Answer:
1
Step-by-step explanation:
David Joyner might be the first name, so you may only have to check 1 name.
The function g(x) is a transformation of f(x). If g(x) has a y-intercept of -2, which of the following functions could represent g(x)
Answer:
b. [tex]g(x)=f(x)-5[/tex]
Step-by-step explanation:
You have that the function f(x) has its y-intercept for y=3.
Furthermore, you have that g(x) is a transformation of f(x) with y-intercept for y=-2.
In this case you have that f(x) has been translated vertically downward.
The general way to translate a function vertically in the coordinate system is:
[tex]g(x)=f(x)+a[/tex] (1)
being a positive or negative.
if g(x) has its y-intercept for y=-2, and the y-intercept of f(x) is for y=3, then the value of a in the equation (1) must be a = -5, which is the difference between both y-intercepts, in fact:
a = -2 -3 = -5
Then, the answer is:
b. [tex]g(x)=f(x)-5[/tex]
Answer: g(x) = f(x) - 5
Step-by-step explanation:
just took this
You are dealt two card successively without replacement from a shuffled deck of 52 playing cards. Find the probability that the first card is a king and the second is a queen. Round to nearest thousandth
Answer:
0.078
Step-by-step explanation:
The probability P(A) of an event A happening is given by;
P(A) = [tex]\frac{number-of-possible-outcomes-of-event-A}{total-number-of-sample-space}[/tex]
From the question;
There are two events;
(i) Drawing a first card which is a king: Let the event be X. The probability is given by;
P(X) = [tex]\frac{number-of-possible-outcomes-of-event-X}{total-number-of-sample-space}[/tex]
Since there are 4 king cards in the pack, the number of possible outcomes of event X = 4.
Also, the total number of sample space = 52, since there are 52 cards in total.
P(X) = [tex]\frac{4}{52}[/tex] = [tex]\frac{1}{13}[/tex]
(ii) Drawing a second card which is a queen: Let the event be Y. The probability is given by;
P(Y) = [tex]\frac{number-of-possible-outcomes-of-event-Y}{total-number-of-sample-space}[/tex]
Since there are 4 queen cards in the pack, the number of possible outcomes of event Y = 4
But then, the total number of sample = 51, since there 52 cards in total and a king card has been removed without replacement.
P(Y) = [tex]\frac{4}{51}[/tex]
Therefore, the probability of selecting a first card as king and a second card as queen is;
P(X and Y) = P(X) x P(Y)
= [tex]\frac{1}{13} * \frac{4}{51}[/tex] = 0.078
Therefore the probability is 0.078
Write an expression:
a) 4 less than twice a
number
11
Gra
ine
a)
e
Answer:
2x - 4.
Step-by-step explanation:
4 less than twice a number is the same thing as a number times 2 minus 4. Let's say that the number is represented by x.
2 * x - 4 = 2x - 4.
Hope this helps!
Someone please help! Thxx
Answer:
E, needs more info to be determined
Step-by-step explanation:
We know that Kai takes 30 minutes round-trip to get to his school.
One way is uphill and the other is downhill.
He travels twice as fast downhill than uphill.
This means that uphill accounts for 20 minutes of the round-trip and downhill accounts for 10 minutes of his trip.
However, even with this information, we do not know how far his school is.
In order to figure out how far away his school is, we would need more information about the speed at which Kai is traveling.
Simply knowing that he travels twice as fast downhill is not enough.
This question could only be solved by knowing how many miles Kai travels uphill or downhill in a given time.
this graph shows the solution to which inequality?
Answer:
B. y > 2/3x + 1
Step-by-step explanation:
To find slope we'll use the following formula,
[tex]\frac{y^2-y^1}{x^2-x^1}[/tex]
(-3,-1) (3,3)
3 - -1 = 4
3 - -3 = 6
2/3x
The y intercept is 1,
we know this because that's the point the line touches the y axis.
Thus,
the answer is B. y > 1/3x + 1.
Hope this helps :)
The graph of the solution of an inequality is given .
The graph represents the inequality is [tex]y>\frac{2}{3} x+1[/tex]
Option B
Given :
The graph of an inequality. To find the inequality for the given graph we use linear equation [tex]y=mx+b[/tex]
where m is the slope and b is the y intercept
To find out slope , pick two points from the graph
(-3,-1) and (3,3)
[tex]slope =\frac{y_2-y_2}{x_2-x_1} =\frac{3+1}{3+3} =\frac{2}{3} \\m=\frac{2}{3}[/tex]
Now we find out y intercept b
The point where the graph crosses y axis is the y intercept
The graph crosses y axis at 1
so y intercept b=1
The linear equation for the given graph is
[tex]y=\frac{2}{3} x+1[/tex]
Now we frame the inequality . we use test point that lies inside shaded region
Lets take (4,5)
[tex]y=\frac{2}{3} x+1\\5=\frac{2}{3} (4)+1\\5=3.6\\5>3.6\\y>\frac{2}{3} x+1[/tex]
The inequality for the given graph is
[tex]y>\frac{2}{3} x+1[/tex]
Learn more : brainly.com/question/24649632
The equations x + 5 y = 10, 3 x minus y = 1, x minus 5 y = 10, and 3 x + y = 1 are shown on the graph below. On a coordinate plane, there are 4 lines. Green line goes through (0, negative 1) and (1, 2). Blue line goes through (0, 1) and (1, negative 2). Pink line goes through (0, 2), and (2, 1.5). Orange line goes through (negative 2, negative 2.5) and (2, negative 1.5). Which is the approximate solution for the system of equations x + 5 y = 10 and 3 x + y = 1? (–0.3, 2.1) (–0.3, –2.1) (0.9, –1.8) (0.9, 1.8)
Answer:
A: (–0.3, 2.1)
Answer:a
Step-by-step explanation:
find the value of a, b, c, and d,
type exact answers and use radicals as needed
Step-by-step explanation:
Using trigonometrical functions we can obtain the required side lengths.
[tex] \sin 45\degree = \frac{a}{16\sqrt 2}\\\\
\therefore \frac{1}{\sqrt 2}= \frac{a}{16\sqrt 2}\\\\
\therefore a = \frac{16\sqrt 2}{\sqrt 2}\\\\
\huge\red {\boxed {\therefore a = 16}} \\\\
\cos 45\degree = \frac{c}{16\sqrt 2}\\\\
\therefore \frac{1}{\sqrt 2}= \frac{c}{16\sqrt 2}\\\\
\therefore c = \frac{16\sqrt 2}{\sqrt 2}\\\\
\huge\purple {\boxed {\therefore c = 16}} \\\\
\sin 30\degree = \frac{a}{b}\\\\
\therefore \frac{1}{2}= \frac{16}{b}\\\\
\therefore b = {16\times2}\\\\
\huge\orange{\boxed {\therefore b = 32}} \\\\
\tan 30\degree = \frac{a}{d}\\\\
\therefore \frac{1}{\sqrt 3}= \frac{16}{d}\\\\
\therefore d = {16\times\sqrt 3}\\\\
\huge\pink {\boxed {\therefore d = 16\sqrt 3}} \\\\
[/tex]
Use the power-reducing formulas to rewrite the expression as an equivalent expression that does not contain powers of trigonometric functions greater than 1.
16 sin4x
16sin4x = _____
Answer:
[tex]6-8cos2x+2cos4x[/tex]
Step-by-step explanation:
We are given that
[tex]16sin^4 x[/tex]
We can write the given expression as
[tex]16(sin^2x \times sin^2 x)[/tex]
[tex]16(\frac{1-cos2x}{2})(\frac{1-cos2x}{2})[/tex]
By using the formula
[tex]sin^2\theta=\frac{1-cos2\theta}{2}[/tex]
[tex]4(1-cos2x)^2[/tex]
[tex]4(1-2cos2x+cos^2(2x)[/tex]
Using the identity
[tex](a-b)^2=a^2+b^2-2ab[/tex]
[tex]4(1-2cos2x+\frac{1+cos4x}{2})[/tex]
[tex]4-8cos2x+2+2cos4x[/tex]
[tex]6-8cos2x+2cos4x[/tex]
This is required expression.
A line has a slope of $-\frac{3}{7},$ and its $y$-intercept is $(0,18)$. What is its $x$-intercept?
Answer:
(42, 0)
Step-by-step explanation:
Since we know the slope and y-intercept we can write the equation of the line in slope-intercept form which is y = mx + b; therefore, the equation is y = -3/7x + 18. To find the x-intercept, we just plug in y = 0 which becomes:
0 = -3/7x + 18
-18 = -3/7x
x = 42
[tex]\text{In order to find your x intercept, plug in 0 to y and solve:}\\\\0=-\frac{3}{7}x+18\\\\\text{Subtract 18 from both sides}\\\\-18=-\frac{3}{7}x\\\\\text{Multiply both sides by 7}\\\\-126=-3x\\\\\text{Divide both sides by 3}\\\\42 = x\\\\\text{This means that the x-intercept is (42,0)}\\\\\boxed{\text{x-intercept: (42,0)}}[/tex]
On a coordinate plane, a line is drawn from point J to point K. Point J is at (negative 3, 1) and point K is at (negative 8, 11). What is the y-coordinate of the point that divides the directed line segment from J to K into a ratio of 2:3? y = (StartFraction m Over m + n EndFraction) (y 2 minus y 1) + y 1 –6 –5 5 7
Answer: (-5, 5)
Step-by-step explanation:
J = (-3, 1) K = (-8, 11) ratio 2 : 3 --> 2 + 3 = 5 segments
x-distance from J to K: -8 - (-3) = -5 units
y-distance from J to K: 11 - 1 = 10 units
Divide those distance into 5 segments:
x = -5/5 = -1 unit per segment
y = 10/5 = 2 units per segment
The partition is 2 segments from J:
x = -3 +2(-1) = -5
y = 1 + 2(2) = 5
The partition is located at (-5, 5)
Answer:
5
Step-by-step explanation:
simplify the following expressions showing the steps:
(9+9.4i)+(-8.6-4i)
(9.4i)(-4i)
Answer:
a) 17.6 + 5.4i
b) 37.6
Step-by-step explanation:
a) (9 + 9.4i) + (8.6 - 4i)
Collect like terms:
9 + 8.6 + 9.4i - 4i
= 17.6 + 5.4i
b) (9.4i)(-4i)
Expand the brackets:
9.4 * -4 * i * i
[tex]i = \sqrt{-1}[/tex]
Therefore, i * i = -1
=> (9.4i)(-4i) = -37.6 * -1
= 37.6
Use the cubic model y = 6x3 - 5x2 + 4x – 3 to estimate the value of y when x = 2.
a 25
(b 33
c 48
d 79
Done
Try Again
-
Answer:
The answer is B.
Step-by-step explanation:
You have to substitute x = 2, into the equation of y :
[tex]y = 6 {x}^{3} - 5 {x}^{2} + 4x - 3[/tex]
[tex]let \: x = 2[/tex]
[tex]y = 6 {( 2)}^{3} - 5 {(2)}^{2} + 4(2) - 3[/tex]
[tex]y = 48 - 20 + 8 - 3[/tex]
[tex]y = 33[/tex]
The first step for deriving the quadratic formula from the quadratic equation, 0 = ax2 + bx + c, is shown. Step 1: –c = ax2 + bx Which best explains or justifies Step 1?
Answer:
Subtract c from each side, using the subtraction property of equality
Step-by-step explanation:
0 = ax^2 + bx + c
Subtract c from each side, using the subtraction property of equality
-c = ax^2 + bx + c-c
-c = ax^2 + bx
Answer:
subtract c from each side, so the answer would be D
Regulation baseballs have a diameter that is either 23.2 mm or 24.2 mm. What is the difference in volume of the baseballs? Round to the nearest hundredth. Use pi equals 3.14. V equals ____________ mm cubed Type your numerical answer (without units) below.
Answer:
ΔV = 865.51 mm^3
Step-by-step explanation:
In order to calculate the difference in volume between both baseballs you use the following formula for the volume of a sphere:
[tex]V=\frac{4}{3}\pi r^3[/tex] (1)
where r is the radius of he sphere.
You calculate the volume of each sphere:
First baseball:
radius = 23.2mm/2 = 11.61mm
[tex]V_1=\frac{4}{3}\pi (11.61mm)^3=6555.18\ mm^3[/tex]
Second baseball:
radius = 24.2mm/2 = 12.1mm
[tex]V_2=\frac{4}{3}\pi (12.10)^3=7420.70\ mm^3[/tex]
Then, the difference in the volumen of both spheres is:
[tex]\Delta V=V_2-V_1=7420\ mm^3-6555.18\ mm^3=865.51\ mm^3[/tex]
Simplify the expression:
– 10x + – 4 – 8 + 7x
Answer:
-3x-12
Step-by-step explanation:
-10x-4-8+7x
-3x-4-8
-3x-12
Answer:
-3x-12
Step-by-step explanation:
– 10x + – 4 – 8 + 7x
Combine like terms
-10x +7x -4-8
-3x -12
2. Salvador has 10 cards, each with one number on
it. The numbers are 2, 3, 4,5,5,7,7,7,7,7.
Salvador is going to make a row containing all 10
cards. How many ways can he order the row?
Answer:
15,120 number of ways.Step-by-step explanation:
This is a permutation problem. Given the 10 cards with numbers 2, 3, 4,5,5,7,7,7,7,7 on it, if Salvador is going to make a row call, the number of ways he can order a row is as shown below;
Total number of cards = 10!
number of times the digit 5 was repeated = 2times
number of times the digit 7 was repeated = 5times
The number of ways he can make a row call = 10!/2!5!
= 10*9*8*7*6*5!/2*5!
= 10*9*8*7*6/2
= 10*9*8*7*3
= 15,120 different ways
Hence, the number of ways he can order the row is 15,120 number of ways.
NEED HELP AS SOON AS POSSIBLE which interval describes where the graph of the function is negative
Answer:
2 < x < ∞
Step-by-step explanation:
We want where the value of y is less than zero
The value of the graph is less than zero is from x=2 and continues until x = infinity
2 < x < ∞
Answer:
[tex]\boxed{2 < x < \infty}[/tex]
Step-by-step explanation:
The value of y should be less than 0 for the graph of the function to be negative.
In the graph, when it startes from x is 2 the value becomes less than 0 and it keeps continuing until x is equal to infinity.
[tex]2 < x < \infty[/tex]
The graph of a linear function is given below. What is the zero of the function?
Answer:
Option (D)
Step-by-step explanation:
Zero of any function is defined by the x-value of the function when y = 0.
Let the equation of the line given in the graph is,
y = mx + b
where m = slope of the line
b = y-intercept of the line
Slope of a line passing through [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] is defined by the formula,
m = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
If the passes through (0, -3) and (-2, 0)
m = [tex]\frac{-3-0}{0+2}[/tex]
m = [tex]-\frac{3}{2}[/tex]
Fro the graph,
y-intercept 'b' = -3
Therefore, equation of the line is,
[tex]y=-\frac{3}{2}x-3[/tex]
For y = 0,
[tex]0=-\frac{3}{2}x-3[/tex]
[tex]\frac{3}{2}x=-3[/tex]
x = -2
Therefore, option (D) will be the answer.
Answer:
d- -2
Step-by-step explanation:
A patrolmen spend 25% of every day completing paperwork. The patrol and shift each day is 8 hourZ how much of his time does he spend doing paperwork each day
Answer:
25 percent of 8 is 2 so 2 hours
Step-by-step explanation:
3) and
What is the equation, in point-slope form, of the line that
is perpendicular to the given line and passes through the
point (-4, 3)?
O y-3 = -2(x+4)
Oy-3=-{(x + 4)
y-3 = {(x + 4)
O y-3 = 2(x + 4)
The question is incomplete! Complete question along with answer and step by step explanation is provided below.
Question:
The given line passes through the points (-4, -3) and (4, 1).
What is the equation, in point-slope form, of the line that is perpendicular to the given line and passes through the point (-4, 3)?
a) y - 3 = -2(x + 4)
b) y - 3= - (x + 4)
c) y - 3 = (x + 4)
d) y - 3 = 2(x + 4)
Answer:
The equation of the line that is perpendicular to the given line and passes through the point (-4, 3) is
a) y - 3 = -2(x +4)
Step-by-step explanation:
First of all, we will find the slope of the given line.
We are given that the line passes through the points (-4, -3) and (4, 1)
[tex](x_1, y_1) = (-4,-3) \\\\(x_2, y_2) = (4,1) \\\\[/tex]
The slope of the equation is given by
[tex]$ m_1 = \frac{y_2 - y_1 }{x_2 - x_1} $[/tex]
[tex]m_1 = \frac{1 -(-3) }{4 -(-4)} \\\\m_1 = \frac{1 + 3 }{4 + 4} \\\\m_1 = \frac{4 }{8} \\\\m_1 = \frac{1 }{2} \\\\[/tex]
Recall that the slopes of two perpendicular lines are negative reciprocals of each other.
[tex]$ m_2 = - \frac{1}{m_1} $[/tex]
So the slope of the other line is
[tex]m_2 = - 2[/tex]
Now we can find the equation of the line that is perpendicular to the given line and passes through the point (-4, 3)
The point-slope form is given by,
[tex]y - y_1 = m(x -x_1)[/tex]
Substitute the value of slope and the given point
[tex]y - 3 = -2(x -(-4) \\\\y - 3 = -2(x +4)[/tex]
Therefore, the correct option is (a)
y - 3 = -2(x + 4)
The equation of the line in point-slope form is y - 3 = -2(x + 4)
What is a linear equation?
A linear equation is in the form:
y = mx + b
Where y,x are variables, m is the rate of change and b is the y intercept.
The line passes through the point (-4, -3) and (4, 1). Hence:
Slope = (1 - (-3)) / (4 - (-4)) = 1/2
The slope of the line perpendicular to this line is -2 (-2 * 1/2 = -1).
The line passes through (-4, 3), hence:
y - 3 = -2(x - (-4))
y - 3 = -2(x + 4)
The equation of the line in point-slope form is y - 3 = -2(x + 4)
Find out more on linear equation at: https://brainly.com/question/14323743
What is the total amount of 2/5+5/3+9/3 and the lowest common denominator?
The lowest common denominator is lcm(5, 3), which is 15.
The sum of 2/5 + 5/3 + 9/3 is 6/15 + 25/15 + 45/15, which is 76/15 or [tex]5\frac{1}{15}[/tex].
A deck of cards contains RED cards numbered 1,2,3, BLUE cards numbered 1,2,3,4, and GREEN cards numbered 1,2. If a single card is picked at random, what is the probability that the card is BLUE OR has an ODD number?
Answer:
7/9
Step-by-step explanation:
P(blue or odd) = P(blue) + P(odd) − P(blue and odd)
P(blue or odd) = 4/9 + 5/9 − 2/9
P(blue or odd) = 7/9
Alternatively:
P(blue or odd) = 1 − P(not blue and not odd)
P(blue or odd) = 1 − 2/9
P(blue or odd) = 7/9
Simplify the expression:
4w + 10(7w+1)
Answer:
74w+10
Step-by-step explanation:
That's the answer
EMILIEJI
Find the slope of the line through (3, 7) and (-1, 4)
a) 2
11
Ob) 4
Od
2
O d) 3
Answer:
slope of the line through (3, 7) and (-1, 4) is
[tex]m = \frac{4 - 7}{ - 1 - 3} \\ \\ = \frac{ - 3}{ - 4} \\ \\ = \frac{3}{4} [/tex]
Hope this helps you
Answer:
3/4
Step-by-step explanation:
Using the slope formula
m = (y2-y1)/(x2-x1)
= (4-7)/(-1-3)
= -3/-4
= 3/4
Suppose you start at the origin, move along the x-axis a distance of 4 units in the positive direction, and then move downward along the z-axis a distance of 7 units. What are the coordinates of your position
Answer:
(4,0,-7)
Step-by-step explanation:
The initial position was (0,0,0) since it was the origin
Now, we have a movement of positive x at a distance of 4 units, with a distance of z a total of 7 units(negative since downward)
The current position is thus;
(4,0,-7)
Thus correlates to (x,y,z) and our y has remained zero as there is no movement along the y-axis
Which ordered pair is a solution of the equation? y=3x+5 A:(2,11) B:(3,13) C: Neither D: Both
Answer:
A: (2, 11).
Step-by-step explanation:
For an ordered pair to be a solution of an equation, the ordered pair must "fit".
A: (2, 11).
11 = 3(2) + 5
11 = 6 + 5
11 = 11
So, (2, 11) is a solution.
B: (3, 13).
13 = 3(3) + 5
13 = 9 + 5
13 = 14
Since 13 is not the same thing as 14, (3, 13) is not a solution.
Since A works but B doesn't, choices C and D are both eliminated. A is your answer.
Hope this helps!
What does 0 = 0 mean regarding the solution to the system?
Answer:
It means the left side of the equation equals the right side of the equation regardless of the value of the variables. The solution is all real numbers for each variable
Step-by-step explanation:
A certain car model has a mean gas mileage of 34 miles per gallon (mpg) with a standard deviation A pizza delivery company buys 54 of these cars. What is the probability that the average mileage of the fleet is between 33.3 and 34.3 mpg?
Answer:
[tex] z =\frac{33.3- 34}{\frac{5}{\sqrt{54}}}= -1.028[/tex]
[tex] z =\frac{34.3- 34}{\frac{5}{\sqrt{54}}}= 0.441[/tex]
An we can use the normal standard table and the following difference and we got this result:
[tex] P(-1.028<z<0.441)= P(z<0.441) -P(z<-1.028) = 0.670 -0.152 =0.518[/tex]
Step-by-step explanation:
Assuming this statement to complete the problem "with a standard deviation 5 mpg"
We have the following info given:
[tex]\mu = 34[/tex] represent the mean
[tex]\sigma= 5[/tex] represent the deviation
We have a sample size of n = 54 and we want to find this probability:
[tex] P(33.3 < \bar X< 34.3)[/tex]
And for this case since the sample size is large enough >30 we can apply the central limit theorem and then we can use this distribution:
[tex]\bar X \sim N(\mu , \frac{\sigma}{\sqrt{n}})[/tex]
And we can use the z score formula given by:
[tex] z=\frac{\bar X -\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
And replacing we got:
[tex] z =\frac{33.3- 34}{\frac{5}{\sqrt{54}}}= -1.028[/tex]
[tex] z =\frac{34.3- 34}{\frac{5}{\sqrt{54}}}= 0.441[/tex]
An we can use the normal standard table and the following difference and we got this result:
[tex] P(-1.028<z<0.441)= P(z<0.441) -P(z<-1.028) = 0.670 -0.152 =0.518[/tex]
Examine today’s stock listing for SFT Legal, shown below. 52 wk High 52 wk Low Symbol Div. Close Net Change 74.80 44.61 SFT 8.94 56.11 5.74 What was the price of SFT Legal yesterday? a. $47.17 b. $56.11 c. $50.37 d. $61.85
Answer:
c. $50.37
Step-by-step explanation:
Close price was $56.11 and net change was $5.74. so subtract the net change from the close to get yesterday's price.
Answer:
c.50.37
Step-by-step explanation:
Determine the t critical value(s) that will capture the desired t-curve area in each of the following cases.
a. Central area = 0.95, df = 10
b. Central area = 0.95, df = 20
c. Central area = 0.99, df = 20
d. Central area = 0.99, df = 60
e. Upper-tail area = 0.01, df = 30
f. Lower-tail area = 0.025, df = 5
Answer:
a) Central area = 0.95, df = 10 t = (-2.228, 2.228)
(b) Central area = 0.95, df = 20 t= (-2.086, 2.086)
(c) Central area = 0.99, df = 20 t= ( -2.845, 2.845)
(d) Central area = 0.99, df = 60 t= (-2.660, 2.660)
(e) Upper-tail area = 0.01, df = 30 t= 2.457
(f) Lower-tail area = 0.025, df = 5 t= -2.571
Step-by-step explanation:
In this question, we are to determine the t critical value that will capture the t-curve area in the cases below;
We can use the t-table for this by using the appropriate confidence interval with the corresponding degree of freedom.
The following are the answers obtained from the table;
a) Central area = 0.95, df = 10 t = (-2.228, 2.228)
(b) Central area = 0.95, df = 20 t= (-2.086, 2.086)
(c) Central area = 0.99, df = 20 t= ( -2.845, 2.845)
(d) Central area = 0.99, df = 60 t= (-2.660, 2.660)
(e) Upper-tail area = 0.01, df = 30 t= 2.457
(f) Lower-tail area = 0.025, df = 5 t= -2.571