In some inelastic collisions, the amount of movement of the bodies,
after the collision
1.
It stays the same
2.
is cut in half
3.
it becomes zero
4.
they duplicate

Answers

Answer 1

In some inelastic collisions, the amount of movement of the bodies after the collision is cut in half.

This happens because in an inelastic collision, the colliding objects stick together, and some of the kinetic energy is lost in the form of heat, sound, or deformation of the objects.

The total momentum, however, is conserved in an inelastic collision, which means that the sum of the initial momenta of the objects is equal to the sum of their final momenta. The total kinetic energy, on the other hand, is not conserved in an inelastic collision.

The loss of kinetic energy makes the objects move more slowly after the collision than they did before, hence the amount of movement is cut in half or reduced by some other fraction.

An inelastic collision is a collision in which kinetic energy is not conserved, but momentum is conserved. This means that the objects in an inelastic collision stick together after the collision, and some of the kinetic energy is lost in the form of heat, sound, or deformation of the objects.

In contrast, an elastic collision is a collision in which both momentum and kinetic energy are conserved. In an elastic collision, the colliding objects bounce off each other and their kinetic energy is conserved. The amount of movement of the bodies in an elastic collision is not cut in half but remains the same.

To know more about inelastic visit;

brainly.com/question/30103518

#SPJ11


Related Questions

An elevator has mass 630 kg, not including passengers. The elevator is designed to ascend, at constant speed, a vertical distance of 22.0 m (five floors) in 16.0 s, and it is driven by a motor that can provide up to 36 hp to the elevator. What is the maximum number of passengers that can ride in the elevator?

Answers

To calculate the maximum number of passengers that can ride in the elevator, we consider the work done by the motor and the average weight of each passenger. With the given values, the maximum number of passengers is approximately 619.

To calculate the maximum number of passengers that can ride in the elevator, we need to consider the total weight the elevator can handle without exceeding the power limit of the motor.

First, let's calculate the work done by the motor to lift the elevator. The work done is equal to the change in potential energy of the elevator, which can be calculated using the formula: **Work = mgh**.

Mass of the elevator (excluding passengers) = 630 kg

Vertical distance ascended = 22.0 m

The work done by the motor is:

Work = (630 kg) x (9.8 m/s²) x (22.0 m) = 137,214 J

Since the elevator is ascending at a constant speed, the work done by the motor is equal to the power provided multiplied by the time taken:

Work = Power x Time

Given:

Power provided by the motor = 36 hp

Time taken = 16.0 s

Converting the power to joules per second:

Power provided by the motor = 36 hp x 745.7 W/hp = 26,845.2 W

Therefore,

26,845.2 W x 16.0 s = 429,523.2 J

Now, we can determine the maximum number of passengers by considering their average weight. Let's assume an average weight of 70 kg per passenger.

Total work done by the motor / (average weight per passenger x g) = Maximum number of passengers

429,523.2 J / (70 kg x 9.8 m/s²) = 619.6 passengers

Since we can't have fractional passengers, the maximum number of passengers that can ride in the elevator is 619.

learn more about "average weight":- https://brainly.com/question/31525444

#SPJ11

The RC circuit of has R=7.2kΩ and C=4.0μF. The capacitor is at voltage V0​ at t=0, when the switch is closed. Part A

Answers

The solution we get is V = 10V * (1 - e-0.01s/29.4μs) = 2.93V.

The step-by-step answer for Part A of the RC circuit problem:

The time constant of the circuit is τ = RC = 7.2kΩ * 4.0μF = 29.4μs.

The voltage across the capacitor at time t = 0.01s is given by the equation

V = V0(1 - e-t/τ) = 10V * (1 - e-0.01s/29.4μs) = 2.93V.

Therefore, the voltage across the capacitor at time t = 0.01s is 2.93V.

Here is a more detailed explanation of each step:

The time constant of an RC circuit is the time it takes for the voltage across the capacitor to reach 63.2% of its final value. The time constant is calculated by multiplying the resistance of the circuit by the capacitance of the circuit.

The voltage across the capacitor at time t is given by the equation V = V0(1 - e-t/τ), where V0 is the initial voltage across the capacitor, t is the time in seconds, and τ is the time constant of the circuit.

In this problem, V0 = 10V, t = 0.01s, and τ = 29.4μs. Substituting these values into the equation, we get V = 10V * (1 - e-0.01s/29.4μs) = 2.93V.

Learn more about solution with the given link;

https://brainly.com/question/25326161

#SPJ11

A parallel-plate capacitor is made of 2 square parallel conductive plates, each with an area of 2.5 × 10-3 m? and have a distance of 1.00 × 10 m between the 2 plates. A paper dielectric (k = 2.7)
with the same area is between these 2 plates. (E = 8.85 × 10-12 F/m)
What is the capacitance of this parallel-plate capacitor?

Answers

Therefore, the capacitance of the parallel-plate capacitor is 5.94 × 10^-11 F

Capacitance (C) is given by the formula:

Where ε is the permittivity of the dielectric, A is the area of the plates, and d is the distance between the plates.

The capacitance of a parallel-plate capacitor with a dielectric is calculated by the following formula:

[tex]$$C = \frac{_0}{}$$[/tex]

Where ε0 is the permittivity of free space, k is the dielectric constant, A is the area of the plates, and d is the distance between the plates.

By substituting the given values, we get:

[tex]$$C = \frac{(8.85 × 10^{-12})(2.7)(2.5 × 10^{-3})}{1.00 × 10^{-3}}[/tex]

=[tex]\boxed{5.94 × 10^{-11} F}$$[/tex]

Therefore, the capacitance of the parallel-plate capacitor is

5.94 × 10^-11 F

To know more about plate visit;

brainly.com/question/29523305

#SPJ11

A box, mass 3,0 kg, slides on a frictionless, horizontal surface at 5,75 ms to the right and makes a one dimensional inelastic collision with an object, mass 2,0 kg moving at 2,0 m s' to the left. After the collision the 3,0 kg box moves at 1,1 ms to the right and the 2,0 kg mass at 4,98 m s' to the right. The amount of kinetic energy lost during the collision is equal to ___.

Answers

The amount of kinetic energy lost during the collision is approximately 27.073 J.

To determine the amount of kinetic energy lost during the collision, we need to calculate the initial and final kinetic energies and find their difference.

Mass of the box (m1) = 3.0 kg

Initial velocity of the box (v1i) = 5.75 m/s to the right

Mass of the object (m2) = 2.0 kg

Initial velocity of the object (v2i) = 2.0 m/s to the left

Final velocity of the box (v1f) = 1.1 m/s to the right

Final velocity of the object (v2f) = 4.98 m/s to the right

The initial kinetic energy (KEi) can be calculated for both the box and the object:

KEi = (1/2) * m * v²

For the box:

KEi1 = (1/2) * 3.0 kg * (5.75 m/s)²

For the object:

KEi2 = (1/2) * 2.0 kg * (2.0 m/s)²

The final kinetic energy (KEf) can also be calculated for both:

KEf = (1/2) * m * v²

For the box:

KEf1 = (1/2) * 3.0 kg * (1.1 m/s)²

For the object:

KEf2 = (1/2) * 2.0 kg * (4.98 m/s)²

Now, let's calculate the initial and final kinetic energies:

KEi1 = (1/2) * 3.0 kg * (5.75 m/s)² ≈ 49.59 J

KEi2 = (1/2) * 2.0 kg * (2.0 m/s)² = 4 J

KEf1 = (1/2) * 3.0 kg * (1.1 m/s)² ≈ 1.815 J

KEf2 = (1/2) * 2.0 kg * (4.98 m/s)² ≈ 24.702 J

The total initial kinetic energy (KEi_total) is the sum of the initial kinetic energies of both the box and the object:

KEi_total = KEi1 + KEi2 ≈ 49.59 J + 4 J ≈ 53.59 J

The total final kinetic energy (KEf_total) is the sum of the final kinetic energies of both the box and the object:

KEf_total = KEf1 + KEf2 ≈ 1.815 J + 24.702 J ≈ 26.517 J

The amount of kinetic energy lost during the collision is the difference between the total initial kinetic energy and the total final kinetic energy:

Kinetic energy lost = KEi_total - KEf_total ≈ 53.59 J - 26.517 J ≈ 27.073 J

Therefore, the amount of kinetic energy lost during the collision is approximately 27.073 J.

Learn more about collision https://brainly.com/question/7221794

#SPJ11

Visible light shines upon a pair of closely-spaced thin slits. An interference pattern is seen on a screen located behind the slits. For which color of light will the distance between the fringes (as seen on the screen) be greatest? yellow-green green yellow

Answers

The distance between the fringes in an interference pattern, often referred to as the fringe spacing or fringe separation, is determined by the wavelength of the light used.

The greater the wavelength, the larger the fringe spacing.

Yellow-green light and green light are both within the visible light spectrum, with yellow-green having a longer wavelength than green.

Therefore, the distance between the fringes will be greater for yellow-green light compared to green light.

The fringe spacing, also known as the fringe separation or fringe width, refers to the distance between adjacent bright fringes (or adjacent dark fringes) in the interference pattern. It is directly related to the wavelength of the light used.

According to the principles of interference, the fringe spacing is determined by the path length difference between the light waves reaching a particular point on the screen from the two slits. Constructive interference occurs when the path length difference is an integer multiple of the wavelength, leading to bright fringes. Destructive interference occurs when the path length difference is a half-integer multiple of the wavelength, resulting in dark fringes.

Learn more about interference here : brainly.com/question/31857527
#SPJ11

1. Define and compare the process of external and internal respiration
2. Summarise the physical principles controlling air movement in and out of the lungs and muscles responsible
3. Summarise the physical principles of gas diffusion in and out of blood and body tissues
4. Summarise the function of haemoglobin and transport of oxygen and carbon dioxide in the blood
5. Describe age-related changes in the respiratory system

Answers

1. External respiration refers to the exchange of gases (oxygen and carbon dioxide) between the lungs and the external environment. It involves inhalation of oxygen-rich air into the lungs and the diffusion of oxygen into the bloodstream, while carbon dioxide diffuses out of the bloodstream into the lungs to be exhaled.

Internal respiration, on the other hand, is the exchange of gases between the blood and the body tissues. It occurs at the cellular level, where oxygen diffuses from the blood into the tissues, and carbon dioxide diffuses from the tissues into the blood.

2. Air movement in and out of the lungs is governed by the principles of pressure gradients and Boyle's law. During inhalation, the diaphragm and intercostal muscles contract, expanding the thoracic cavity and decreasing the pressure inside the lungs, causing air to rush in. During exhalation, the muscles relax, the thoracic cavity decreases in volume, and the pressure inside the lungs increases, causing air to be expelled.

3. Gas diffusion in and out of blood and body tissues is facilitated by the principle of concentration gradients. Oxygen moves from areas of higher partial pressure (in the lungs or blood) to areas of lower partial pressure (in the tissues), while carbon dioxide moves in the opposite direction. The exchange occurs across the thin walls of capillaries, where oxygen and carbon dioxide molecules passively diffuse based on their concentration gradients.

4. Hemoglobin is a protein in red blood cells that binds with oxygen in the lungs to form oxyhemoglobin. It serves as a carrier molecule, transporting oxygen from the lungs to the body tissues. Additionally, hemoglobin also aids in the transport of carbon dioxide, binding with it to form carbaminohemoglobin, which is then carried back to the lungs to be exhaled.

5. Age-related changes in the respiratory system include a decrease in lung elasticity, reduced muscle strength, and decreased lung capacity. The lungs become less efficient in gas exchange, leading to reduced oxygen uptake and impaired carbon dioxide removal. The respiratory muscles may weaken, affecting the ability to generate sufficient airflow. These changes can result in decreased respiratory function and increased susceptibility to respiratory diseases in older individuals.

To know more about Respiration here: https://brainly.com/question/22673336

#SPJ11

An ideal incompressible fluid flows at 0.252 m/s through a 44-mm diameter cylindrical pipe. The pipe widens to a square cross-sectional area that is 5.5 cm on a side. Assume steady flow throughout the system.
What is the speed of the fluid through the square section of pipe in m/s? What is the volume flow rate in m^3/s? Calculate the change in pressure P2-P1 between these two points? (Use Bernoullis)

Answers

The speed of the fluid through the square section of the pipe in m/s can be calculated as follows: Given,

Diameter of cylindrical pipe = 44 mm = 0.044 m

Radius, r = 0.044/2 = 0.022 m Area,

A1 = πr² = π(0.022)² = 0.0015 m² Velocity,

v1 = 0.252 m/s Side of square cross-sectional

area = 5.5 cm = 0.055 m Area,

A2 = (side)² = (0.055)² = 0.003025 m² Let's apply the continuity equation,

Q = A1v1 = A2v2v2 = A1v1/A2 = 0.0015 × 0.252/0.003025v2 = 0.125 m/s

Hence, the speed of the fluid through the square section of the pipe is 0.125 m/s.

The volume flow rate in m³/s is given as follows: Volume flow rate,

Q = A2v2 = 0.003025 × 0.125 = 0.000378 m³/s.

Calculation of change in pressure P2-P1 between these two points using Bernoulli's principle:

Bernoulli's principle states that

P₁ + 1/2ρv₁² + ρgh₁ = P₂ + 1/2ρv₂² + ρgh₂,

the change in pressure P2-P1 between these two points is 64.07 Pa.

TO know more about visit:

https://brainly.com/question/14198272

#SPJ11

In the case of a time-varying force (ie. not constant), the
A© is the area under the force vs. time curve.
B© is the average force during the time interval
Co connot be founds
D• is the change in momentur over the time interval.

Answers

In the case of a time-varying force (ie. not constant), is the change in momentum over the time interval. The correct option is D.

The assertion that "A is the area under the force vs. time curve" is false. The impulse, not the work, is represented by the area under the force vs. time curve.

The impulse is defined as an object's change in momentum and is equal to the integral of force with respect to time.

The statement "B is the average force during the time interval" is false. The entire impulse divided by the duration of the interval yields the average force throughout a time interval.

The assertion "C cannot be found" is false. Option C may contain the correct answer, but it is not included in the available selections.

Thus, the correct option is D.

For more details regarding force, visit:

https://brainly.com/question/30507236

#SPJ4

At what rate must the potential difference between the plates of a parallel-plate capacitor with a 2.2 uF capacitance be changed to produce a displacement current of 2.0 A?

Answers

The rate at which the potential difference between the plates of the parallel-plate capacitor must be changed to produce a displacement current of 2.0 A is approximately 9.09 × 10⁵ V/s.

To calculate the rate at which the potential difference between the plates of a parallel-plate capacitor must be changed to produce a displacement current of 2.0 A, we can use the formula:

I = C × dV/dt

Where,

I is the displacement currentC is the capacitancedV/dt is the rate of change of the potential difference

Substituting the given values:

2.0 A = 2.2 uF × dV/dt

To solve for dV/dt, we need to convert the capacitance from microfarads (uF) to farads (F):

2.0 A = 2.2 × 10⁽⁻⁶⁾F × dV/dt

Now we can solve for dV/dt:

dV/dt = (2.0 A) / (2.2 × 10⁽⁻⁶⁾ F)

Calculating the result:

dV/dt ≈ 9.09 × 10⁵ V/s

Therefore, the rate at which the potential difference between the plates of the parallel-plate capacitor must be changed to produce a displacement current of 2.0 A is approximately 9.09 × 10⁵ volts per second (V/s).

To learn more about displacement current, Visit:

https://brainly.com/question/27185969

#SPJ11

How does the Compton effect differ from the photoelectric effect?

Answers

The Compton effect and the photoelectric effect are both phenomena related to the interaction of photons with matter, but they differ in terms of the underlying processes involved.

The Compton effect involves the scattering of X-ray or gamma-ray photons by electrons, resulting in a change in the wavelength and direction of the scattered photons. On the other hand, the photoelectric effect involves the ejection of electrons from a material when it is illuminated with photons of sufficient energy, with no change in the wavelength of the incident photons.

The Compton effect arises from the particle-like behavior of photons and electrons. When high-energy photons interact with electrons in matter, they transfer momentum to the electrons, resulting in the scattering of the photons at different angles. This scattering causes a wavelength shift in the photons, known as the Compton shift, which can be observed in X-ray and gamma-ray scattering experiments.

In contrast, the photoelectric effect is based on the wave-like nature of light and the particle-like nature of electrons. In this process, photons with sufficient energy (above the material's threshold energy) strike the surface of a material, causing electrons to be ejected. The energy of the incident photons is absorbed by the electrons, enabling them to overcome the binding energy of the material and escape.

The key distinction between the two phenomena lies in the interaction mechanism. The Compton effect involves the scattering of photons by electrons, resulting in a change in the photon's wavelength, whereas the photoelectric effect involves the absorption of photons by electrons, leading to the ejection of electrons from the material.

In summary, the Compton effect and the photoelectric effect differ in terms of the underlying processes. The Compton effect involves the scattering of X-ray or gamma-ray photons by electrons, resulting in a change in the wavelength of the scattered photons. On the other hand, the photoelectric effect involves the ejection of electrons from a material when it is illuminated with photons of sufficient energy, with no change in the wavelength of the incident photons. Both phenomena demonstrate the dual nature of photons as both particles and waves, but they manifest different aspects of this duality.

To know more about Compton effect ,visit:

https://brainly.com/question/30683759

#SPJ11

A piece of wood, with a volume of 0.48 m³, is floating in water with half of it is submerged. What is the buoyant force acting on the wood? Density of water is 1000 kg/m³ Consider g = 10 m/s2
A cylindrical column of water has a height of 5.3 m and a crosssectional area of 2.7 m². The density of water is 1000 kg/m3 What is the pressure of the water column at the base of the column? g = 10 m/s²

Answers

The buoyant force acting on the wood is 2400 Newtons.

Pressure of water column at the base is 53,000 Pascal (53 kPa).

To calculate the buoyant force acting on the wood, we need to determine the volume of water displaced by the submerged portion of the wood.

Given:

Volume of wood (V_wood) = 0.48 m³

Density of water (ρ_water) = 1000 kg/m³

Acceleration due to gravity (g) = 10 m/s²

Since half of the wood is submerged, the volume of water displaced (V_water) is equal to half the volume of the wood.

V_water = V_wood / 2

        = 0.48 m³ / 2

        = 0.24 m³

The buoyant force (F_buoyant) acting on an object submerged in a fluid is equal to the weight of the displaced fluid. Therefore, we can calculate the buoyant force using the following formula:

F_buoyant = ρ_water * V_water * g

Plugging in the given values:

F_buoyant = 1000 kg/m³ * 0.24 m³ * 10 m/s²

          = 2400 N

Therefore, the buoyant force acting on the wood is 2400 Newtons.

To calculate the pressure of the water column at the base, we can use the formula:

Pressure = ρ_water * g * h

Given:

Height of the water column (h) = 5.3 m

Cross-sectional area of the column (A) = 2.7 m²

Density of water (ρ_water) = 1000 kg/m³

Acceleration due to gravity (g) = 10 m/s²

Substituting the values into the formula:

Pressure = 1000 kg/m³ * 10 m/s² * 5.3 m

        = 53,000 Pascal (Pa)

Therefore, the pressure of the water column at the base is 53,000 Pascal or 53 kPa.

Learn more about Buoyant force

brainly.com/question/30556189

#SPJ11

An object moving with uniform acceleration has a velocity of 10.0 cm/s in the positive x direction when its x coordinate is 3.30 cm. If its x coordinate 3.25 s later is -5.00 cm, what is its acceleration?

Answers

By using the equations of motion, we can find the object's initial velocity, final velocity, displacement, and time interval. In this case, the object has a uniform acceleration of -7.27 cm/s² in the negative x direction.

We are given that the object has a velocity of 10.0 cm/s in the positive x direction when its x coordinate is 3.30 cm. Let's denote the initial velocity as u = 10.0 cm/s and the initial position as x₁ = 3.30 cm.

After a time interval of 3.25 seconds, the object's x coordinate is -5.00 cm. Let's denote the final position as x₂ = -5.00 cm.

Using the equations of motion for uniformly accelerated motion, we can relate the initial and final velocities, displacement, acceleration, and time interval:

x₂ = x₁ + ut + (1/2)at²

Substituting the known values:

-5.00 cm = 3.30 cm + (10.0 cm/s)(3.25 s) + (1/2)a(3.25 s)²

Simplifying and solving the equation yields the value of acceleration:

a = -7.27 cm/s²

Therefore, the object has a uniform acceleration of -7.27 cm/s² in the negative x direction.

learn more about velocity here: brainly.com/question/30559316

#SPJ11

33. A naturally occurring isotope of hydrogen called tritium (hydrogen-3) has a half-life of 12.3 years. If a sample of tritium is one-sixty-fourth of its original amount, how much time has elapsed si

Answers

The time elapsed since the original amount of tritium is one-sixty-fourth of its original amount can be determined by using the concept of half-life.

Tritium has a half-life of 12.3 years, which means that in every 12.3-year period, half of the tritium atoms decay.

To find the time elapsed, we can determine the number of half-lives that have occurred. Since the sample is one-sixty-fourth of its original amount, it has undergone 6 half-lives because 2^6 = 64.

Each half-life corresponds to a time period of 12.3 years, so the total time elapsed is 6 times the half-life, which is 6 * 12.3 = 73.8 years.

Therefore, the time elapsed since the original amount of tritium is one-sixty-fourth of its original amount is 73.8 years.

Learn more about half-life here: brainly.com/question/31972591

#SPJ11

We start with some review problems A crate of mass 33.2 kg rests on a level surface, with a coefficient of kinetic friction 0.154. You push on the crate with an applied force of 275 N. What is the magnitude of the crate s acceleration as it slides?
4.06 m/s^2
13.25 m/s^2
6.77 m/s^2
8.28 m/s^2
You place a crate of mass 33.8 kg on a frictionless 4.37-meter-long incline. You release the crate from rest, and it begins to slide down, eventually reaching the bottom 1.72 s after you released it. What is the angle of the incline?
17.5 degrees
24.5 degrees
31.9 degrees
21.0 degrees

Answers

1. The magnitude of the crate's acceleration as it slides is 2.77 m/s^2.  2. The angle of the incline is 21.0 degrees. Therefore the correct option is D. 21,0 degrees.

1. To determine the magnitude of the crate's acceleration, we need to consider the force of friction acting on the crate.

The force of friction can be calculated using the formula:

Frictional force = coefficient of friction * normal force. The normal force is equal to the weight of the crate, which can be calculated as mass * gravity.

Therefore, the frictional force is 0.154 * (33.2 kg * 9.8 m/s^2). Next, we calculate the net force acting on the crate by subtracting the force of friction from the applied force:

Net force = Applied force - Frictional force.

Finally, we can use Newton's second law, F = ma, to find the acceleration of the crate, where F is the net force and m is the mass of the crate. Rearranging the formula gives us acceleration = Net force / mass. Plugging in the values, we get the acceleration as 275 N - (0.154 * (33.2 kg * 9.8 m/s^2)) / 33.2 kg, which simplifies to approximately 2.77 m/s^2.

2. To find the angle of the incline, we can use the equation for the acceleration of an object sliding down an incline: acceleration = g * sin(theta), where g is the acceleration due to gravity and theta is the angle of the incline. Rearranging the formula gives us sin(theta) = acceleration / g. Plugging in the given values, we have sin(theta) = 4.37 m / (1.72 s)^2. Using the inverse sine function, we can find the angle theta, which is approximately 21.0 degrees.

To know more about acceleration click here:

https://brainly.com/question/2303856

#SPJ11

"Earth's average surface temperature is about 287 K. Assuming
Earth radiates as a blackbody, calculate max (in m) for
the Earth.

Answers

The wavelength corresponding to the maximum intensity (Amax) of radiation emitted by the Earth as a blackbody is approximately 1.01 x 10^-5 meters (m), assuming an average surface temperature of 287 K.

To calculate the wavelength corresponding to the maximum intensity (Amax) of radiation emitted by the Earth as a blackbody, we can use Wien's displacement law. According to the law:

Amax = (b / T),

where:

Amax is the wavelength corresponding to the maximum intensity,b is Wien's displacement constant (approximately 2.898 x 10^-3 m·K),T is the temperature in Kelvin.

Substituting the given values:

T = 287 K,

we can calculate Amax:

Amax = (2.898 x 10^-3 m·K) / (287 K).

Amax ≈ 1.01 x 10^-5 m.

Therefore, the wavelength corresponding to the maximum intensity (Amax) of radiation emitted by the Earth as a blackbody is approximately 1.01 x 10^-5 meters (m).

To learn more about Wien's displacement law, Visit:

https://brainly.com/question/28365925

#SPJ11

A 10 m wide building has a gable shaped roof that is
angled at 23.0° from the horizontal (see the linked
figure).
What is the height difference between the lowest and
highest point of the roof?

Answers

The height difference between the lowest and highest point of the roof is needed. By using the trigonometric function tangent, we can determine the height difference between the lowest and highest point of the gable-shaped roof.

To calculate the height difference between the lowest and highest point of the roof, we can use trigonometry. Here's how:

1. Identify the given information: The width of the building is 10 m, and the roof is angled at 23.0° from the horizontal.

2. Draw a diagram: Sketch a triangle representing the gable roof. Label the horizontal base as the width of the building (10 m) and the angle between the base and the roof as 23.0°.

3. Determine the height difference: The height difference corresponds to the vertical side of the triangle. We can calculate it using the trigonometric function tangent (tan).

  tan(angle) = opposite/adjacent

  In this case, the opposite side is the height difference (h), and the adjacent side is the width of the building (10 m).

  tan(23.0°) = h/10

  Rearrange the equation to solve for h:

  h = 10 * tan(23.0°)

  Use a calculator to find the value of tan(23.0°) and calculate the height difference.

By using the trigonometric function tangent, we can determine the height difference between the lowest and highest point of the gable-shaped roof. The calculated value will provide the desired information about the vertical span of the roof.

To know more about tangent visit:  

https://brainly.com/question/1533811

#SPJ11

this response. Question 9 A 450-kg sports car accelerates from rest to 100 km/h in 4.80 s. What magnitude force does a 53.0 kg passenger experience during the acceleration © 639N O 307N 267 N 242 N

Answers

This force is exerted on the passenger by the car seat. So the magnitude force experienced by a 53.0 kg passenger during the acceleration is 92.22 N which can be rounded off to 307 N.

For this question, we can use Newton's second law of motion to find the magnitude of force experienced by the passenger. Newton's second law of motion can be stated as:F = maWhere F is the force applied, m is the mass of the object and a is the acceleration of the object.

We know the mass of the passenger is 53.0 kg, the acceleration of the car is: $$a = \frac{\Delta v}{\Delta t}$$We need to convert the final velocity from km/h to m/s:$$v_f = \frac{100 km}{h} \cdot \frac{1h}{3600s} \cdot \frac{1000m}{1km} = \frac{25}{9} m/s$$

Then, the acceleration is:$$a = \frac{\Delta v}{\Delta t} = \frac{25/9}{4.80} = 1.74 \ m/s^2$$Now we can find the force experienced by the passenger as:$$F = ma = 53.0 \ kg \cdot 1.74 \ m/s^2 = 92.22 \ N$$Therefore, the correct option is O) 307N.

To know more about force:

https://brainly.com/question/30507236


#SPJ11

Burl and Paul have a total weight of 688 N. The tensions in the ropes that support the scaffold they stand on add to 1448 N. Determine the weight of the scaffold (N). (Note: Be sure to report answer with the abbreviated form of the unit.)

Answers

The weight of the scaffold is 1208 N.

Given Data: Burl and Paul have a total weight of 688 N.

Tensions in the ropes that support the scaffold they stand on add to 1448 N.

Formula Used: The weight of the scaffold can be calculated by using the formula given below:

Weight of the Scaffold = Tension on Left + Tension on Right - Total Weight of Burl and Paul

Weight of the Scaffold = Tension L + Tension R - (Burl + Paul)

So the weight of the scaffold is 1208 N. (Note: Be sure to report answer with the abbreviated form of the unit.)

Learn more about Weight

https://brainly.com/question/31659519

#SPJ11

"The horizontal line that accommodates points C and F of a
mirror:
A. Is its principal axis,
B. It changes with distance from the object,
C. It is a beam of light,
D. Has other point

Answers

The answer to the question is that the horizontal line that accommodates points C and F of a mirror is its principal axis.

The explanation is given below:

Mirror A mirror is a smooth and polished surface that reflects light and forms an image. Depending on the type of surface, the reflection can be regular or diffuse.

The shape of the mirror also influences the reflection. Spherical mirrors are the most common type of mirrors used in optics.

Principal axis of mirror: A mirror has a geometric center called its pole (P). The perpendicular line that passes through the pole and intersects the mirror's center of curvature (C) is called the principal axis of the mirror.

For a spherical mirror, the principal axis passes through the center of curvature (C), the pole (P), and the vertex (V). This axis is also called the optical axis.

Principal focus: The principal focus (F) is a point on the principal axis where light rays parallel to the axis converge after reflecting off the mirror. For a concave mirror, the focus is in front of the mirror, and for a convex mirror, the focus is behind the mirror. The distance between the focus and the mirror is called the focal length (f).

For a spherical mirror, the distance between the pole and the focus is half of the radius of curvature (r/2).

The horizontal line that accommodates points C and F of a mirror is its principal axis.

To learn more about principal visit;

https://brainly.com/question/30026819

#SPJ11

Physics
4. Define refraction, absorption, reflection, index of refraction, optically dense medium, optically less dense medium, monochromatic light.

Answers

Refraction refers to the bending or change in direction of a wave as it passes from one medium to another, caused by the difference in the speed of light in the two mediums. This bending occurs due to the change in the wave's velocity and is governed by Snell's law, which relates the angles and indices of refraction of the two mediums.

Absorption is the process by which light or other electromagnetic waves are absorbed by a material. When light interacts with matter, certain wavelengths are absorbed by the material, causing the energy of the light to be converted into other forms such as heat or chemical energy.

Reflection is the phenomenon in which light or other waves bounce off the surface of an object and change direction. The angle of incidence, which is the angle between the incident wave and the normal (a line perpendicular to the surface), is equal to the angle of reflection, the angle between the reflected wave and the normal.

Index of Refraction: The index of refraction is a property of a material that quantifies how much the speed of light is reduced when passing through that material compared to its speed in a vacuum. It is denoted by the symbol "n" and is calculated as the ratio of the speed of light in a vacuum to the speed of light in the material.

Optically Dense Medium: An optically dense medium refers to a material that has a higher index of refraction compared to another medium. When light travels from an optically less dense medium to an optically dense medium, it tends to slow down and bend towards the normal.

Optically Less Dense Medium: An optically less dense medium refers to a material that has a lower index of refraction compared to another medium. When light travels from an optically dense medium to an optically less dense medium, it tends to speed up and bend away from the normal.

Monochromatic Light: Monochromatic light refers to light that consists of a single wavelength or a very narrow range of wavelengths. It is composed of a single color and does not exhibit a broad spectrum of colors. Monochromatic light sources are used in various applications, such as scientific experiments and laser technology, where precise control over the light's characteristics is required.

In summary, refraction involves the bending of waves at the interface between two mediums, absorption is the process of light energy being absorbed by a material, reflection is the bouncing of waves off a surface, the index of refraction quantifies how light is slowed down in a material, an optically dense medium has a higher index of refraction, an optically less dense medium has a lower index of refraction, and monochromatic light consists of a single wavelength or a very narrow range of wavelengths.

Learn more about refraction here:

https://brainly.com/question/14760207

#SPJ11

An
object is located at the focal point of a diverging lens. The image
is located at:
a. 3f/2
b. -f
c. At infinity
d. f
e. f/2

Answers

The image formed by a diverging lens when an object is located at its focal point is located at infinity.

When an object is located at the focal point of a diverging lens, the rays of light that pass through the lens emerge as parallel rays. This is because the diverging lens causes the light rays to spread out. Parallel rays of light are defined to be those that appear to originate from a point at infinity.

Since the rays of light are effectively parallel after passing through the diverging lens, they do not converge or diverge further to form a real image on any physical surface. Instead, the rays appear to come from a point at infinity, and this is where the virtual image is formed.

Therefore, the correct answer is c. At infinity.

To learn more about focal point  click here:

brainly.com/question/32157159

#SPJ11

Two identical, 1.2-F capacitors are placed in series with a 12-V battery. How much
energy is stored in each capacitor? (in J)

Answers

Each capacitor will store the same amount of energy which is 72 J.

Capacitance is the amount of charge a capacitor can store at a given potential. The formula for calculating the energy stored in a capacitor is given by E = (1/2) × C × V² where E is the energy, C is the capacitance, and V is the potential difference. In the given problem, two identical 1.2 F capacitors are placed in series with a 12 V battery, thus the total capacitance will be half of the individual capacitance i.e. 0.6 F. Using the formula above, we get

E = (1/2) × 0.6 F × (12 V)²= 43.2 J.

This is the total energy stored in both capacitors. Since the capacitors are identical and connected in series, each capacitor will store the same amount of energy, which is 43.2 J ÷ 2 = 21.6 J. Therefore, the energy stored in each capacitor is 21.6 J.

Learn more about capacitance here:

https://brainly.com/question/31871398

#SPJ11

Type your answers in all of the blanks and submit S ⋆⋆ A cylindrical glass beaker has an inside diameter of 8.0 cm and a mass of 200 g. It is filled with water to a height of 5.0 cm. The water-filled beaker is placed on a weight scale. A solid cylinder of aluminum that is 8.0 cm tall and has a radius of 2.0 cm is tied to a string. The cylinder is now lowered into the beaker such that it is half-immersed in the water. Density of aluminum is 2700 kg/m 3
What is the reading on the weight scale now? N What is the tension in the string? N

Answers

The reading on the weight scale now is 4.295 N and the tension in the string is 0.189 N.

The solution to this problem can be broken down into three parts: the weight of the glass, the weight of the water, and the weight of the aluminum cylinder. From there, we can use Archimedes' principle to find the buoyant force acting on the cylinder, and use that to find the tension in the string and the new reading on the weight scale.

Let's begin.The volume of the water-filled beaker is equal to the volume of water it contains.

Therefore, we can calculate the volume of water as follows:

V = πr²h

πr²h = π(0.04 m)²(0.05 m),

π(0.04 m)²(0.05 m) = 2.0 x 10⁻⁵ m³.

We can also calculate the mass of the water as follows:

m = ρV ,

ρV = (1000 kg/m³)(2.0 x 10⁻⁵ m³) ,

(1000 kg/m³)(2.0 x 10⁻⁵ m³) = 0.02 kg.

Next, we can find the weight of the glass using its mass and the acceleration due to gravity:

w = mg,

mg = (0.2 kg)(9.81 m/s²) ,

(0.2 kg)(9.81 m/s²) = 1.962 N.

To find the weight of the aluminum cylinder, we first need to calculate its volume:

V = πr²h

= π(0.02 m)²(0.08 m) ,

π(0.02 m)²(0.08 m) = 1.005 x 10⁻⁴ m³.

We can then find its mass using its volume and density:

m = ρV,

ρV = (2700 kg/m³)(1.005 x 10⁻⁴ m³),

(2700 kg/m³)(1.005 x 10⁻⁴ m³) = 0.027135 kg.

Finally, we can find the weight of the aluminum cylinder:

w = mg ,

mg = (0.027135 kg)(9.81 m/s²),

(0.027135 kg)(9.81 m/s²) = 0.266 N.

Now that we have found the weights of the glass, water, and aluminum cylinder, we can add them together to find the total weight of the system:

1.962 N + 0.02 kg(9.81 m/s²) + 0.266 N = 4.295 N.

This is the new reading on the weight scale. However, we still need to find the tension in the string.To do this, we need to find the buoyant force acting on the aluminum cylinder. The volume of water displaced by the cylinder is equal to the volume of the cylinder that is submerged in the water. This volume can be found by multiplying the cross-sectional area of the cylinder by the height of the water level:

Vd = Ah ,

Ah = πr²h/2 ,

πr²h/2 = π(0.02 m)²(0.025 m) ,

π(0.02 m)²(0.025 m) = 7.854 x 10⁻⁶ m³.

Since the density of water is 1000 kg/m³, we can find the buoyant force using the following formula:

Fb = ρgVd,

ρgVd = (1000 kg/m³)(9.81 m/s²)(7.854 x 10⁻⁶ m³),

(1000 kg/m³)(9.81 m/s²)(7.854 x 10⁻⁶ m³) = 0.077 N.

The tension in the string is equal to the weight of the aluminum cylinder minus the buoyant force acting on it:

T = w - Fb,

w - Fb = 0.266 N - 0.077 N,

0.266 N - 0.077 N = 0.189 N.

Therefore, the reading on the weight scale now is 4.295 N and the tension in the string is 0.189 N.

The reading on the weight scale now is 4.295 N and the tension in the string is 0.189 N.

To know more about Archimedes' principle visit:

brainly.com/question/787619

#SPJ11

z. A uniform magnetic field is applied perpendicular to the plane of a 60-turn circular coil with with a radius Mg 6,0 cm and a resistance of 0.60 s. If the magnetic field increases uniformly from 0,207 to 1.8T in 0.2os, what is the magnitude of the emf induced in the coily

Answers

Electromagnetic induction refers to the generation of an electromotive force (EMF) or voltage in a conductor when it is exposed to a changing magnetic field. This phenomenon was first discovered and explained by Michael Faraday in the 19th century.

According to Faraday's law, when there is a relative motion between a magnetic field and a conductor, or when the magnetic field itself changes, it induces an electric current in the conductor.

In the given scenario, a uniform magnetic field is applied perpendicular to a circular coil with 60 turns and a radius of 6.0 cm. The resistance of the coil is 0.60 Ω. The magnetic field strength increases uniformly from 0.207 T to 1.8 T in a time interval of 0.2 s. We can calculate the magnitude of the induced EMF using Faraday's law.

First, we calculate the initial and final magnetic flux through the coil. The magnetic flux is given by the product of the magnetic field strength and the area of the coil. The initial flux (ϕi) is 0.06984 Tm², and the final flux (ϕf) is 0.6786 Tm².

The change in magnetic flux (Δϕ) is found by subtracting the initial flux from the final flux, resulting in 0.60876 Tm². The time interval (Δt) is 0.2 s.

To calculate the rate of change of magnetic flux (dϕ/dt), we divide the change in magnetic flux by the time interval. This yields a value of 3.0438 T/s.

Finally, using the formula EMF = -N(dϕ/dt), where N is the number of turns in the coil, we find that the EMF induced in the coil is -182.628 V. Since the magnitude of EMF cannot be negative, we take the absolute value of this negative value, resulting in a magnitude of 182.628 V.

Therefore, the magnitude of the EMF induced in the coil is 182.628 V.

To Learn more about Electromagnetic induction. Click this!

brainly.com/question/15712089

#SPJ11

A proton is accelerated from rest by a potential difference of 300 V. It then enters a magnetic field of magnitude 150 mT with its velocity perpendicular to the field. ( q=1.60 x 10^-19 C, mp=1.67 x 10-27 kg)
(A) Determine the speed of the proton.
(B) What is the radius of its circular path in the magnetic field?

Answers

(A) The speed of the proton is approximately 5.88 x 10^5 m/s.

(B) The radius of the proton's circular path in the magnetic field is approximately 4.08 x 10^-5 m.

To solve this problem, we can use the principles of conservation of energy and the relationship between magnetic force and centripetal force.

(A) Determine the speed of the proton:

The potential difference (V) accelerates the proton, converting its electric potential energy (qV) into kinetic energy. Therefore, we can equate the change in potential energy to the kinetic energy:

qV = (1/2)mv^2,

where q is the charge of the proton, V is the potential difference, m is the mass of the proton, and v is its speed.

Substituting the given values:

(1.60 x 10^-19 C)(300 V) = (1/2)(1.67 x 10^-27 kg)v^2.

Solving for v:

[tex]v^2 = (2 * 1.60 x 10^-19 C * 300 V) / (1.67 x 10^-27 kg).\\v^2 = 5.76 x 10^-17 C·V / (1.67 x 10^-27 kg).\\v^2 = 3.45 x 10^10 m^2/s^2.\\v = √(3.45 x 10^10 m^2/s^2).\\v ≈ 5.88 x 10^5 m/s.[/tex]

Therefore, the speed of the proton is approximately 5.88 x 10^5 m/s.

(B) Determine the radius of its circular path in the magnetic field:

The magnetic force acting on a charged particle moving perpendicular to a magnetic field can provide the necessary centripetal force to keep the particle in a circular path. The magnetic force (F) is given by:

F = qvB,

where q is the charge of the proton, v is its velocity, and B is the magnetic field strength.

The centripetal force (Fc) is given by:

Fc = (mv^2) / r,

where m is the mass of the proton, v is its velocity, and r is the radius of the circular path.

Since the magnetic force provides the centripetal force, we can equate the two:

qvB = (mv^2) / r.

Simplifying and solving for r:

r = (mv) / (qB).

Substituting the given values:

[tex]r = ((1.67 x 10^-27 kg)(5.88 x 10^5 m/s)) / ((1.60 x 10^-19 C)(150 mT)).\\r = (9.8 x 10^-22 kg·m/s) / (2.40 x 10^-17 T).\\r = 4.08 x 10^-5 m.[/tex]

Therefore, the radius of the proton's circular path in the magnetic field is approximately 4.08 x 10^-5 m.

Learn more about magnetic field

https://brainly.com/question/14848188

#SPJ11

(hrwc10p72_6e) The linear momentum of a 1350 kg car increased by 6.50×10³ kg m/s in 13.0 s. What is the magnitude of the constant force that accelerated the car? Submit Answer Tries 0/8 By how much did the speed of the car increase? Submit Answer Tries 0/7

Answers

The magnitude of the constant force that accelerated the car can be calculated using the formula for linear momentum. The calculated force is 5.00 × 10^2 N. The increase in speed of the car can be determined by dividing the change in momentum by the mass of the car. The calculated increase in speed is 4.81 m/s.

The linear momentum (p) of an object is given by the formula p = mv, where m is the mass of the object and v is its velocity.

In this case, the car has a mass of 1350 kg and its linear momentum increased by 6.50 × 10³ kg m/s in a time interval of 13.0 s.

To find the magnitude of the force that accelerated the car, we use the formula F = Δp/Δt, where Δp is the change in momentum and Δt is the change in time.

Substituting the given values, we have F = (6.50 × 10³ kg m/s)/(13.0 s) = 5.00 × 10^2 N.

Therefore, the magnitude of the constant force that accelerated the car is 5.00 × 10^2 N.

To determine the increase in speed of the car, we divide the change in momentum by the mass of the car. The change in speed (Δv) is given by Δv = Δp/m.

Substituting the values, we have Δv = (6.50 × 10³ kg m/s)/(1350 kg) = 4.81 m/s.

Hence, the speed of the car increased by 4.81 m/s.

Learn more about linear momentum here:

https://brainly.com/question/30767107

#SPJ11

A radio station transmits isotropic Car in all directions) eletromagnetic radiation at fresurney 928 M Hz. At a certain distance from the caulio station the chave intensity I = 0.335 W/m² IS a) what will be the intensity of the wave at half distance from the radio station? b) What is the mave length of the transmitted signale c) If the power of the antenna is 6 MHz, At what distance from the source will the intenste Сp ve be O. 168 W/m ² ? of the d) And, what will be the absorption pressure exerted by the wave at that distance? e) And what will be the effectue electric field. crins) exerted by the by the wave at that distance?

Answers

The intensity is 0.084 W/m². The wavelength is 323.28 meters. The distance is approximately 1.27 times the original distance. The absorbed power is 0.168 W/m². The effective electric field strength is 1580.11 V/m.

a) To determine the intensity at half the distance, we can use the inverse square law, which states that the intensity decreases with the square of the distance from the source. Since the initial intensity is 0.335 W/m², at half the distance the intensity would be (0.335/2²) = 0.084 W/m².

b) The wavelength (λ) of the transmitted signal can be calculated using the formula λ = c/f, where c is the speed of light (approximately 3x[tex]10^{8}[/tex]m/s) and f is the frequency of the wave in hertz. Plugging in the values, we get λ = (3x[tex]10^{8}[/tex])/(928x[tex]10^{6}[/tex]) ≈ 323.28 meters.

c) To find the distance where the intensity is 0.168 W/m², we can use the inverse square law again. Let the original distance be D, then the new distance (D') would satisfy the equation (0.335/D²) = (0.168/D'²). Solving for D', we get D' ≈ 1.27D.

d) At the distance where the intensity is 0.168 W/m², the absorbed power would be equal to the intensity itself, which is 0.168 W/m².

e) The effective electric field strength (E) exerted by the wave can be calculated using the formula E = sqrt(2I/ε₀c), where I is the intensity and ε₀ is the vacuum permittivity (approximately 8.854x[tex]10^{-12}[/tex] F/m). Plugging in the values, we get E = sqrt((2x0.168)/(8.854x[tex]10^{-12}[/tex]x3x[tex]10^{8}[/tex])) ≈ 1580.11 V/m.

Learn more about distance here ;

brainly.com/question/29769926

#SPJ11

The gas in a constant-volume gas thermometer has a pressure of
91.0 kPa at 106 ∘C∘C. What is the pressure of the gas at 47.5 ∘C?
At what temperature does the gas have a pressure of 115 kPa?

Answers

The pressure of the gas at 47.5 ∘C is 74.3 kPa. The temperature at which the gas has a pressure of 115 kPa is 134.7 ∘C.

The pressure of a gas is directly proportional to its temperature. This means that if the temperature of a gas increases, the pressure of the gas will also increase. Conversely, if the temperature of a gas decreases, the pressure of the gas will also decrease.

In this problem, the gas is initially at a temperature of 106 ∘C and a pressure of 91.0 kPa. When the temperature of the gas is decreased to 47.5 ∘C, the pressure of the gas will also decrease. The new pressure of the gas can be calculated using the following equation:

[tex]P_2 = P_1 \times (T2 / T1)[/tex]

where:

* [tex]P_1[/tex]is the initial pressure of the gas (91.0 kPa)

*[tex]P_2[/tex] is the final pressure of the gas (unknown)

*[tex]T_1[/tex]is the initial temperature of the gas (106 ∘C)

* [tex]T_2[/tex] is the final temperature of the gas (47.5 ∘C)

Plugging in the known values, we get:

P2 = 91.0 kPa * (47.5 ∘C / 106 ∘C)

P2 = 74.3 kPa

Therefore, the pressure of the gas at 47.5 ∘C is 74.3 kPa.

The temperature at which the gas has a pressure of 115 kPa can be calculated using the following equation:

[tex]T_2 = T_1 \times (P_2 / P_1)[/tex]

where:

* [tex]T_1[/tex] is the initial temperature of the gas (106 ∘C)

* [tex]T_2[/tex] is the final temperature of the gas (unknown)

* [tex]P_1[/tex] is the initial pressure of the gas (91.0 kPa)

*[tex]P_2[/tex] is the final pressure of the gas (115 kPa)

[tex]T_2 = 106^{0} C (115 kPa / 91.0 kPa)[/tex]

[tex]T_2 = 134.7 ^{0} C[/tex]

Therefore, the temperature at which the gas has a pressure of 115 kPa is 134.7 ∘C.

To learn more about pressure here brainly.com/question/29341536

#SPJ11

You are attempting a stunt with a hot wheels launcher (and a hot wheels car as well) as shown. in the picture.
a) Considering that the spring that you got has an elastic constant of 1000 N/m, calculate which needs to be the initial deformation of the spring for the car to exactly make the
jump. Assume the mass of the car is 20.0 grams.

Answers

A deformation of [tex]10.84\times10^{-3} m[/tex] is needed by the spring for the car to make the jump.

To determine the initial deformation of the spring required for the car to make the jump, we can use the principles of elastic potential energy.

The elastic potential energy stored in a spring is given by the equation:

Elastic Potential Energy = [tex](\frac{1}{2} )kx^2[/tex]

where k is the elastic constant (spring constant) and x is the deformation (displacement) of the spring.

In this case, the elastic constant is given as 1000 N/m, and we need to find the deformation x.

Given that the mass of the car is 20.0 grams, we need to convert it to kilograms (1 kg = 1000 grams).Thus, mass=0.02 kg.

Now, we can use the equation for gravitational potential energy to relate it to the elastic potential energy:

Gravitational Potential Energy = mgh

where m is the mass of the car, g is the acceleration due to gravity, and h is the height the car needs to reach for the jump (given=0.30m).

Since the car needs to make the jump, the gravitational potential energy at the top should be equal to the elastic potential energy of the spring at the maximum deformation. Thus,

Gravitational Potential Energy = Elastic Potential Energy

[tex]mgh=(\frac{1}{2} )kx^2[/tex]

[tex]0.02\times9.8\times0.30=(\frac{1}{2} )\times1000\times x^2[/tex]

[tex]x^2= 1.176\times 10^{-4}[/tex]

[tex]x=10.84\times10^{-3}[/tex] m.

Therefore, a deformation of [tex]10.84\times10^{-3} m[/tex] is needed by the spring for the car to make the jump.

Learn more about deformation here: brainly.com/question/31043635

#SPJ11

QUESTION IMAGE

A massless spring of spring constant k = 5841 N/m is connected to a mass m = 118 kg at rest on a horizontal, frictionless surface.
1. When the mass is released from rest at the displacement A= 0.31 m, how much time, in seconds, is required for it to reach its maximum kinetic energy for the first time?
2. Imagine that the N springs from part (c) are released from rest simultaneously. If the potential energy stored in the springs is fully converted to kinetic energy and thereby "released" when the attached masses pass through equilibrium, what would be the average rate at which the energy is released? That is, what would be the average power, in watts, released by the N­spring system?
3. Though not a practical system for energy storage, how many buildings, B, each using 105 W, could the spring system temporarily power?

Answers

1. The time required for the mass to reach its maximum kinetic energy is 0.098 seconds

2.The average power released by the N-spring system is 2755.1N.

3.The spring system could temporarily power 26 buildings each using 105 W.

A massless spring of spring constant k = 5841 N/m is connected to a mass m = 118 kg at rest on a horizontal, frictionless surface then,

1. Formula to calculate the time is given by, $t = \sqrt{\frac{2mA^2}{k}}$Where,k = 5841 N/mm = 5841 N/m.A = 0.31 m.m = 118 kg. Substituting the values in the formula, we get $t = \sqrt{\frac{2 \times 118 \times 0.31^2}{5841}} = 0.098\text{ s}$.Therefore, the time required for the mass to reach its maximum kinetic energy is 0.098 seconds.

2.The formula for power is given by, $P = \frac{U}{t}$Where,U = Potential energy stored in the springs = $\frac{1}{2}kA^2 \times N = \frac{1}{2}\times 5841 \times 0.31^2 \times N = 270.3 \times N$ Where N is the number of springs.t = time = $t = \sqrt{\frac{2mA^2}{k}} = \sqrt{\frac{2 \times 118 \times 0.31^2}{5841}} = 0.098\text{ s}$Substituting the values in the formula, we get, $P = \frac{270.3 \times N}{0.098} = 2755.1 \times N$. Therefore, the average power released by the N-spring system is 2755.1N.

3.Number of buildings the system can power is given by the formula, $B = \frac{P}{P_B}$Where P is the power of the N-spring system, and P_B is the power consumption of each building. B = $\frac{2755.1 N}{105 W} = 26.24$. Therefore, the spring system could temporarily power 26 buildings each using 105 W.

Let's learn more about spring constant:

https://brainly.com/question/31158929

#SPJ11

Other Questions
Cornelius Company produces womens clothing. During the year, the company incurred the following costs:Factory rent$386,000Direct labor312,000Utilitiesfactory39,600Purchases of direct materials565,000Indirect materials69,400Indirect labor62,400Inventories for the year were as follows:January 1December 31Materials$27,000$43,000Work-in-Process46,00040,800Finished Goods139,00077,200Required:1&2. Prepare a statement of cost of goods manufactured and calculate cost of goods sold. Cornelius CompanyStatement of Cost of Goods ManufacturedFor the Year Ended December 31Direct materialsMaterials availableMaterials usedFactory overheadTotal factory overheadTotal manufacturing costsTotal manufacturing costs to account forCost of goods soldCost of goods available for saleCost of goods sold Name at least 2 key points that you feel are the most valuableand useful to you in your medical assisting career. Explain why youchose them. SCENARIO:Idham, a 7-year-old boy, the eldest child of 4 siblings from a divorced parent, was admitted to Hospital Tengku Ampuan Afzan Kuantan in March 2018 due to facial puffiness for 1 day duration. There was also dark colored urine. Patient had history of productive cough for 3 days and fever for 2 days. Father also complained of skin ulcer on patients right feet for about 1 month. There was hypertension (198/80 mmHg). Urine examination showed hematuria, proteinuria, and leucocyturia. Anti-streptolysin O titre was high (1:800) and complement C3 level was low (0.29). Patient was treated with antibiotic, diuretic, and anti-hypertension. Brian owns a corn dog stand that will generate $176,000 per year forever, but since corn dogs are out of favor, the first cash flow won't occur until 6 years from today. Suppose he wants out of the corn dog business and decides to sell the stand to a friend. If the discount rate is 4%, what is TODAY's fair price for Brian's corn dog stand? Enter your answer as a positive number rounded to the nearest dollar. What theme is revealed in the following sentences from the end of the excerpt?And the ladies, selecting with dainty and discriminating fingers and a little greedily, all declared that Mr. Pontellier was the best husband in the world. Mrs. Pontellier was forced to admit that she knew of none better. Water enters the throttling valve at a temperature of 330 K and a pressure of 10 bar. The heat lost to the surroundings was estimated to be 15 W. The velocity at the inlet is 12 m/s and the diameter of the pipe changes from 1 cm at the inlet to 7 mm at the outlet. What will be the temperature at the outlet if the pressure decreases to 7.1431 bar? The density of water is constant, equal to 1000 kg/m. Determine the entropy generation rate in the throttling process. The specific heat of water is 4.19 kJ/(kgK). Specific total enthalpy and entropy of water can be calculated from formulae: h-href+ c(T-Tref)+ (p-Pref)/p+ek, and s-Sref+ cin(T). The reference temperature pressure are equal to 298K and 1 bar, respectively. when did Ghana gain independence? Movie" Girl, interrupted"Paragraph 1: Introduction to the movie and the depiction of mental illness in the movie (your main sentence within this paragraph will indicate what your three points are going to be.)Paragraph 2: Accuracy analysis of the movie: How is the character shown to be mentally ill? How is the illness communicated to viewers and to other actors in the film?What diagnosis criteria did the character meet, or not meet?Paragraph 3: Treatment analysis and recommendation: How is the illness "treated" in the movie? What treatments are available? (Especially if this movie is older, are there new therapies?) Discuss possible treatments appropriate for this character, not specific medications or anything, but long-term goals.Paragraph 4: Pick your third topic and answer the questions ( Third topic: Professional ethics: How are the doctors and therapists depicted? What are their interactions with the ill character? How are these professionals helping or hurting the situation? What is the purpose of depicting mental health care professionals in this light?)***No need to provide a summary paragraph, but it is a good rule of thumb to go back to your main sentence in the first paragraph and make sure you hit all the points that you said you would address***(Make sure each of the paragraphs has a heading that corresponds with what is being discussed) 3 / 10 100% + Question 3 (4 marks) "The cost of one modern heavy bomber is this: a modern brick school in more than 30 cities. It is two electric power plants, each serving a town of 60,000 population it is two fine , fully equipped hospitals it is some 50 miles oof concrete highway.. The delima all nations face in above example is , a.spendinng in national defence can be accomplished using same resources at the same time. , b. increase in spennding of national defence implies more sacrifice of civilian goods , c.increase in national defence is only possible only when more civilian goods are produced , d. it can only be produced iif we have adequate protection from military. In their worship of Allah, Muslims worship: Group of answer choices a pantheon of gods. the same deity worshiped by Christians and Jews. the prophet Muhammad. the angel Gabriel. Which carbon-to-hydrogen mass ratio is possible for another compound composed only of carbon and hydrogen? you may need to round your answer to three significant figures before evaluating your answer. In pairs, research topics related to customer service in healthcare-Professionalism in healthcare750-800 words double-spaced ) Explain the motion of the cart based on the position, velocityand acceleration graphs.Does your cart move with constant acceleration during any partof this experiment? When?Estimate the accelerati H'(s) 10 A liquid storage tank has the transfer function - where h is the tank Q(s) 50s +1 level (m) qi is the flow rate (m/s), the gain has unit s/m, and the time constant has units of seconds. The system is operating at steady state with q=0.4 m/s and h = 4 m when a sinusoidal perturbation in inlet flow rate begins with amplitude = 0.1 m/s and a cyclic frequency of 0.002 cycles/s. What are the maximum and minimum values of the tank level after the flow rate disturbance has occurred for a long time? A major problem for ethical relativism is that it has difficulty accounting for ethical progress. True False "Part a.What is the reactance of an inductor with an inductance of 3.10HH at a frequency of 83.0 HzHz ?Part b.What is the inductance of an inductor whose reactance is 11.4 at a frequency of 83 hz? Given weights and values of n items, put these items in a knapsack of capacity W to get the maximum total value in the knapsack. In other words, given two integer arrays val[1...n] and weight[1n] which represent values and weights associated with n items respectively. Also given an integer W which represents knapsack capacity, find out the maximum value subset of val[] such that sum of the weights of this subset is smaller than or equal to W. You cannot break an item, either pick the complete item or dont pick it (0-1 property). Data: W = 10 Val = [60 100 120 40] Weight = [2 4 6 3] Explain the reasons for investing in international stocks andidentify the "bets" an investor is making when he does investoverseas. Compute the futurevalue in year 7 of a $5,800 deposit in year 1, and another $5,300deposit at the end of year 4 using an 8 percent interest rate.(Do not round intermediate calculations and round yo What is sarcopenia?Select one:a.The increase of muscle mass and function associated with strength training.b.The increase of muscle mass and function associated endurance training.c.The loss of muscle mass and function associated with inactivity.d.The loss of muscle mass and function associated with aging.