of error. The margin of error is typically expressed in terms of standard deviations, so it is important to have an accurate standard deviation to ensure that the margin of error is not too large.

The formula for standard deviation of the sample proportion of adults with diabetes is `sqrt{[pq/n]}`.Here, the population proportion `p = 0.2`, sample size `n = 500`, and `q = 1 - p = 1 - 0.2 = 0.8`. The standard deviation of the sample proportion is:$$\begin{aligned} \sqrt{\frac{pq}{n}} &= \sqrt{\frac{(0.2)(0.8)}{500}} \\ &= \sqrt{\frac{0.16}{500}} \\ &= \sqrt{0.00032} \\ &= 0.0179 \end{aligned} $$Therefore, the standard deviation of the sample proportion of adults with diabetes is approximately `0.0179`.

The answer is given to four decimal places, which is within the margin of error. The margin of error is typically expressed in terms of standard deviations, so it is important to have an accurate standard deviation to ensure that the margin of error is not too large.

Learn more about Standard deviation here,https://brainly.com/question/475676

#SPJ11

An analyst has been asked to prepare an estimate of the proportion of time that a turret lathe operator spends adjusting the machine, with a 90 percent confidence level. Based on previous experience, the analyst believes the proportion will be approximately 30 percent. a. If the analyst uses a sample size of 400 observations, what is the maximum possible error that will be associated with the estimate? b. What sample size would the analyst need in order to have the maximum error be no more than ±5 percent?
p
^

=.30z=1.65 for 90 percent confidence

Answers

The maximum possible error that will be associated with the estimate when the analyst uses a sample size of 400 observations is 3.78 percent and the sample size that the analyst would need in order to have the maximum error be no more than ±5 percent is 297 observations.

The maximum possible error that will be associated with the estimate when the analyst uses a sample size of 400 observations is 3.78 percent.

Error formula for proportion:

Maximum possible error = z * √(p^ * (1-p^)/n)

Where z = 1.65 for 90 percent confidencep^

              = 0.3n

              = 400

Substitute the given values into the formula:

Maximum possible error = 1.65 * √(0.3 * (1-0.3)/400)

Maximum possible error = 1.65 * √(0.3 * 0.7/400)

Maximum possible error = 1.65 * √0.0021

Maximum possible error = 1.65 * 0.0458

Maximum possible error = 0.0756 or 7.56% (rounded to two decimal places)

b. The sample size that the analyst would need in order to have the maximum error be no more than ±5 percent can be calculated as follows:

Error formula for proportion:

Maximum possible error = z * √(p^ * (1-p^)/n)

Where z = 1.65 for 90 percent confidencep^ = 0.3n = ?

Maximum possible error = 0.05

Substitute the given values into the formula:

0.05 = 1.65 * √(0.3 * (1-0.3)/n)0.05/1.65

        = √(0.3 * (1-0.3)/n)0.0303

        = 0.3 * (1-0.3)/nn

        = 0.3 * (1-0.3)/(0.0303)n

        = 296.95 or 297 (rounded up to the nearest whole number)

Therefore, the sample size that the analyst would need in order to have the maximum error be no more than ±5 percent is 297 observations.

Learn more about error from the given link;

https://brainly.com/question/29499800

#SPJ11

# 5. Bayes theorem:

# P(H | D) = P(H & D) / P(D)


# 5.1 Calculate the posterior probability P(H | D)

# if P(H) = 0.5, P(D) = 0.2, P(H & D) = 0.1

# 5.2: calculate P(D | H)

Answers

The posterior probability P(H | D) is 0.5..The probability P(D | H) is 0.2.

Bayes' Theorem is a fundamental concept in probability and statistics that allows us to revise our probabilities of an event occurring based on new information that becomes available. It is a formula that relates the conditional probabilities of two events.

Here, we are given: P(H) = 0.5, P(D) = 0.2, P(H & D) = 0.1

The formula to find the posterior probability P(H | D) is given by:

P(H | D) = P(H & D) / P(D)

Substituting the given values, we get: P(H | D) = 0.1 / 0.2

P(H | D) = 0.5

Therefore, the posterior probability P(H | D) is 0.5. This means that given the evidence D, the probability of event H occurring is 0.5.

The formula to find the probability P(D | H) is given by:

P(D | H) = P(H & D) / P(H)

Substituting the given values, we get:P(D | H) = 0.1 / 0.5P(D | H) = 0.2

Therefore, the probability P(D | H) is 0.2.

This means that given the event H, the probability of evidence D occurring is 0.2.

Know more about Bayes' Theorem here,

https://brainly.com/question/33143420

#SPJ11

Other Questions
Finds(t), wheres(t)represents the position function,v(t)represents the velocity function, and a(t) represents the acceleration function.a(t)=18t+8,withv(0)=1ands(0)=7s(t) = ___ What are the strengths or weaknesses of the current health of the US economy in terms of CPI, unemployment rate, and GDP? In the near term, what actions would you recommend that US policymakers do in terms of fiscal and monetary policies that would improve economic performance in the US? What federal laws do you recommend be enacted that would likely improve US economic performance? Offer your explanations as to why any recommendations you make in terms of policies or new legislation will likely improve national economic performance. 1. A Uniform rod of mass 18kg and length 15cm, is suspended from a point C by two strings CA and CB respectively. A horizontal force P newton is applied at the end A of the rod, and it is sufficient to keep the rod in equilibrium horizontally. Find P and the tension in the strings. [Take g = 10 m/s2]Please this is a question of mechanics (Moment of force) in mathematics. You have to sketch before providing the solution2. A light string is tied to two points at the same level and a smooth ring of weight 2 newtons which can slide freely along the string is pulled by a force P inclined at an angle of 800 to the downward vertical. If the positions of the string are inclined at angles of 600 and 300 to the vertical, find the force P and the magnitude of the tension in the string, correct to two decimal places.Please this is a question of mechanics (Lami's theory) in mathematics. You have to sketch before providing the solution The set of P({a,b}) (P({0,1}) when tracing a wire how do you utilize a toner and probe kit Find the sum and product of the complex numbers 13i and 1+7i. The sum is (Type your answer in the form a+bi.) Information is given about a polynomial f(x) whose coefficients are real numbers. Find the remaining zeros of f. Degree 3 ; zeros: 1,1i The remaining zero(s) of f is(are) (Use a comma to separate answers as needed.) ii. Think about fluid allocation. Which side the coolant should go and why? a. How does fluid allocation effect heat exchanger size? b. Are there any safety concerns? c. How does an exhaust leak from the heat exchanger effect engine emissions that are regulated by Federal Laws? What is your conclusion on effect of baffles? a. Which side of the heat exchanger has a higher thermal resistance? Gas or Coolant? Use the Heat Exchanger Design output to note thermal resistances or heat transfer coefficients on shell and tubes sides. b. Does baffles make a sense if coolant is on the shell side? III. Option Payoff Diagram (15 points) You hold a long position in an option portfolio. It contains an European call option on stock XYZ with a strike price of$40and a put option on the same stock with a strike price of$30. The call option is currently trading at$1and the put option is trading at \$2. Draw a graph indicating your net profit from this investment at the expiration date for stock prices in the range of$0to$80. Please show one combined plot and please label the axes clearly. Patricia applied for a disability policy. On the application, she declared that she was suffering from back pains, The insurer issued the policy with an exclusion for disabilities arising from her back problems during the first twenty-six weeks. After thirty weeks, she experienced a multiple sclerosis problem. The insurer denied Patricia's claim after determining that she had received treatment for her multiple sclerosis within twelve months before the policy was issued. On which of the following clauses did the insurer have a basis for denying the claim? Select one: a. Exclusion for pre-existing medical condition b. Legal exclusion c. Exclusion for intentional concealment d. Contractual exclusion If the nominal interest rate per year is 10 percent and the inflation rate is 4 percent, what is the exact real rate of interest?a. 6 percent b. 5.76 percent c. 14.0 percent d. 10.0 percent Farmer Jones is producing wheat and must accept the market price of $8.80 per bushel. At this time, her average total costs and her marginal costs both equal $10.50 per bushel. Her minimum average variable costs are $6.50 per bushel. In order to maximize profits or minimize losses in the short run, farmer Jones should Multiple Choice a. continue producing the same level of output. b. increase output. c. continue producing, but reduce output. d. produce zero output and shut down. Findyandf(x)xfor the given function. Round to three decimal places.y=f(x)=x3,x=7, andx=0.05A.7.403;7.403B.7.350;7.350C.7.403;1.050D.7.403;7.350 Can you think of any business leaders who are known for their "virtues"? Who and what company are they associated with. Or is difficult for you to think of business leaders who are known for their "virtues"? ABC Company had the following data for the last year (dollars in thousands): Net income = $700; EBIT = $1,200; Total assets = $3,500; and Total operating capital = $2,100. Information for the current year is as follows: Net income = $800; EBIT = $1,538; Total assets = $3,800; and Total operating capital = $2,536. The company's federal and state tax rate is 35%. How much free cash flow did the firm generate during the current year? Round your answer to the nearest dollar. (Hint: FCF = NOPAT - Net Investment in Operating Capital) Group of answer choices $572 $561 $577 $569 $564 Describe below functions of The managment in ainsurance campany how each point could help organizationalbehavior.planningOrganizingDirectingControlling What are some reasons why the teenage birth rate in the United States has decreased? (Select all that apply.)O Fear of sexually transmitted infectionsO Increased use of contraceptivesO School/community health classes As a veteran teacher in the school, how would you support new teachers in their implementation of the current assessment program? What guidelines or suggestions would you offer new teachers to help them create their own informal assessment pieces? What specific information would you share with them regarding testing formats to use (selected-response, constructed-response, authentic assessments, etc.)? 24. A client phones you in a bit of a panic and says that they need to buy USD against SEK for value today! You look at your screen and see the following: Spot USD/SEK 6.2928/38, O/N swap points 1.5/0.5 ) T/N swap points 2.0/1.5, 1-week swap points 10.5/8.5 At what rate will you sell USD against SEK to your client? When total quality management teams eventually become part of an organization's standard operating procedures, we have an example of lewin's phase of Franklin Co. reported the following year-end data: Net income Annual cash dividends of per share Market price per (common) share Earnings per share $229,000 $ 3 $ 150 $ 15 Compute the (a) price-earnings ratio and (b) dividend yield. Complete this question by entering your answers in the tabs below. Price Earnings Ratio Dividend Steld Compute the dividend yield. Choose Numerator: Dividend Yield 1 Choose Denominator: 1 Dividend Yield Dividend yield % < Price Earnings Ratio