★ Apply Phythagoras Theorem:-
[tex] \sf \longrightarrow \: {(adjacent \: side)}^{2} + {(opposite \: side)}^{2} = {(hypotenuse)}^{2} [/tex]
[tex] \sf \longrightarrow \: {(9)}^{2} + {(opposite \: side)}^{2} = {(17)}^{2} [/tex]
[tex] \sf \longrightarrow \: 81 + {(opposite \: side)}^{2} = {(17)}^{2} [/tex]
[tex] \sf \longrightarrow \: 81 + {(opposite \: side)}^{2} = 289[/tex]
[tex] \sf \longrightarrow \: {(opposite \: side)}^{2} = 289 - 81[/tex]
[tex] \sf \longrightarrow \: {(opposite \: side)}^{2} = 208[/tex]
[tex] \sf \longrightarrow \: opposite \: side= \sqrt{ 208}[/tex]
[tex] \sf \longrightarrow \: opposite \: side=14.422[/tex]
What is the distance from A to B?
10
108642
A(-8, -3)
-2
-6
-8
-10
B6, 6)
2 4 6 8 10
A 21 units
B. 15 units
C. 225 units
D. 3 units
The distance from point A to point B is approximately 16.64 units. None of the given options (A, B, C, D) match this value exactly, so there seems to be an error in the options provided.
To find the distance from point A to point B, we can use the distance formula in Euclidean geometry. The distance formula between two points (x1, y1) and (x2, y2) is given by:
distance = sqrt((x2 - x1)^2 + (y2 - y1)^2)
In this case, point A is (-8, -3) and point B is (6, 6). Plugging these values into the distance formula, we have:
distance = sqrt((6 - (-8))^2 + (6 - (-3))^2)
= sqrt((6 + 8)^2 + (6 + 3)^2)
= sqrt(14^2 + 9^2)
= sqrt(196 + 81)
= sqrt(277)
≈ 16.64
Thus, the distance between points A and B is roughly 16.64 units. Since none of the available options (A, B, C, or D) exactly match this value, there appears to be a problem with the options.
for such more question on distance
https://brainly.com/question/12356021
#SPJ8
A store employee notices that rowboats that cost his store 79$ are being sold for 175$. What percentage is the mark up?
Answer:
Step-by-step explanation:
Step 1. Determine the dollar amount of the markup
175 - 79 = 96
Step 2: Divide the markup Amount by the Cost
96/79 = 1.215
Step 3: Multiply by 100 and add the % sign
1.215 x 100 = 121.5%
A marketing firm conducts a survey to determine the ages of their survey subjects who like a new health drink.
This is the resulting data from their survey:
49, 63, 78, 22, 41, 39, 75, 61, 63, 65,
58. 37. 45, 52, 81, 75, 78, 72, 68, 59,
72, 85, 63, 61, 75, 39, 41, 48, 59,55
61, 25, 61, 52, 58, 71, 75, 82, 49, 51
The mean age of the subjects who like the new health drink is (type your answer...)
and the median age of the subjects is (type your answer..)
Answer:
Mean = 59.1, Median = 61
(there might have been a mistake in calculation (a lot of numbers!))
Step-by-step explanation:
The sample size is 40,
Now, the formula for the mean is,
Mean = (sum of the sample values)/(sample size)
so we get,
[tex]Mean = (49+63+78+22+41+39+75+61+63+65+58+37+45+52+81+75+78+72+68+59+72+85+63+61+75+39+41+48+59+55+61+25+61+52+58+71+75+82+49+51)/40\\Mean = 2364/40\\Mean = 59.1[/tex]
To find the median, we have to sort the list in ascending (or descending)order,
we get the list,
22,25,37,39,39,41,41,45,48,49,
49,51,52, 52,55,58, 58, 59, 59, 61,
61, 61, 61, 63, 63, 63, 65, 68, 71, 72,
72, 75, 75, 75, 75, 78, 78, 81, 82, 85
Now, we have to find the median,
since there are 40 values, we divide by 2 to get, 40/2 = 20
now, to find the median, we takethe average of the values above and below this value,
[tex]Median = ((n/2+1)th \ value + (n/2)th \ value )/2\\where, \ the\ (n/2)th \ value \ is,\\n/2 = (total \ number \ of \ samples) /2\\n/2=40/2\\(n/2)th = 20\\Hence\ the (n/2)th \ value \ is \ the \ 20th \ value[/tex]
And the (n+1)th value is the 21st value
Now,
The ((n/2)+1)th value is 61 and the nth value is 61, so the median is,
Median = (61+61)/2
Median = 61
The meaningful domain of the linear model are all the possible values the x variable can take
on that make sense. The range is all the possible values for the linear model (the y values).
The top of the mountain is at 8920 feet and the base of the mountain is at 3300 feet
Identify
Domain
Range
Domain: The domain is the range of valid heights for the mountain, which is from 3300 feet to 8920 feet.
Range: The range is the set of all possible heights of the linear model, which in this case is also from 3300 feet to 8920 feet.
Domain: The domain of the linear model in this context would represent the possible values for the x variable, which is associated with the height of the mountain.
In this case, the meaningful domain would be the range of valid heights that the mountain can have.
Since the top of the mountain is at 8920 feet and the base is at 3300 feet, the meaningful domain would be the range of heights between 3300 feet and 8920 feet.
Therefore, the domain in this scenario would be [3300, 8920].
Range: The range of the linear model in this context would represent the possible values for the y variable, which is associated with the height of the mountain.
The range would be the set of all possible heights that the linear model can produce.
In this case, since the top of the mountain is at 8920 feet and the base is at 3300 feet, the range would encompass all the valid heights within this range.
Therefore, the range in this scenario would be [3300, 8920].
For similar question on domain.
https://brainly.com/question/26098895
#SPJ8
5 In a Survery of 130 people 80 claimed to be CDO partisans and 60 claimed to be Anc partisan. If 30 of them are both ANC and CDO how many people are none of these two parties
Answer: there are 20 people who claimed to be neither CDO partisans nor ANC partisans.
Step-by-step explanation:
To determine the number of people who are none of these two parties, we need to subtract the total number of people who claimed to be CDO partisans, ANC partisans, and those who claimed to be both from the total number of people surveyed.
Total surveyed people = 130
Number claiming to be CDO partisans = 80
Number claiming to be ANC partisans = 60
Number claiming to be both ANC and CDO = 30
To find the number of people who are none of these two parties, we can calculate it as follows:
None of these two parties = Total surveyed people - (CDO partisans + ANC partisans - Both ANC and CDO)
None of these two parties = 130 - (80 + 60 - 30)
None of these two parties = 130 - 110
None of these two parties = 20
Triangle RST with (2,0), s(-2,-3), and t(-2,3) reflected over the y axis. Find the coordinates and vertices
I
Step-by-step explanation:
The coordinates and vertices
which reflected over the y- axis are
r(-2,0) , s(2,-3) , and t(2,3).
Given that √x + √y=138 and x-y=1656, find x.
The value of x is 5625 when √x + √y=138 and x-y=1656.
To solve for x using the given equations, we will use the method of substitution. Let's go through the steps:
Start with the equation √x + √y = 138.
We want to express y in terms of x, so solve for y in terms of x by isolating √y:
√y = 138 - √x
Square both sides of the equation to eliminate the square root:
(√y)² = (138 - √x)²
y = (138 - √x)²
Now, substitute the expression for y in the second equation x - y = 1656:
x - (138 - √x)² = 1656
Expand the squared term:
x - (138² - 2 * 138 * √x + (√x)²) = 1656
Simplify the equation further:
x - (19044 - 276 * √x + x) = 1656
Combine like terms and rearrange the equation:
-19044 + 276 * √x = 1656
Move the constant term to the other side:
276 * √x = 20700
Divide both sides of the equation by 276 to solve for √x:
√x = 20700 / 276
√x = 75
Square both sides to solve for x:
x = (√x)²
x = 75²
x = 5625
Therefore, the value of x is 5625.
By substituting this value of x back into the original equations, we can verify that √x + √y = 138 and x - y = 1656 hold true.
For more such questions on value visit:
https://brainly.com/question/843074
#SPJ8
you are a trainer . .you have developed a 5 week training course for 20 trainees that will cost $140,000. what is the cost per trainee
The cost per trainee for the 5-week training course is $7,000.
To find the cost per trainee, we divide the total cost of the training course by the number of trainees.
Total cost of the training course = $140,000
Number of trainees = 20
Cost per trainee = Total cost of the training course / Number of trainees
Cost per trainee = $140,000 / 20
Cost per trainee = $7,000
Therefore, the cost per trainee for the 5-week training course is $7,000.
for such more question on cost
https://brainly.com/question/25109150
#SPJ8
GEOMETRY 40POINTS
TY
Answer:
It's 7.81
Step-by-step explanation:
If 2x2 - 4x + 6 = 1 then A = 2, B = -4, and C = 6 in general form.
In general form, the equation 2x^2 - 4x + 6 = 1 can be represented as A = 2, B = -4, and C = 5.
To determine the values of A, B, and C in the general form of the quadratic equation 2x^2 - 4x + 6 = 1, we can compare the given equation with the standard form of a quadratic equation, which is ax^2 + bx + c = 0.
In the given equation, we have:
2x^2 - 4x + 6 = 1
To put it in the general form, we need to move all the terms to the left side of the equation, so the right side is equal to 0:
2x^2 - 4x + 6 - 1 = 0
2x^2 - 4x + 5 = 0
Now we can identify the coefficients A, B, and C in the general form:
A = 2 (coefficient of x^2)
B = -4 (coefficient of x)
C = 5 (constant term)
The values of A, B, and C in the general form of the equation 2x^2 - 4x + 6 = 1 are A = 2, B = -4, and C = 5.
for such more question on general form
https://brainly.com/question/27746495
#SPJ8
I need help understanding how to format this:
f(x)-4
f(x)=2x+1
an example of another question for it (if you're not sure what im asking), another question was to answer this:
f(4)
f(x)=2x+1
f(4)=2(4)+1
this one is easy to get, but i'm not too sure how to put it on the first one...
Answer:
Step-by-step explanation:
To format and solve the equation "f(x) - 4" with the given function "f(x) = 2x + 1," we substitute the function into the equation and solve for x. Here's how it can be done:
f(x) - 4 = 2x + 1 - 4
Simplifying further:
f(x) - 4 = 2x - 3
To answer the question "f(4)" using the function f(x) = 2x + 1, we substitute x = 4 into the function:
f(4) = 2(4) + 1
Simplifying further:
f(4) = 8 + 1
f(4) = 9
Therefore, the value of f(4) is 9 when using the function f(x) = 2x + 1.
Find the perimeter of a triangle with sides that are5 yards ,6 yards and 4 Yards
John Doe produces two kinds of men’s shirts: polo and t-shirts. Polo shirts require 2 hours in the pattern and cutting section and 1 hour in the sewing section. T-shirts require 1 hours in the pattern and cutting section and 2 hours in the sewing section. The pattern and cutting section has 84 hours available weekly. The sewing section has 106 hours available weekly. Past sales indicate that at most 36 polo shirts can be sold. The profit on each polo shirt is $30 and on each t-shirt is $22. How many of each kind should the company produce in order to maximize its profit?
a) Define your variables (2):
b) Constraints (5):
c) Objective function (1):
d) Graph (label the axes) and Work
The evaluation of the constraints with regards to the production of the polo and t-shirts, and to maximize the profit, using linear programming indicates that we get;
a. x = The number of polo shirts produced, y = The number of t-shirts produced
b. The inequalities representing the constraints are;
2·x + y ≤ 84
x + 2·y ≤ 106
x ≤ 36
x ≥ 0, y ≥ 0
c. P = 30·x + 22·y
d. Please find attached the graph of the feasible region
To maximize profit, the company should produce;
21 polo shirts and 43 t-shirts
What is linear programming?Linear programming is a method used for optimizing (maximizing or minimizing a value) operations with some specified constraints.
a. The details indicates that the question is related to linear programming. Let x represent the number of polo shirt produced, and let y represent the number of t-shirts produced.
x = The number of polo shirt produced
y = The number of t-shirts produced
b) The constraints are;
Pattern and cutting section; 2·x + y ≤ 84
Sewing section; x + 2·y ≤ 106
Sales constraints; x ≤ 36
The values of x and y are non negative, numbers, therefore;
x ≥ 0, y ≥ 0
c) The objective of the company is to maximize profit, P, therefore, the objective function is; P = 30·x + 22·y
d) The graph can be plotted from the constraint inequalities, by making y the subject in the inequalities that includes both x and y as follows;
2·x + y ≤ 84, therefore; y ≤ 84 - 2·x
x + 2·y ≤ 106, therefore; y ≤ 53 - x/2
x ≤ 36
Please find attached the graph of the inequalities, showing the feasible region which is the polygon with boundaries which are the lines representing the constraints.
The objective function evaluated at the vertices of the feasible region indicates that we get;
[tex]\begin{tabular}{ | l | l | c | }\cline{1-3}(x, y)& 30\cdot x + 22\cdot y & P(\$) \\ \cline{1-3}(0, 53 & 30\times 0 + 22\times 53 & 1166 \\\cline{1-3}(21, 42.5 & 30\times 21 + 22\times 42.5 & 1565 \\\cline{1-3}(32, 12) & 30\times 36 + 22\times 12 & 1344 \\\cline{1-3}(36, 0) & 30\times 36 + 22\times 0 & 1080 \\\cline{1-3}(0, 0) & 30\times 0 + 22\times 0& 0 \\\cline{1-3}\end{tabular}[/tex]
The feasible region and the objective function indicates that the values of x and y that maximizes the profit is; (x, y) = (21, 42.5)
Therefore, to maximize profit, the number of polo and t-shirts the company should produce are 21, and 42.5 ≈ 43 respectively.
Learn more on linear programming here: https://brainly.com/question/29750786
#SPJ1
A zoo has categorized its visitors into three categories: member, school, and general. The member category refers to visitors who pay an annual fee to support the zoo. Members
receive certain benefits such as discounts on merchandise and trips planned by the zoo. The school category includes faculty and students from day care and elementary and
secondary schools; these visitors generally receive a discounted rate. The general category includes all other visitors. The zoo has been concerned about a recent drop in
attendance. To help better understand attendance and membership, a zoo staff member has collected the following data.
Attendance
School
Visitor
Category 2011
General 154,213 159,204 163,933 169,606
Member 114,023 103,295
96,937 79,717
82,385 79,376
81,470
80,790
Total 350,621 341,875 342,340
330,113
(0) Construct a bar chart of total attendance over time. Comment on any trend in the data.
(b) Construct a side-by-side bar chart showing attendance by visitor category with year as the variable on the horizontal axis.
(c) Comment on what is happening to zoo attendance based on the charts from parts (a) and (b).
2012
2013
2014
(a) Based on the total attendance data provided, a bar chart can be constructed to visualize the attendance trends over time. The horizontal axis represents the years (2011, 2012, 2013, 2014), and the vertical axis represents the total attendance. The bars will correspond to the attendance numbers for each year.
(b) A side-by-side bar chart can be created to compare the attendance by visitor category with the year as the variable on the horizontal axis. The visitor categories (school, general, member) will be represented by different colors or patterns, and the bars will show the attendance for each category in each year.
(c) By analyzing the charts from parts (a) and (b), we can observe the trends in zoo attendance.
(a) The bar chart of total attendance over time shows the following trend: In 2011, the attendance was 350,621. It decreased slightly in 2012 to 341,875, remained relatively stable in 2013 at 342,340, and then decreased again in 2014 to 330,113.
(b) The side-by-side bar chart showing attendance by visitor category with year as the variable on the horizontal axis provides a visual comparison of attendance for each category over the years.
The chart reveals that the general category consistently had the highest attendance throughout the years, followed by the school category. The member category consistently had the lowest attendance.
(c) Based on the charts from parts (a) and (b), it can be observed that there has been a general decline in zoo attendance over the years, with a notable decrease from 2011 to 2014.
The drop in attendance could indicate a potential issue that the zoo needs to address in order to attract more visitors.
Additionally, the consistently lower attendance in the member category suggests that the zoo may need to reconsider its membership benefits and strategies to retain and attract more members.
For more such answers on chart
https://brainly.com/question/29538026
#SPJ8
Which expressions represent the statement divided the difference of 27 and 3 by there difference of 16 and 4
The expression that represents the statement "Divide the difference of 27 and 3 by the difference of 16 and 4" is (27 - 3) / (16 - 4), which simplifies to 2.
The statement "Divide the difference of 27 and 3 by the difference of 16 and 4" can be represented using algebraic expressions.
To find the difference between two numbers, we subtract one from the other. So, the difference of 27 and 3 is 27 - 3, which can be expressed as (27 - 3). Similarly, the difference of 16 and 4 is 16 - 4, which can be expressed as (16 - 4).
Now, we need to divide the difference of 27 and 3 by the difference of 16 and 4. We can use the division operator (/) to represent the division operation.
Therefore, the expression that represents the given statement is:
(27 - 3) / (16 - 4)
Simplifying this expression further, we have:
24 / 12
The difference of 27 and 3 is 24, and the difference of 16 and 4 is 12. So, the expression simplifies to:
2
Hence, the expression (27 - 3) / (16 - 4) is equivalent to 2.
In summary, the expression that represents the statement "Divide the difference of 27 and 3 by the difference of 16 and 4" is (27 - 3) / (16 - 4), which simplifies to 2.
for more such question on expression visit
https://brainly.com/question/1859113
#SPJ8
What is the area of
the segment? Express
the answer in terms
of pi.
The area of the segment is 9( π-2) units²
What is area of segment?The area of a figure is the number of unit squares that cover the surface of a closed figure.
A segment is the area occupied by a chord and an arc. A segment can be a major segment or minor segment.
Area of segment = area of sector - area of triangle
area of sector = 90/360 × πr²
= 1/4 × π × 36
= 9π
area of triangle = 1/2bh
= 1/2 × 6²
= 18
area of segment = 9π -18
= 9( π -2) units²
therefore the area of the segment is 9(π-2) units²
learn more about area of segment from
https://brainly.com/question/22599425
#SPJ1
In circle O, secants ADB and AEC are drawn from external point A
such that points D, B, E, and C are on circle O. If AD = 8, AE = 6,
and EC is 12 more than BD, the length of BD is
(1) 6
(2) 22
(3) 36
(4) 48
The length of BD is 22.
In the given scenario, let's consider the following information.
AD = 8
AE = 6
EC is 12 more than BD.
To find the length of BD, we can utilize the Intercepted Arcs Theorem, which states that when two secants intersect outside a circle, the measure of an intercepted arc formed by those secants is equal to half the difference of the measures of the intercepted angles.
From the given information, we know that AD = 8 and AE = 6.
Since these are the lengths of the secants, we can use them to calculate the intercepted arcs.
First, let's find the intercepted arc corresponding to AD:
Intercepted Arc ADB = 2 [tex]\times[/tex] AD = 2 [tex]\times[/tex] 8 = 16
Similarly, we can find the intercepted arc corresponding to AE:
Intercepted Arc AEC = 2 [tex]\times[/tex] AE = 2 [tex]\times[/tex] 6 = 12
Now, we know that EC is 12 more than BD.
Let's assume the length of BD as x.
BD + 12 = EC
Now, let's consider the intercepted arcs theorem:
Intercepted Arc ADB - Intercepted Arc AEC = Intercepted Angle B - Intercepted Angle C
16 - 12 = Angle B - Angle C
4 = Angle B - Angle C.
Since Angle B and Angle C are vertical angles, they are congruent:
Angle B = Angle C.
Therefore, we can say:
4 = Angle B - Angle B
4 = 0
However, we have reached an inconsistency here.
The equation does not hold true, indicating that the given information is not consistent or there may be an error in the problem statement.
As a result, we cannot determine the length of BD based on the given information.
For similar question on length.
https://brainly.com/question/30582409
#SPJ8
1.
A jar of kosher dill spears is filled to the brim with a vinegar based pickling liquid and then
sealed. The base of the cylindrical jar has an area of 45 cm and the height of the jar is
13 cm. When the pickles are opened, all the pickle juice is drained into a measuring cup,
amounting to 160 cm³ of pickle juice. Find the total volume of the dill spears.
of water into cylindrical glass with a diameter of 10.
The total volume of the dill spears is 425 cm³.
To find the total volume of the dill spears, we can subtract the volume of the pickle juice from the volume of the jar.
The jar is in the shape of a cylinder with a base area of 45 cm² and a height of 13 cm. Therefore, the volume of the jar can be calculated using the formula:
Volume of the jar = base area * height
Volume of the jar = 45 cm² * 13 cm
Volume of the jar = 585 cm³
Now, we know that the measuring cup collected 160 cm³ of pickle juice. So, we subtract this volume from the total volume of the jar to find the volume of the dill spears.
Volume of the dill spears = Volume of the jar - Volume of the pickle juice
Volume of the dill spears = 585 cm³ - 160 cm³
Volume of the dill spears = 425 cm³
Therefore, the total volume of the dill spears is 425 cm³.
for such more question on volume
https://brainly.com/question/6204273
#SPJ8
Akira has 3 cheeses to arrange on a cheese board. She would like to arrange them in a row. In how many different orders can she arrange them?
Answer:
Step-by-step explanation:
Akira has 3 cheeses to arrange on a cheese board. She would like to arrange them in a row
The number of permutations of n distinct objects is given by n! (n factorial). In this case, Akira has 3 cheeses to arrange in a row. Therefore, the number of different orders she can arrange them is 3! = 6¹⁴.
So Akira can arrange the 3 cheeses in 6 different ways.
Find the distance between the points A and B given below.
(That is, find the length of the segment connecting A and B.)
Round your answer to the nearest hundredth.
1 unit
A
B
Answer:
I wish you good luck in finding your answer
If p1=(2,4,-3) and p=(3,-1,1) find parametric equation of
The parametric equation of the line passing through P1(2, 4, -3) and P(3, -1, 1) is:
x = 2 + t
y = 4 - 5t
z = -3 + 4t
To find the parametric equation of the line passing through points P1(2, 4, -3) and P(3, -1, 1), we can use the vector equation of a line.
Let's denote the direction vector of the line as d = (a, b, c). Since the line passes through P1 and P, the vector between these two points can be used as the direction vector.
d = P - P1 = (3, -1, 1) - (2, 4, -3) = (1, -5, 4)
Now, we can express the parametric equation of the line as follows:
x = x0 + at
y = y0 + bt
z = z0 + ct
where (x0, y0, z0) is a point on the line and (a, b, c) is the direction vector.
Let's choose P1(2, 4, -3) as the point on the line. Substituting the values, we get:
x = 2 + t
y = 4 - 5t
z = -3 + 4t
Therefore, the parametric equation of the line passing through P1(2, 4, -3) and P(3, -1, 1) is:
x = 2 + t
y = 4 - 5t
z = -3 + 4t
where t is a parameter that varies along the line.
for such more question on parametric equation
https://brainly.com/question/17482667
#SPJ8
The vertices of $\triangle ABC$ represent the buoy markers that form the legs of the course for a swim race. What is the distance from marker $A$ to marker $B$ ? Round your answer to the nearest tenth of a meter.
Rounding to the nearest tenth of a meter, the distance from marker A to marker B (side AB) is approximately 5.7 meters.
To find the distance from marker A to marker B in triangle ABC, we need to calculate the length of side AB.
The distance between two points (x1, y1) and (x2, y2) can be found using the distance formula:
d = √[tex]((x2 - x1)^2 + (y2 - y1)^2)[/tex]
In this case, let's assume that the coordinates of marker A are (x1, y1) and the coordinates of marker B are (x2, y2).
Given that the coordinates of marker A are not provided in the question, we would need the coordinates of both marker A and marker B to calculate the distance between them accurately.
Once we have the coordinates of marker A and marker B, we can substitute them into the distance formula to calculate the distance AB.
For example, if the coordinates of marker A are (x1, y1) = (3, 4) and the coordinates of marker B are (x2, y2) = (7, 8), we can calculate the distance as follows:
d = [tex]\sqrt{((7 - 3)^2 + (8 - 4)^2)}[/tex]
= √[tex](4^2 + 4^2)[/tex]
= √(16 + 16)
= √32
≈ 5.66
Rounding to the nearest tenth of a meter, the distance from marker A to marker B (side AB) is approximately 5.7 meters.
For more such questions on distance visit:
https://brainly.com/question/30395212
#SPJ8
A newly hired lawyer receives a $15,000 signing bonus from a law firm and invests the money in a savings account at 4.75% interest. After 42 months, the lawyer checks the account balance.
Part A: Calculate the interest earned if the interest is compounded quarterly. Show all work. (2 points)
Part B: Calculate the interest earned if the interest is compounded continuously. Show all work. (2 points)
Part C: Using the values from Part A and Part B, compare the interest earned for each account by finding the difference in the amount of interest earned. (1 point)
Part A: The interest earned if the interest is compounded quarterly is $2,768.40.
Part B: The interest earned if the interest is compounded continuously is $2,695.92.
Part C: The difference in the amount of interest earned is approximately $72.48.
Part A: To calculate the interest earned when the interest is compounded quarterly, we can use the formula for compound interest:
[tex]A = P(1 + r/n)^(^n^t^)[/tex]
Where:
A = the final account balance
P = the principal amount (initial investment)
r = the annual interest rate (4.75% or 0.0475 as a decimal)
n = the number of times the interest is compounded per year (4 times for quarterly)
t = the number of years (42 months divided by 12 to convert to years)
Plugging in the values:
A = $15,000(1 + 0.0475/4)^(4 * (42/12))
A = $15,000(1.011875)^(14)
A ≈ $15,000(1.18456005)
A ≈ $17,768.40
The interest earned is the difference between the final account balance and the principal amount:
Interest earned = $17,768.40 - $15,000
Interest earned ≈ $2,768.40
Part B: When the interest is compounded continuously, we can use the formula:
[tex]A = Pe^(^r^t^)[/tex]
Where:
A = the final account balance
P = the principal amount (initial investment)
e = the mathematical constant approximately equal to 2.71828
r = the annual interest rate (4.75% or 0.0475 as a decimal)
t = the number of years (42 months divided by 12 to convert to years)
Plugging in the values:
A = $15,000 * e^(0.0475 * 42/12)
A ≈ $15,000 * e^(0.165625)
A ≈ $15,000 * 1.179727849
A ≈ $17,695.92
The interest earned is the difference between the final account balance and the principal amount:
Interest earned = $17,695.92 - $15,000
Interest earned ≈ $2,695.92
Part C: Comparing the interest earned for each account, we find that the interest earned when the interest is compounded quarterly is approximately $2,768.40, while the interest earned when the interest is compounded continuously is approximately $2,695.92.
For more such questions on interest
https://brainly.com/question/25793394
#SPJ8
A restaurant offers 10 appetizers and 7 main courses. In how many ways can a person order a two-course meal?
There are
ways a person can order a two-course meal.
There are 70 ways a person can order a two-course meal from the given restaurant.
To determine the number of ways a person can order a two-course meal from a restaurant that offers 10 appetizers and 7 main courses, we can use the concept of combinations.
First, we need to select one appetizer from the 10 available options.
This can be done in 10 different ways.
Next, we need to select one main course from the 7 available options. This can be done in 7 different ways.
Since the two courses are independent choices, we can multiply the number of options for each course to find the total number of combinations.
Therefore, the number of ways a person can order a two-course meal is 10 [tex]\times[/tex] 7 = 70.
So, there are 70 ways a person can order a two-course meal from the given restaurant.
It's important to note that this calculation assumes that a person can choose any combination of appetizer and main course.
If there are any restrictions or limitations on the choices, the number of combinations may vary.
For similar question on ways.
https://brainly.com/question/4658834
#SPJ8
In this case the linear equations are given:
A company offers two data plans for cell phones. The plan A the linear function for the
charge is given by
y=10x
where x represents the total number of megabytes. The Plan B charge is calculated using
the linear function
y = 4x + 75.
How many megabytes would a customer need to use for Plan be to be a better deal?
1) more than 12.5 megabytes
2) less than 18.75 megabytes
3)
Plan b is always a better deal because the charge per megabyte is less than in
plan A
4) More than 10 megabytes.
5) More than 20 megabytes
The customer would need to use more than 12.5 megabytes for Plan B to be a better deal. (Option 1) more than 12.5 megabytes).
To determine when Plan B would be a better deal than Plan A, we need to compare the charges for both plans based on the number of megabytes used.
Plan A is represented by the linear function y = 10x, where x represents the total number of megabytes used, and y represents the charge for the plan.
Plan B is represented by the linear function y = 4x + 75, where x represents the total number of megabytes used, and y represents the charge for the plan.
To find the point at which Plan B becomes a better deal, we need to find the x-value where the charge for Plan B is less than the charge for Plan A.
In other words, we need to find the x-value that satisfies the inequality:
4x + 75 < 10x
To solve this inequality, we subtract 4x from both sides:
75 < 6x
Then, we divide both sides by 6:
12.5 < x
Therefore, the customer would need to use more than 12.5 megabytes for Plan B to be a better deal.
This means that option 1) "more than 12.5 megabytes" is the correct answer.
For any value of x greater than 12.5, the charge for Plan B will be less than the charge for Plan A, making it a better deal for the customer.
For similar question on linear function.
https://brainly.com/question/2408815
#SPJ8
A random number from 1 to 5 is selected 50 times. The number 1 is selected 13 times, 2 is selected 8 times, 3 is selected 14 times, 4 is selected 6 times, and 5 is selected 9 times. What is the relative frequency of selecting a 2? Express your answer as a percent.
Answer:
Relative frequency of selecting a 2 = 8/50 = 0.16 = 16%
Step-by-step explanation:
You are selecting a random number between 1 and 5, and you perform this task 50 times.
Out of these 50 times, the outcome "2" appears 8 times.
Therefore the relative frequency of selecting the number 2 is:
f(2) = 8/50 = 0.16 which is 16%
which expression represents the product of x^3+2x-1 and x^4-x^3+3
Answer:
(x^3+2x-1) * (x^4-x^3+3)
Step-by-step explanation:
To simplify this expression, we can multiply each term in the first expression by each term in the second expression and combine like terms:
(x^3)(x^4) + (x^3)(-x^3) + (x^3)(3) + (2x)(x^4) + (2x)(-x^3) + (2x)(3) + (-1)(x^4) + (-1)(-x^3) + (-1)*(3)
Simplifying further:
x^7 - x^6 + 3x^3 + 2x^5 - 2x^4 + 6x - x^4 + x^3 - 3
Combining like terms:
x^7 - x^6 + 2x^5 - 3x^4 + 4x^3 + 6x - 3
Therefore, the expression representing the product of (x^3+2x-1) and (x^4-x^3+3) is x^7 - x^6 + 2x^5 - 3x^4 + 4x^3 + 6x - 3.
0.005627 to 3 decimal places
(i) Correcting the figures to 3 decimal places:
-0.005627 ≈ -0.006
0.0056 ≈ 0.006
-0.0049327 ≈ -0.005
0.0049 ≈ 0.005
-0.001342 ≈ -0.001
(ii) Correcting the figures to 3 significant figures:
-0.005627 ≈ -0.00563
0.0056 ≈ 0.00560
-0.0049327 ≈ -0.00493
0.0049 ≈ 0.00490
-0.001342 ≈ -0.00134
(i) When rounding to 3 decimal places, we look at the fourth decimal place and round the figure accordingly. If the fourth decimal place is 5 or above, we round up the preceding third decimal place. If the fourth decimal place is less than 5, we simply drop it.
(ii) When rounding to 3 significant figures, we consider the digit in the third significant figure. If the digit in the fourth significant figure is 5 or above, we round up the preceding third significant figure. If the digit in the fourth significant figure is less than 5, we simply drop it.
Rounding to the correct number of decimal places or significant figures is important to maintain precision and accuracy in calculations and measurements. It helps to ensure that the reported values are appropriate for the level of precision required in a given context.
For more such questions on significant figures
https://brainly.com/question/30169
#SPJ8
Two sets that contain exactly the same elements are called ___ sets.
Two sets that contain exactly the same elements are called "equal sets" or "identical sets."
In set theory, the concept of equality between sets is defined by the axiom of extensionality, which states that two sets are equal if and only if they have the same elements.
To illustrate this concept, let's consider two sets: Set A and Set B. If every element of Set A is also an element of Set B, and vice versa, then we say that Set A and Set B are equal sets. In other words, the sets have the exact same elements, regardless of their order or repetition.
For example, if Set A = {1, 2, 3} and Set B = {3, 2, 1}, we can observe that both sets contain the same elements, even though the order of the elements is different. Therefore, Set A is equal to Set B.
In summary, equal sets refer to two sets that possess exactly the same elements, without considering the order or repetition of the elements. The concept of equality is fundamental in set theory and forms the basis for various operations and theorems in mathematics.
For more such questions on sets
https://brainly.com/question/13458417
#SPJ8
3^x+3^(4-2x)=1+3^(4-x)
The solution to the equation [tex]3^x + 3^(4-2x) = 1 + 3^(4-x) is x = 2.[/tex]
To solve the equation [tex]3^x + 3^(4-2x) = 1 + 3^(4-x),[/tex] we can simplify the equation and then apply some algebraic techniques to isolate the variable x.
First, let's simplify the equation step by step:
1. Notice that [tex]3^(4-2x)[/tex] can be rewritten as[tex](3^4) / (3^2x)[/tex], using the property of exponentiation.
2. Now the equation becomes 3[tex]^x + (81 / 9^x) = 1 + 3^(4-x).[/tex]
3. We can simplify further by multiplying both sides of the equation by 9^x to eliminate the denominators.
This gives us [tex]3^x * 9^x + 81 = 9^x + 3^(4-x) * 9^x.[/tex]
4. Simplifying the terms, we have [tex](3*9)^x + 81 = 9^x + (3*9)^(4-x).[/tex]
Now we have [tex](27)^x + 81 = 9^x + (27)^(4-x).[/tex]
5. Notice that [tex](27)^x and (27)^(4-x)[/tex] have the same base, so we can set the exponents equal to each other.
This gives us x = 4 - x.
6. Simplifying the equation, we get 2x = 4.
7. Dividing both sides of the equation by 2, we have x = 2.
Therefore, the solution to the equation [tex]3^x + 3^(4-2x) = 1 + 3^(4-x) is x = 2.[/tex]
Using simple language, we simplified the equation step by step and isolated the variable x by setting the exponents equal to each other. The final solution is x = 2.
for more such question on equation visit
https://brainly.com/question/17145398
#SPJ8