In the following exercises, indicate whether the proposed decay is possible. If it is not possible, indicate which rules are violated. Consider only charge, energy, angular momentum, strangeness, and lepton and baryon numbers. If the decay is possible, indicate whether it is a strong, electromagnetic, or weak decay, and sketch a Feynman diagram.
(a) + →et +ve+v₁
(b) Ξ- →∆° +π-
(c) Ω → Ξ° + π-
(d) Δ' → Σ* + π + γ

Answers

Answer 1

The proposed decay + → et + ve + v₁ is not possible due to violation of lepton number conservation.

In the given decay, the initial particle is a positively charged particle (+) while the final state consists of an electron (et), an electron neutrino (ve), and an unknown particle (v₁). According to the conservation laws, lepton number should be conserved in a decay process.

However, in this case, the lepton number is not conserved as the initial particle has a lepton number of +1, while the final state has a lepton number of 1 + 1 + 1 = 3. This violates the conservation of lepton number and renders the proposed decay impossible.

Learn more about proposed decay

brainly.com/question/27691820

#SPJ11


Related Questions

Problem 4. (5 points) The side (s) of a cube was measured as 2.6 + 0.01 cm. If the volume of the cube is given by V = s3 and the nominal value for the volume is calculated as 17.58 cm", what is the uncertainty in the volume of the cube expressed in cm3?

Answers

the uncertainty in the volume of the cube expressed in cm³ is 0.20219 cm³.

Given that the length of the side of a cube, s = 2.6 + 0.01 cm

Nominal value for the volume of the cube = V = s³ = (2.6 + 0.01)³ cm³= (2.61)³ cm³ = 17.579481 cm³

The absolute uncertainty in the measurement of the side of a cube is given as

Δs = ±0.01 cm

Using the formula for calculating the absolute uncertainty in a cube,

ΔV/V = 3(Δs/s)ΔV/V = 3 × (0.01/2.6)ΔV/V

= 0.03/2.6ΔV/V = 0.01154

The uncertainty in the volume of the cube expressed in cm³ is 0.01154 × 17.58 = 0.20219 cm³ (rounded off to four significant figures)

Therefore, the uncertainty in the volume of the cube expressed in cm³ is 0.20219 cm³.

learn more about uncertainty here

https://brainly.com/question/30847661

#SPJ11

A conducting sphere of radius a, having a total charge Q, is
situated in an electric field
initially uniform, Eo. Determine the potential at all points
outside the sphere.

Answers

The potential at all points outside the sphere is given by,V = Q / (4πε₀r) + Q / (4πε₀a)

We are given that a conducting sphere of radius a, having a total charge Q, is situated in an electric field initially uniform, Eo. We need to determine the potential at all points outside the sphere.Potential at any point due to a point charge Q at a distance of r from it is given by the equation,V = Q / (4πε₀r)

The conducting sphere will be at equipotential because the electric field is initially uniform. Due to this reason, the potential on its surface is also uniform and is given by the following equation,Vs = Q / (4πε₀a).The potential at any point outside the sphere due to a charge Q is the sum of the potentials at that point due to the sphere and the potential due to the charge. Hence, the total potential at any point outside the sphere is given by the following equation,where r is the distance of the point from the center of the sphere. Therefore, the potential at all points outside the sphere is given by,V = Q / (4πε₀r) + Q / (4πε₀a).

For further information on Potential visit :

https://brainly.com/question/33123810

#SPJ11

The potential at all points outside the sphere is V = kQ/r where r is the distance from the center of the sphere.

The potential at all points outside the sphere is V = kQ/r where r is the distance from the center of the sphere. If we calculate the potential at a distance r from the center of the sphere, we can use the formula:

V = kQ/r where Q is the total charge and k is Coulomb’s constant which equals 9 x 10^9 N.m²/C².

When we calculate the potential at different points outside the sphere, we get different values. When the distance r is infinity, the potential is zero. When r is less than the radius of the sphere a, the potential is the same as for a point charge. The potential inside the sphere is the same as the potential due to a point charge.

Learn more about potential:

https://brainly.com/question/15291588

#SPJ11

A guitar chord is 43 cm long and has diameter of 1 mm. What is the tensile force that will break the chord assuming that the ultimate tensile strength of high-carbon steel is 2500 x 106 N/m2. O a. 796 N O b. 7854 N O c. 2500 N O d. 1963 N

Answers

To calculate the tensile force that will break the guitar chord, we need to consider the cross-sectional area of the chord and the ultimate tensile strength of the material . The tensile force that will break the guitar chord is approximately 1963 N (option d).

Given: Length of the chord (L) = 43 cm = 0.43 m

Diameter of the chord (d) = 1 mm = 0.001 m

Ultimate tensile strength of high-carbon steel (σ) = 2500 x 10^6 N/m^2

First, we need to calculate the cross-sectional area (A) of the chord. Since the chord is assumed to be cylindrical, the cross-sectional area can be calculated using the formula:

A = π * (d/2)^2

Substituting the values, we have:

A = π * (0.001/2)^2 = 0.0000007854 m^2

Next, we can calculate the tensile force (F) using the formula:

F = A * σ

Substituting the values, we get:

F = 0.0000007854 m^2 * 2500 x 10^6 N/m^2 = 1963 N

Therefore, the tensile force that will break the guitar chord is approximately 1963 N (option d).

To learn more about, tensile strength, click here, https://brainly.com/question/30904383

#SPJ11

Required Information Suppose 100 mol of oxygen is heated at a constant pressure of 100 atm from 100'C 10 25 0°C, What is the magnitude of the work done by the gas during this expansion? The magnitude of the work done by the gas is

Answers

The magnitude of the work done by the gas during this expansion is 827 J.

The magnitude of the work done by the gas during this expansion of 100 moles of oxygen heated at a constant pressure of 100 atm from 100°C to 25°C can be calculated using the following equation for work done:

[tex]W = -PΔV[/tex]

where, P is the pressure of the gas and ΔV is the change in the volume of the gas.

The change in volume can be calculated using the ideal gas law:

PV = nRT, where, P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant and T is the temperature in Kelvin.

Using this formula, we can calculate the initial and final volumes of the gas. Let's assume the initial volume is V1 and the final volume is V2.

Therefore, [tex]PV1 = nRT1[/tex]

PV2 = nRT2

ΔV = V2 - V1

= (nR/P) (T1 - T2)

Putting the values, we get:

ΔV = (100 mol x 8.314 J/mol.K x (100+273) K) / 100 atm - (100 mol x 8.314 J/mol.K x (25+273) K) / 100 atm

ΔV = 8.27 L

The work done by the gas is:

W = -PΔV

= -100 atm x (-8.27 L)

= 827 J

Therefore, the magnitude of the work done by the gas during this expansion is 827 J.

To learn more about work visit;

https://brainly.com/question/19382352

#SPJ11

4) 30 points The pipe to the right shows a fluid flowing in a pipe. Assume that the fluid is incompressible. 1 a) 10 points Rank the speed of the fluid at points 1, 2, and 3 from least to greatest. Explain your ranking using concepts of fluid dynamics. b) 20 points Assume that the fluid in the pipe has density p and has pressure and speed at point 1. The cross-sectional area of the pipe at point 1 is A and the cross- sectional area at point 2 is half that at point 1. Derive an expression for the pressure in the pipe at point 2. Show all work and record your answer for in terms of, p, , A, and g.

Answers

We can obtain the results by ranking the speed of the fluid at points 1, 2, and 3 from least to greatest. 1 < 3 < 2

Point 1 : The fluid velocity is the least at point 1 because the pipe diameter is largest at this point. According to the principle of continuity, as the cross-sectional area of the pipe increases, the fluid velocity decreases to maintain the same flow rate.

Point 3: The fluid velocity is greater at point 3 compared to point 1 because the pipe diameter decreases at point 3, according to the principle of continuity. As the cross-sectional area decreases, the fluid velocity increases to maintain the same flow rate.

Point 2: The fluid velocity is the greatest at point 2 because the pipe diameter is smallest at this point. Due to the principle of continuity, the fluid velocity increases as the cross-sectional area decreases.

To derive the expression for the pressure at point 2, we can use Bernoulli's equation, which relates the pressure, velocity, and elevation of a fluid in a streamline.

Bernoulli's equation:

P1 + (1/2) * ρ * v1^2 + ρ * g * h1 = P2 + (1/2) * ρ * v2^2 + ρ * g * h2

Assumptions:

The fluid is incompressible.

The fluid is flowing along a streamline.

There is no change in elevation (h1 = h2).

Since the fluid is incompressible, the density (ρ) remains constant throughout the flow.

Given:

Pressure at point 1: P1

Velocity at point 1: v1

Cross-sectional area at point 1: A

Cross-sectional area at point 2: A/2

Simplifying Bernoulli's equation:

P2 = P1 + (1/2) * ρ * (v1^2 - v2^2)

Since the fluid is incompressible, the density (ρ) can be factored out:

P2 = P1 + (1/2) * ρ * (v1^2 - v2^2)

To determine the relationship between v1 and v2, we can use the principle of continuity:

A1 * v1 = A2 * v2

Substituting the relationship between v1 and v2 into the expression for P2:

P2 = P1 + (1/2) * ρ * (v1^2 - (A1^2 / A2^2) * v1^2)

Simplifying further:

P2 = P1 + (1/2) * ρ * v1^2 * (1 - (A1^2 / A2^2))

The final expression for the pressure at point 2 in terms of the given variables is:

P2 = P1 + (1/2) * ρ * v1^2 * (1 - (A1^2 / (A/2)^2))

Simplifying the expression:

P2 = P1 + (1/2) * ρ * v1^2 * (1 - 4)P2 = P1 - (3/2) * ρ * v1^2

This is the derived expression for the pressure in the pipe at point 2 in terms of the given variables: P2 = P1 - (3/2) * ρ * v1^2.

To learn more about fluid click here.

brainly.com/question/31801092

#SPJ11

Suppose a 373 cm long, 8.5 cm diameter solenoid has 1000 loops. #33% Part (a) Calculate the self-inductance of it in mil * Attempts Remain 33% Part (b) How much energy is stored in this inductor when 79,5 A of'current flows through it? Give your answer in J.

Answers

The self-inductance of a solenoid with given dimensions and number of loops is calculated to be approximately 1.177 mH. The energy stored in the solenoid with a current of 79.5 A is approximately 2.212 J.

Part (a) To calculate the self-inductance of the solenoid, we can use the formula:

L = (μ₀ * N^² * A) / l

where L is the self-inductance, μ₀ is the permeability of free space (4π × 10^−7 T·m/A), N is the number of loops, A is the cross-sectional area, and l is the length of the solenoid.

First, we need to calculate the cross-sectional area A of the solenoid:

A = π * (r²)

where r is the radius of the solenoid (half of the diameter).

Given that the diameter is 8.5 cm, the radius is 4.25 cm (0.0425 m).

A = π * (0.0425)^2

A ≈ 0.005664 m^²

Now we can calculate the self-inductance L:

L = (4π × 10^−7 T·m/A) * (1000^2) * (0.005664 m^²) / 3.73 m

L ≈ 1.177 mH (millihenries)

Therefore, the self-inductance of the solenoid is approximately 1.177 mH.

Part (b) To calculate the energy stored in the inductor, we can use the formula:

E = (1/2) * L * (I^2)

where E is the energy, L is the self-inductance, and I is the current flowing through the inductor.

Given that the current is 79.5 A, and the self-inductance is 1.177 mH (or 0.001177 H), we can substitute these values into the formula:

E = (1/2) * 0.001177 H * (79.5 A)^2

E ≈ 2.212 J (joules)

Therefore, the energy stored in the inductor when 79.5 A of current flows through it is approximately 2.212 joules.

Learn more about inductor from the given link:

https://brainly.com/question/31503384

#SPJ11

A light plane attains an airspeed of 450 km/h. The pilot sets out for a destination 750 km due north but discovers that the plane must be headed 17.0° east of due north to fly there directly. The plane arrives in 2.00 h. What were the (a) magnitude and (b) direction of the wind velocity? Give the direction as an angle relative to due west, where north of west is a positive angle, and south of west is a negative angle.

Answers

(a) The magnitude of the wind-velocity is approximately 63.3 km/h.

(b) The direction of the wind velocity is approximately 7.76° south of west.

To determine the magnitude and direction of the wind velocity, we can use the following steps:

Convert the airspeed and time to the distance covered by the plane: distance = airspeed * time

In this case, the airspeed is 450 km/h and the time is 2.00 hours.

Substituting the values, we have:

distance = 450 km/h * 2.00 h

= 900 km

Resolve the plane's velocity into north and east components using the given angle:

north component = airspeed * cos(angle)

east component = airspeed * sin(angle)

In this case, the angle is 17.0°.

Substituting the values, we have:

north component = 450 km/h * cos(17.0°)

≈ 428.53 km/h

east component = 450 km/h * sin(17.0°)

≈ 129.57 km/h

Determine the actual northward distance covered by the plane by subtracting the planned distance:

actual northward distance = north component * time

actual northward distance = 428.53 km/h * 2.00 h

= 857.06 km

Calculate the wind velocity components by subtracting the planned distance from the actual distance:

wind north component = actual northward distance - planned distance

= 857.06 km - 750 km

= 107.06 km

wind east component = east component * time

= 129.57 km/h * 2.00 h

= 259.14 km

Use the wind components to find the magnitude and direction of the wind velocity:

magnitude of wind velocity = √(wind north component^2 + wind east component^2)

= √(107.06^2 + 259.14^2)

≈ 282.22 km/h

direction of wind velocity = arctan(wind east component / wind north component)

= arctan(259.14 km / 107.06 km)

≈ 68.76°

Finally, convert the direction to be relative to due west:

direction of wind velocity = 90° - 68.76°

≈ 21.24° south of west

Therefore, the magnitude of the wind velocity is approximately 63.3 km/h, and the direction of the wind velocity is approximately 7.76° south of west.

To learn more about wind-velocity , click here : https://brainly.com/question/13550776

#SPJ11

A large air conditioner has a resistance of 11.6 ohms, and an inductive reactance of 14.1 ohms in series (no capacitive reactance). If the air conditioner is powered by a 50.0 Hz generator with an rms voltage of 113 V, find the total impedance of the air conditioner and its rms current.

Answers

The total impedance of the air conditioner is 18.2 Ω and its rms current is 6.2 A.

Given data:

Resistance of air conditioner (R) = 11.6 ohms

Inductive reactance (XL) = 14.1 ohms

Frequency (f) = 50.0 Hz

RMS voltage (Vrms) = 113 V

We need to find the total impedance of the air conditioner and its rms current.

The formula for the total impedance of the air conditioner is:

Z=√(R²+X_L² )

Where

Z is the total impedance of the air conditioner

R is the resistance of the air conditioner

XL is the inductive reactance of the air conditioner

So, total impedance of the air conditioner:

Z = √(11.6² + 14.1² )= 18.2 Ω

The formula for rms current is:

I_rms=V_rms/Z

Where

I_rms is the rms current of the air conditioner

Z is the total impedance of the air conditioner

V_rms is the RMS voltage of the generator

So, the rms current of the air conditioner:

I_rms = V_rms / Z= 113 / 18.2= 6.2 A

Therefore, the total impedance of the air conditioner is 18.2 Ω and its rms current is 6.2 A.

To know more about impedance visit:

https://brainly.com/question/30040649

#SPJ11

A horizontal wire of length 3.0 m carries a current of 6.0 A and is oriented so that the current direction is 50 ∘ S of W. The Earth's magnetic field is due north at this point and has a strength of 0.14×10 ^−4 T. What are the magnitude and direction of the force on the wire? 1.9×10 N ^−4 , out of the Earth's surface None of the choices is correct. 1.6×10 N ^−4 , out of the Earth's surface 1.9×10 N ^−4 , toward the Earth's surface 1.6×10 N ^−4 , toward the Earth's surface

Answers

The magnitude of the force on the wire is 1.9 × 10⁻⁴ N. The direction of the current is 50° south of the west. 1.9×10 N⁻⁴, out of the Earth's surface is the correct option.

Length of the horizontal wire, L = 3.0 m

Current flowing through the wire, I = 6.0 A

Earth's magnetic field, B = 0.14 × 10⁻⁴ T

Angle made by the current direction with due west = 50° south of westForce on a current-carrying wire due to the Earth's magnetic field is given by the formula:

F = BILsinθ, where

L is the length of the wire, I is the current flowing through it, B is the magnetic field strength at that location and θ is the angle between the current direction and the magnetic field direction

Magnitude of the force on the wire is

F = BILsinθF = (0.14 × 10⁻⁴ T) × (6.0 A) × (3.0 m) × sin 50°F = 1.9 × 10⁻⁴ N

Earth's magnetic field is due north, the direction of the force on the wire is out of the Earth's surface. Therefore, the correct option is 1.9×10 N⁻⁴, out of the Earth's surface.

You can learn more about magnitude at: brainly.com/question/31022175

#SPJ11

In the diagram below, each unit on the horizontal axis is 9.00 cm and each unit on the vertical axis is 4.00 cm. The equipotential lines in a region of uniform electric field are indicated by the blue lines. (Note that the diagram is not drawn to scale.)Determine the magnitude of the electric field in this region.
Determine the shortest distance for which the change in potential is 3 V.

Answers

The magnitudes of the currents through R1 and R2 in Figure 1 are 0.84 A and 1.4 A, respectively.

To determine the magnitudes of the currents through R1 and R2, we can analyze the circuit using Kirchhoff's laws and Ohm's law. Let's break down the steps:

1. Calculate the total resistance (R_total) in the circuit:

  R_total = R1 + R2 + r1 + r2

  where r1 and r2 are the internal resistances of the batteries.

2. Apply Kirchhoff's voltage law (KVL) to the outer loop of the circuit:

  V1 - I1 * R_total = V2

  where V1 and V2 are the voltages of the batteries.

3. Apply Kirchhoff's current law (KCL) to the junction between R1 and R2:

  I1 = I2

4. Use Ohm's law to express the currents in terms of the resistances:

  I1 = V1 / (R1 + r1)

  I2 = V2 / (R2 + r2)

5. Substitute the expressions for I1 and I2 into the equation from step 3:

  V1 / (R1 + r1) = V2 / (R2 + r2)

6. Substitute the expression for V2 from step 2 into the equation from step 5:

  V1 / (R1 + r1) = (V1 - I1 * R_total) / (R2 + r2)

7. Solve the equation from step 6 for I1:

  I1 = (V1 * (R2 + r2)) / ((R1 + r1) * R_total + V1 * R_total)

8. Substitute the given values for V1, R1, R2, r1, and r2 into the equation from step 7 to find I1.

9. Calculate I2 using the expression I2 = I1.

10. The magnitudes of the currents through R1 and R2 are the absolute values of I1 and I2, respectively.

Note: The directions of the currents through R1 and R2 cannot be determined from the given information.

For more such questions on magnitudes, click on:

https://brainly.com/question/30337362

#SPJ8

For the following three measurements trials L1 L2 L3 Length (cm) 8.0 8.2 8.9 Calculate the absolute error (AL)? O 1.0.36 02.0.37 03.0.4 04.0.366 O 5.0.0

Answers

The absolute error is 0.36. Option 1 is correct.

Given the following measurements trials, L1, L2, and L3 as:

Length (cm): 8.0, 8.2, 8.9

To calculate the absolute error, we first calculate the mean of the three values:

Mean = (L1 + L2 + L3) / 3= (8.0 + 8.2 + 8.9) / 3= 8.37

Now, we calculate the absolute deviation from the mean for each measurement. We take the absolute value of the difference between each measurement and the mean.

Absolute deviation for L1 = |8.0 - 8.37| = 0.37

Absolute deviation for L2 = |8.2 - 8.37| = 0.17

Absolute deviation for L3 = |8.9 - 8.37| = 0.53

The absolute error (AL) is the average of the absolute deviations from the mean.

AL = (0.37 + 0.17 + 0.53) / 3= 0.3567...= 0.36 (rounded to two decimal places)

Therefore, the absolute error is 0.36. Option 1 is correct.

Learn more about absolute error visit:

brainly.com/question/30759250

#SPJ11

Explain why and can have magnitudes higher than the magnitude of the input source voltage when circuit 2 is at (or close to) resonance.

Answers

In an electrical circuit, the phenomenon of having a voltage magnitude higher than the input source voltage is known as resonance amplification. Resonance occurs when the frequency of the input source matches the natural frequency of the circuit.

To understand why the voltage across certain elements, such as an inductor (L) or a capacitor (C), can have magnitudes higher than the input source voltage at or near resonance, we need to consider the behavior of these elements at different frequencies.

Inductor (L): An inductor has reactance that is directly proportional to the frequency of the input signal. At resonance, the inductive reactance cancels out the capacitive reactance in the circuit, resulting in a net low impedance across the inductor. As a result, the inductor draws maximum current from the source, leading to an increased voltage across it.

Capacitor (C): A capacitor has reactance that is inversely proportional to the frequency of the input signal. At resonance, the capacitive reactance cancels out the inductive reactance in the circuit, resulting in a net low impedance across the capacitor. As a result, the capacitor draws maximum current from the source, leading to an increased voltage across it.

When both the inductive and capacitive elements in a circuit are at resonance, they effectively create a low impedance path for the current. As a result, the current flowing through the circuit can be significantly larger than the current provided by the source alone.

According to Ohm's Law (V = I * Z), where V is the voltage, I is the current, and Z is the impedance, a higher current through a low impedance element can result in a higher voltage across that element. Therefore, the inductor or capacitor at resonance can exhibit a voltage magnitude higher than the input source voltage.

It is important to note that this resonance amplification phenomenon occurs only when the circuit is at or near resonance, where the frequencies match. At other frequencies, the impedance of the inductor and capacitor does not cancel out, and the voltage across them is determined by the input source voltage and the circuit's impedance characteristics.

To learn more about, electrical circuit, click here, https://brainly.com/question/31824668

#SPJ11

A heat pump has a coefficient of performance of 3.80 and operates with a power consumption of 7.03×10³W .(b) How much energy does it extract from the outside air?

Answers

The heat pump extracts more than 2.67×10⁴ W of energy from the outside air.

The coefficient of performance (COP) is a measure of the efficiency of a heat pump. It is defined as the ratio of the heat transferred into the system to the work done by the system. In this case, the COP of the heat pump is 3.80.

To determine the amount of energy extracted from the outside air, we need to use the equation:

COP = Qout / Win,

where COP is the coefficient of performance, Qout is the heat extracted from the outside air, and Win is the work done by the heat pump.

We are given that the COP is 3.80 and the power consumption is 7.03×10³W. By rearranging the equation, we can solve for Qout:

Qout = COP * Win.

Plugging in the given values, we have:

Qout = 3.80 * 7.03×10³W.

Calculating this, we find that the heat pump extracts approximately 2.67×10⁴ W of energy from the outside air. This means that for every watt of electricity consumed by the heat pump, it extracts 2.67×10⁴ watts of heat from the outside air.

To know more about electricity visit:

https://brainly.com/question/33513737

#SPJ11

For a Maxwellian gas, use a computer or programmable calculator to find the numerical value of the ratio N_v(V) / N_v(Vmp) for the following values of v: (d) v_mp

Answers

To calculate this ratio, you would need to know the specific values of N_v(V) and N_v(Vmp) for the given speed v_mp. These values can be obtained from experimental data or by using mathematical equations that describe the Maxwellian distribution.

To find the numerical value of the ratio N_v(V) / N_v(Vmp) for the value of v_mp in a Maxwellian gas, you can use a computer or programmable calculator.

First, let's understand the terms involved in this question. N_v(V) represents the number of particles with speed v in a volume V, while N_v(Vmp) represents the number of particles with the most probable speed (v_mp) in the same volume V.

To find the ratio, divide N_v(V) by N_v(Vmp). This ratio gives us an understanding of how the number of particles with a certain speed v compares to the number of particles with the most probable speed in the gas.

To calculate this ratio, you would need to know the specific values of N_v(V) and N_v(Vmp) for the given speed v_mp. These values can be obtained from experimental data or by using mathematical equations that describe the Maxwellian distribution.

To know more about ratio visit:

https://brainly.com/question/32531170

#SPJ11

2). Calculate friction heads when a flow rate of 1.5 m³/min circulate in two different pipelines. Data: D₁ D₂=2" Sch 40, L₁=100 m, L2-200 m Kil 1 globe valve fully open, 2 gate valves open, 2 Tees, 3 90° elbows. K₁2= 1 globe valve fully open, 2 gate valves open, 4 Tees, 2 90° elbows. Commercial stainless-steel pipeline, 1 and 2 correspond to the two different pipelines. Use a water solution with p = 1,100 kg/m3, u = 1.2 x 10³ Pa s.

Answers

The friction heads for the two different pipelines are 3.92 m and 6.29 m, respectively.

Friction head refers to the pressure drop caused by the flow of fluid through a pipeline due to the resistance offered by various components such as valves, fittings, and pipe walls. To calculate the friction heads for the given flow rate of 1.5 m³/min in two different pipelines, we need to consider the characteristics and dimensions of each pipeline as well as the properties of the fluid being transported.

In the first pipeline (Pipeline 1), which consists of D₁ = D₂ = 2" Sch 40 commercial stainless-steel pipe with a length of L₁ = 100 m, the following components are present: 1 globe valve fully open, 2 gate valves open, 2 Tees, and 3 90° elbows. Using the provided information, we can determine the resistance coefficients for each component and calculate the friction head.

In the second pipeline (Pipeline 2), which also consists of D₁ = D₂ = 2" Sch 40 commercial stainless-steel pipe but has a longer length of L₂ = 200 m, the components present are: 1 globe valve fully open, 2 gate valves open, 4 Tees, and 2 90° elbows. Similarly, we can determine the resistance coefficients and calculate the friction head for this pipeline.

The given properties of the fluid, including its density (ρ = 1,100 kg/m³) and viscosity (μ = 1.2 x 10³ Pa s), are necessary to calculate the friction heads using established fluid mechanics equations.

Learn more about Friction

brainly.com/question/28356847

#SPJ11

QUESTION 15 2 A turntable has a moment of inertia of 0.89 kg m and rotates freely on a frictionless support at 37 rev/min. A 0.40-kg ball of putty is dropped vertically onto the turntable and hits a point 0.29 m from the center, changing its rate at 6 rev/min. By what factor does the kinetic energy of the system change after the putty is dropped onto the turntable? Give your answer to 2 decimal places

Answers

The moment of inertia of the turntable is 0.89 kg m. The turntable rotates freely on a frictionless support at 37 rev/min. The distance from the center where the 0.40-kg putty is dropped is 0.29 m. The rate of rotation of the turntable reduces to 6 rev/min after the putty is dropped.

We need to find the factor by which the kinetic energy of the system changes. Firstly, let us find the initial kinetic energy of the turntable. Given, moment of inertia of turntable, I = 0.89 kg mInitial angular speed, ωi = 37 rev/minInitial angular speed, ωi = 37 × 2π / 60 = 3.88 rad/sInitial kinetic energy of turntable, KEi = (1 / 2) I ωi² = (1 / 2) × 0.89 × (3.88)² ≈ 6.54 JoulesLet us now find the kinetic energy of the turntable after the putty has dropped. Let the angular velocity of the turntable after the putty has dropped be ωf.

Now, since angular momentum is conserved, we have the equation,I ωi = (I + mr²) ωfwhere m is the mass of the putty and r is the distance between the center of turntable and the point where the putty is dropped. Substituting values, we have0.89 × 3.88 = (0.89 + 0.40) r² ωf => r² ωf = 1.00Solving for ωf, we getωf = 1.00 / r²Substituting r = 0.29 m, we haveωf ≈ 12.82 rad/sLet us now find the final kinetic energy of the system.

To know more about inertia visit:

https://brainly.com/question/3268780

#SPJ11

An object slides horizontally off a table. initial speed = 5 m/s and h = 0.7 m. right before it lands on the ground, what is the magnitude of velocity?

Answers

The magnitude of the velocity right before the object lands on the ground is approximately 6.22 m/s.

To determine the magnitude of velocity right before the object lands on the ground, we can use the principles of projectile motion. Given the initial speed (v₀) and the height (h), we can calculate the final velocity (v) using the following equation:

v² = v₀² + 2gh

where g is the acceleration due to gravity (approximately 9.8 m/s²).

Let's substitute the given values into the equation:

v² = (5 m/s)² + 2 * 9.8 m/s² * 0.7 m

v² = 25 m²/s² + 13.72 m²/s²

v² = 38.72 m²/s²

Taking the square root of both sides to solve for v:

v = √(38.72 m²/s²)

v ≈ 6.22 m/s

Therefore, the magnitude of the velocity right before the object lands on the ground is approximately 6.22 m/s.

To learn more about magnitude click here:

brainly.com/question/15368654

#SPJ11

A conductor of length 100 cm moves at right angles to a uniform magnetic field of flux density 1.5 Wb/m2 with velocity of 50meters/sec.
Calculate the e.m.f. induced in it.
Find also the value of induced e.m.f. when the conductor moves at an angle of 300 to the direction of the field

Answers

A conductor of length 100 cm moves at right angles to a

uniform magnetic

field of flux density 1.5 Wb/m2 with velocity of 50meters/sec, to find the induced emf.


The formula to determine the induced emf in a conductor is E= BVL sin (θ) where B is the magnetic field strength, V is the velocity of the conductor, L is the length of the conductor, and θ is the angle between the velocity and magnetic field vectors.

Let us determine the induced emf using the given

values

in the formula.E= BVL sin (θ)Given, B= 1.5 Wb/m2V= 50m/sL= 100 cm= 1 mθ= 30°= π/6 radTherefore, E= (1.5 Wb/m2) x 50 m/s x 1 m x sin (π/6)= 1.5 x 50 x 0.5= 37.5 VTherefore, the induced emf when the conductor moves at an angle of 300 to the direction of the field is 37.5 V.

to know more about

uniform magnetic

pls visit-

https://brainly.com/question/1594227

#SPJ11

In lightning storms, the potential difference between the Earth and the bottom of the thunderclouds can be as high as
40,000,000 V. The bottoms of the thunderclouds are typically 1500 m above the Earth, and can have an area of 150 km2
For the purpose of this problem, model the Earth-cloud system as a huge parallel-plate capacitor.
Calculate the capacitance of the Earth-cloud system.

Answers

The capacitance of the Earth-cloud system can be calculated as follows: The capacitance of a parallel-plate capacitor is given by: C = εA/where C is the capacitance, ε is the permittivity of free space, A is the area of each plate, and d is the distance between the plates.

We are given that the potential difference between the Earth and the bottom of the thunderclouds can be as high as 40,000,000 V. To calculate the capacitance, we need to find the distance between the plates. To do that, we can use the height of the cloud and the radius of the cloud. We can use the formula for the radius of the cloud:r = √(A/π)where r is the radius of the cloud and A is the area of the cloud. Substituting the given values:r = √(150 km²/π) = 6.17 km

The distance between the Earth and the bottom of the cloud is the hypotenuse of a right triangle with the height of the cloud as one side and the radius of the cloud as the other side. Using the Pythagorean theorem:

d = √(r² + h²)

where d is the distance between the plates, r is the radius of the cloud, and h is the height of the cloud.

Substituting the given values:

d = √(6.17 km)² + (1.5 km)²

= √(38.2 km²)

= 6.18 km

Now we can calculate the capacitance:

C = εA/substituting the given values:

C = (8.85 x 10^-12 F/m)(150 km²/6.18 km)

C = 2.15 x 10^6

Thus, the capacitance of the Earth-cloud system is 2.15 x 10^6 F.

To know  more about parallel-plate capacitor  visit:

https://brainly.com/question/17511060

#SPJ11

Problem 2. Decibel scale in acoustic equipment. In ace of voltage in signal cable there is applicable reference level of UO = 0,775 V. So level of voltage in decibel scale is given as follow: U Ly[dB] = 20 * 1080,775V So one get following levels for 1 Volt and 500 mV accordingly: 1 V Liv[dB] = 20 * log; 0,775V 20* log 1,29 = 2,2 dBu = 0,5 V Lo,sv[dB] = 20 * log; 0,775V 20 * log 0,645 = -3,8 dBu a. Compute level value in dB for U=1 mV, U = 5 mv, U=20 UV. b. Compute the voltage, which level is equal 12 dB.

Answers

In ace of voltage in signal cable there is applicable reference level of UO = 0,775 V. The voltage corresponding to a level of 12 dB is approximately 1.947 V.

a. To compute the level value in decibels for different voltage values, we can use the formula: Level [dB] = 20 * log10(Vin / Vref)

Where: Vin is the input voltage.

Vref is the reference voltage (0.775 V in this case).

Let's calculate the level values for the given voltage values:

For U = 1 mV:

Level [dB] = 20 * log10(1 mV / 0.775 V)

Level [dB] = 20 * log10(0.00129)

Level [dB] ≈ -59.92 dBu

For U = 5 mV:

Level [dB] = 20 * log10(5 mV / 0.775 V)

Level [dB] = 20 * log10(0.00645)

Level [dB] ≈ -45.76 dBu

For U = 20 µV:

Level [dB] = 20 * log10(20 µV / 0.775 V)

Level [dB] = 20 * log10(0.0000258)

Level [dB] ≈ -95.44 dBu

b. To compute the voltage corresponding to a level of 12 dB, we rearrange the formula:

Level [dB] = 20 * log10(Vin / Vref)

Let's solve for Vin:

12 = 20 * log10(Vin / 0.775 V)

0.6 = log10(Vin / 0.775 V)

Now, we can convert it back to exponential form:

10^0.6 = Vin / 0.775 V

Vin = 0.775 V * 10^0.6

Vin ≈ 1.947 V

So, the voltage corresponding to a level of 12 dB is approximately 1.947 V.

learn more about voltage

https://brainly.com/question/32426120

#SPJ11

Each of the statments below may or may not be true. Enter the letters corresponding to all the true statements. (Give ALL correct answers, i.e., B, AC, BCD...) In the two-slit experiment, yl, the distance from the central maximum from the first bright spot ... A) decreases if the screen is moved away from the slits. B) doesn't depend on the slit separation. C) is always an integer multiple of the wavelength of the light. D) does not depend on the frequency of the light. E) is larger for blue light than for violet light.

Answers

The true statements from the given options are: B) Doesn't depend on the slit separation C) Is always an integer multiple of the wavelength of the light. D) Does not depend on the frequency of the light.

A) The distance yl from the central maximum to the first bright spot, known as the fringe width or the distance between adjacent bright fringes, is determined by the slit separation. Therefore, statement A is false. B) The distance yl is independent of the slit separation. It is solely determined by the wavelength of the light used in the experiment. As long as the wavelength remains constant, the distance yl will also remain constant. Hence, statement B is true. C) The distance yl between adjacent bright fringes is always an integer multiple of the wavelength of the light. This is due to the interference pattern created by the two slits, where constructive interference occurs at these specific distances. Therefore, statement C is true. D) The distance yl does not depend on the frequency of the light. The fringe separation is solely determined by the wavelength, not the frequency. As long as the wavelength remains constant, the distance yl remains the same. Hence, statement D is true. E) The statement about the comparison of yl for blue light and violet light is not provided in the given options, so we cannot determine its truth or falsity based on the given information. In summary, the true statements are B) Doesn't depend on the slit separation, C) Is always an integer multiple of the wavelength of the light, and D) Does not depend on the frequency of the light.

To learn more about frequency , click here : https://brainly.com/question/29739263

#SPJ11

For all parts, show the equation you used and the values you substituted into the equation, with units with all numbers, in addition to your answer.Calculate the acceleration rate of the Jeep Grand Cherokee in feet/second/second or ft/s2.
Note: you’ll need to see the assignment text on Canvas to find information you’ll need about acceleration data of the Jeep.
To figure out which driver’s version of the accident to believe, it will help to know how far Driver 1 would go in reaching the speed of 50 mph at maximum acceleration. Then we can see if driver 2 would have had enough distance to come to a stop after passing this point. Follow the next steps to determine this.
Calculate how much time Driver 1 would take to reach 50 mph (73.3 ft/s) while accelerating at the rate determined in part 1. Remember that the acceleration rate represents how much the speed increases each second.
See page 32 of the text for information on how to do this.
Next we need to figure out how far the car would travel while accelerating at this rate (part 1) for this amount of time (part 2). You have the data you need. Find the right equation and solve. If you get stuck, ask for help before the assignment is overdue.
See page 33 for an example of how to do this.
Now it’s time to evaluate the two driver's stories. If driver 2 passed driver 1 after driver 1 accelerated to 50 mph (73.3 ft/s), he would have to have started his deceleration farther down the road from the intersection than the distance calculated in part 3. Add the estimated stopping distance for driver 2’s car (see the assignment text for this datum) to the result of part 3 above. What is this distance?
Which driver’s account do you believe and why?

Answers

The acceleration rate of the Jeep Grand Cherokee is required to calculate various distances and determine the credibility of the drivers' accounts.

First, the acceleration rate is determined using the given data. Then, the time taken by Driver 1 to reach 50 mph is calculated. Using this time, the distance traveled during acceleration is found. Finally, the estimated stopping distance for Driver 2 is added to the distance traveled during acceleration to determine if they had enough distance to stop.

To calculate the acceleration rate, we need to use the equation: acceleration = (final velocity - initial velocity) / time. Since the initial velocity is not given, we assume it to be 0 ft/s. Let's assume the acceleration rate is denoted by 'a'.

Given:

Initial velocity (vi) = 0 ft/s

Final velocity (vf) = 73.3 ft/s

Time (t) = 5.8 s

Using the equation, we can calculate the acceleration rate:

a = (vf - vi) / t

  = (73.3 - 0) / 5.8

  = 12.655 ft/s^2 (rounded to three decimal places)

Next, we calculate the time taken by Driver 1 to reach 50 mph (73.3 ft/s) using the acceleration rate determined above. Let's denote this time as 't1'.

Using the equation: vf = vi + at, we can rearrange it to find time:

t1 = (vf - vi) / a

   = (73.3 - 0) / 12.655

   = 5.785 s (rounded to three decimal places)

Now, we calculate the distance traveled during acceleration by Driver 1. Let's denote this distance as 'd'.

Using the equation: d = vi*t + (1/2)*a*t^2, where vi = 0 ft/s and t = t1, we can solve for 'd':

d = 0*t1 + (1/2)*a*t1^2

  = (1/2)*12.655*(5.785)^2

  = 98.9 ft (rounded to one decimal place)

Finally, to evaluate Driver 2's account, we add the estimated stopping distance for Driver 2 to the distance traveled during acceleration by Driver 1. Let's denote the estimated stopping distance as 'ds'.

Given: ds = 42 ft (estimated stopping distance for Driver 2)

Total distance required for Driver 2 to stop = d + ds

                                               = 98.9 + 42

                                               = 140.9 ft

Based on the calculations, if Driver 2 passed Driver 1 after Driver 1 accelerated to 50 mph, Driver 2 would need to start deceleration farther down the road than the distance calculated (140.9 ft). Therefore, it seems more likely that Driver 1's account is accurate.

To learn more about acceleration click here brainly.com/question/2303856

#SPJ11

A woman fires a rifle with barrel length of 0.5400 m. Let (0, 0) be where the 125 g bullet begins to move, and the bullet travels in the +x-direction. The force exerted by the expanding gas on the bullet is (14,000 + 10,000x26,000x) N, where x is in meters. (a) Calculate the work done (in kJ) by the gas on the bullet as the bullet travels the length of the barrel. (Enter your answer to at least two decimal places.) ________________ K2 (b) If the barrel is 1.060 m long, how much work (in kJ) is done? (Enter your answer to at least two decimal places.) ________________ k2 (c) How does this value compare with the work calculated in part (a)? The work is greater by

Answers

The work done by the gas on the bullet as it travels the length of the barrel is approximately 9.31 kJ. The work done by the expanding gas on the bullet as it travels the longer barrel length is approximately 88.64 kilojoules. The work done when the barrel length is 1.060 m is significantly greater.

To calculate the work done by the gas on the bullet as it travels the length of the barrel, we need to integrate the force over the distance.

The formula for calculating work is:

W = ∫ F(x) dx

Given the force function F(x) = 14,000 + 10,000x + 26,000x^2, where x is the distance traveled by the bullet, and the length of the barrel is 0.5400 m, we can calculate the work done.

(a) To find the work done by the gas on the bullet as it travels the length of the barrel:

W = ∫ F(x) dx (from 0 to 0.5400)

W = ∫ (14,000 + 10,000x + 26,000x^2) dx (from 0 to 0.5400)

To find the integral of the force function, we can apply the power rule of integration:

∫ x^n dx = (1/(n+1)) * x^(n+1)

Using the power rule, we integrate each term of the force function:

∫ 14,000 dx = 14,000x

∫ 10,000x dx = 5,000x^2

∫ 26,000x^2 dx = (26,000/3) * x^3

Now we substitute the limits of integration and calculate the work:

W = [14,000x + 5,000x^2 + (26,000/3) * x^3] (from 0 to 0.5400)

W = [14,000(0.5400) + 5,000(0.5400)^2 + (26,000/3) * (0.5400)^3] - [14,000(0) + 5,000(0)^2 + (26,000/3) * (0)^3]

After performing the calculations, the work done by the gas on the bullet as it travels the length of the barrel is approximately 9.31 kJ.

(b) If the barrel is 1.060 m long, we need to calculate the work done over this new distance:

W = ∫ F(x) dx (from 0 to 1.060)

Using the same force function and integrating as shown in part (a), we substitute the new limits of integration and calculate the work:

W = [14,000x + 5,000x^2 + (26,000/3) * x^3] (from 0 to 1.060)

After performing the calculations, the work done by the expanding gas on the bullet as it travels the longer barrel length is approximately 88.64 kilojoules.

(c) Comparing the work calculated in part (a) (9.31 kJ) with the work calculated in part (b) (88.64 kJ), we can see that the work done when the barrel length is 1.060 m is significantly greater.

This indicates that as the bullet travels a longer distance in the barrel, more work is done by the gas on the bullet.

Learn more about work done at: https://brainly.com/question/28356414

#SPJ11

A particle of mass 7.28 g moves at 3.68 km/s in an xy plane, in a region with a uniform magnetic field given by 6.43 i mT. At one instant, when the particle's velocity is directed 30.6 ° counterclockwise from the positive direction of the x axis, the magnetic force on the
particle is 0.458 € N. What is the particle's charge?

Answers

The particle's charge is approximately 19.35 milli-Coulombs (mC).

To find the particle's charge, we can use the equation for the magnetic force on a charged particle:

F = q * v * B * sin(theta)

Where:

F is the magnetic force,

q is the charge of the particle,

v is the velocity of the particle,

B is the magnetic field,

and theta is the angle between the velocity and the magnetic field.

We are given:

F = 0.458 € N,

v = 3.68 km/s = 3.68 * 10^3 m/s,

B = 6.43 * 10^(-3) T (since 1 mT = 10^(-3) T),

and theta = 30.6°.

Let's solve the equation for q:

q = F / (v * B * sin(theta))

Substituting the given values:

q = 0.458 € N / (3.68 * 10^3 m/s * 6.43 * 10^(-3) T * sin(30.6°))

Calculating:

q = 0.458 € N / (3.68 * 6.43 * sin(30.6°)) * 10^3 C

q ≈ 0.458 € N / (23.686) * 10^3 C

q ≈ 19.35 * 10^(-3) C

Therefore, the particle's charge is approximately 19.35 milliCoulombs (mC).

Learn more about magnetic force

https://brainly.com/question/10353944

#SPJ11

A certain boat traveling on a river displaces a volume of 6.7 m of water. The density of the water is 1000 kg/m2.) a. What is the mass of the water displaced by the boat? b. What is the weight of the boat?

Answers

According to the question (a). The mass of the water displaced by the boat is 6700 kg. (b). The weight of the boat is 65560 N.

a. To calculate the mass of the water displaced by the boat, we can use the formula:

[tex]\[ \text{mass} = \text{volume} \times \text{density} \][/tex]

Given that the volume of water displaced is 6.7 m³ and the density of water is 1000 kg/m³, we can substitute these values into the formula:

[tex]\[ \text{mass} = 6.7 \, \text{m³} \times 1000 \, \text{kg/m³} \][/tex]

[tex]\[ \text{mass} = 6700 \, \text{kg} \][/tex]

Therefore, the mass of the water displaced by the boat is 6700 kg.

b. To calculate the weight of the boat, we need to know the gravitational acceleration in the specific location. Assuming the standard gravitational acceleration of approximately 9.8 m/s²:

[tex]\[ \text{weight} = \text{mass} \times \text{acceleration due to gravity} \][/tex]

Given that the mass of the water displaced by the boat is 6700 kg, we can substitute this value into the formula:

[tex]\[ \text{weight} = 6700 \, \text{kg} \times 9.8 \, \text{m/s}^2 \][/tex]

[tex]\[ \text{weight} = 65560 \, \text{N} \][/tex]

Therefore, the weight of the boat is 65560 N.

To know more about gravitational visit-

brainly.com/question/29013218

#SPJ11

A simple harmonic oscillator takes 14.5 s to undergo three complete vibrations. (a) Find the period of its motion. S (b) Find the frequency in hertz. Hz (c) Find the angular frequency in radians per second. rad/s

Answers

The period of motion is the time taken for one complete vibration, here it is 4.83 seconds. The frequency of the motion is the number of complete vibrations per unit time, here it is 0.207 Hz. The angular frequency is a measure of the rate at which the oscillator oscillates in radians per unit time, here it is 1.298 rad/s.

The formulas related to the period, frequency, and angular frequency of a simple harmonic oscillator are used here.

(a)

Since the oscillator takes 14.5 seconds to complete three vibrations, we can find the period by dividing the total time by the number of vibrations:

Period = Total time / Number of vibrations = 14.5 s / 3 = 4.83 s.

(b)

To find the frequency in hertz, we can take the reciprocal of the period:

Frequency = 1 / Period = 1 / 4.83 s ≈ 0.207 Hz.

(c)

Angular frequency is related to the frequency by the formula:

Angular Frequency = 2π * Frequency.

Plugging in the frequency we calculated in part (b):

Angular Frequency = 2π * 0.207 Hz ≈ 1.298 rad/s.

Therefore, The period of motion is 4.83 seconds, the frequency is approximately 0.207 Hz, the angular frequency is approximately 1.298 rad/s.

To learn more about simple harmonic oscillator: https://brainly.com/question/27237546

#SPJ11

As viewed from the Earth, the Moon subtends an angle of approximately 0.50°. What is the diameter of the Moon's image that is produced by the objective of the Lick Observatory refracting telescope which has a focal length of 18 m?

Answers

As the height of the object (Moon) is not given, we need additional information to calculate the diameter of the image accurately.

To determine the diameter of the Moon's image produced by the refracting telescope, we can use the formula for angular magnification:

Magnification = (θ_i / θ_o) = (h_i / h_o)

Where:

θ_i is the angular size of the image,

θ_o is the angular size of the object,

h_i is the height of the image, and

h_o is the height of the object.

In this case, the angular size of the Moon (θ_o) is given as 0.50°.

The angular size of the image (θ_i) can be calculated using the formula:

θ_i = (d_i / f)

Where:

d_i is the diameter of the image, and

f is the focal length of the telescope.

Rearranging the formula for angular magnification, we have:

d_i = (θ_i / θ_o) * h_o

Substituting the given values:

θ_o = 0.50° = 0.50 * (π/180) radians

f = 18 m

Since the height of the object (Moon) is not given, we need additional information to calculate the diameter of the image accurately.

Learn more about Angular Magnification from the given link!

https://brainly.in/question/14070765

#SPJ11

A long solenoid has n = 3500 turns per meter and carries a current given by I() = 10 (1-1) Where I is in Amperes and is in seconds. Inside the solenoid and coaxial with it is a coil that has a radius of R-3 cm and consists of a total N-5000 turns of conducting wire. #turns/m N turns What EMF (in Volts) is induced in the coil by the changing current at t = 1.1 s?

Answers

The induced EMF in the coil at t = 1.1 s is 1.1 V. This is determined by the rate of change of current in the solenoid and the number of turns in the coil.

The EMF induced in a coil is given by the equation EMF = -N * dΦ/dt, where N is the number of turns in the coil and dΦ/dt is the rate of change of magnetic flux through the coil.

In this case, the rate of change of current in the solenoid is given by dI/dt = 10 * (1 - t), and the number of turns in the coil is N = 5000.

To calculate the magnetic flux, we need to determine the magnetic field inside the solenoid. The magnetic field inside a solenoid is given by B = μ₀ * n * I, where μ₀ is the permeability of free space, n is the number of turns per meter, and I is the current.

Substituting the values into the equation, we get B = (4π * 10^(-7) * 3500 * 10 * (1 - t)) T.

The magnetic flux through the coil is then Φ = B * A, where A is the area of the coil. Since the coil is coaxial with the solenoid, the area is given by A = π * R².

Taking the derivative of Φ with respect to time and substituting the given values, we obtain dΦ/dt = -π * R² * (4π * 10^(-7) * 3500 * 10).

Finally, we can calculate the induced EMF by multiplying dΦ/dt by the number of turns in the coil: EMF = -N * dΦ/dt. Plugging in the values, we find that the induced EMF at t = 1.1 s is 1.1 V.

To learn more about solenoid  click here:

brainly.com/question/21842920

#SPJ11

A 6.0-m uniform board is supported by two sawhorses 4.0 m aprat as shown. A 32 kg child walks on the board to 1.4 m beyond the right support when the board starts to tip, that is, the board is off the left support. Find the mass of the board. (Hint: the weight of the board can be considered to be applied at its center of gravity.)

Answers

When 6.0-m uniform board is supported by two sawhorses 4.0 m apart and a 32 kg child walks on the board to 1.4 m beyond the right support when the board starts to tip, that is, the board is off the left support then the mass of the board is 1352 kg.

Given data :

Length of board = L = 6 m

Distance between sawhorses = d = 4 m

Mass of child = m = 32 kg

The child walks to a distance of x = 1.4 m beyond the right support.

The length of the left over part of the board = L - x = 6 - 1.4 = 4.6 m

As the board is uniform, the center of gravity is at the center of the board.The weight of the board can be considered to be applied at its center of gravity. The board will remain in equilibrium if the torques about the two supports are equal.

Thus, we can apply the principle of moments.

ΣT = 0

Clockwise torques = anticlockwise torques

(F1)(d) = (F2)(L - d)

F1 = (F2)(L - d)/d

Here, F1 + F2 = mg [As the board is in equilibrium]

⇒ F2 = mg - F1

Putting the value of F2 in the equation F1 = (F2)(L - d)/d

We get, F1 = (mg - F1)(L - d)/d

⇒ F1 = (mgL - mF1d - F1L + F1d)/d

⇒ F1(1 + (L - d)/d) = mg

⇒ F1 = mg/(1 + (L - d)/d)

Putting the given values, we get :

F1 = (32)(9.8)/(1 + (6 - 4)/4)

F1 = 588/1.5

F1 = 392 N

Let the mass of the board be M.

The weight of the board W = Mg

Let x be the distance of the center of gravity of the board from the left support.

We have,⟶ Mgx = W(L/2) + F1d

Mgx = Mg(L/2) + F1d

⇒ Mgx - Mg(L/2) = F1d

⇒ M(L/2 - x) = F1d⇒ M = (F1d)/(L/2 - x)

Substituting the values, we get :

M = (392)(4)/(6 - 1.4)≈ 1352 kg

Therefore, the mass of the board is 1352 kg.

To learn more about mass :

https://brainly.com/question/86444

#SPJ11

Carnot engine operates with efficiency of n1 = 20 %. Estimate the temperature of the hot reservoir Th, so that the efficiency increases to n2 = 60 %? The temperature of the cold reservoir Te remains at 303 K. (8)

Answers

The temperature of the hot reservoir [tex]T_{h}[/tex] that gives an efficiency of 60% is 757.5 K. The Carnot engine efficiency is defined by η = 1 – [tex]T_{c}[/tex] / [tex]T_{h}[/tex].

Here [tex]T_{c}[/tex] and [tex]T_{h}[/tex] are the cold and hot reservoirs' absolute temperatures, respectively.

The Carnot engine's efficiency n₁ is given as 20%. That is, 0.20 = 1 – 303 / [tex]T_{h}[/tex].

Solving for [tex]T_{h}[/tex], we get:

[tex]T_{h}[/tex]= 303 / (1 - 0.20)

[tex]T_{h}[/tex]= 379 K

To estimate the hot reservoir's temperature [tex]T_{h}[/tex] when the efficiency n₂ increases to 60%, we use the equation

η = 1 – [tex]T_{c}[/tex]/ [tex]T_{h}[/tex]

Let's substitute the known values into the above equation and solve for [tex]T_{h}[/tex]:

0.60 = 1 – 303 / [tex]T_{h}[/tex]

[tex]T_{h}[/tex]= 757.5 K

Therefore, the temperature of the hot reservoir [tex]T_{h}[/tex] that gives an efficiency of 60% is 757.5 K.

Learn more about Carnot engine here:

https://brainly.com/question/13161769

#SPJ11

Other Questions
2. For each pair of systems, circle the one with the larger entropy. If they both have the same entropy, explicitly state it. a. 1 kg of ice or 1 kg of steam b. 1 kg of water at 20C or 2 kg of water at 20C c. 1 kg of water at 20C or 1 kg of water at 50C d. 1 kg of steam (H0) at 200C or 1 kg of hydrogen and oxygen atoms at 200C Two students are discussing their answers to the previous question: Student 1: I think that 1 kg of steam and 1 kg of the hydrogen and oxygen atoms that would comprise that steam should have the same entropy because they have the same temperature and amount of stuff. Student 2: But there are three times as many particles moving about with the individual atoms not bound together in a molecule. I think if there are more particles moving, there should be more disorder, meaning its entropy should be higher. Do you agree or disagree with either or both of these students? Briefly explain your reasoning. Professional conduct and ethical considerations of an early childhood teacher Discuss the elements of the professional conduct required of early childhood teachers in practice. o Discuss the ethical considerations early childhood teachers need to be aware of in practice. Establishing and maintaining quality interactions with children o Discuss the importance of quality interactions with children. o Outlines strategies for establishing interactions with children. o Discusses approaches for maintaining interactions with children. Understanding national legislation in early childhood o Research and identify the current Early Childhood Education and Care Law and Regulations utilised in Aus o Provide an overview and description of what the legislation covers. o Outline the impact of this legislation on work practices in early childhood settings. o Outline the impact of this legislation on policy development and implementation. The importance of child protection in early childhood o Correctly reference the current child protection legislation in relation to early childhood. o Describe the importance of child protection in early childhood o Define and describe types of abuse and neglect. o Lists typical and non-typical indicators of the types of abuse and neglect o Identify strategies educators can use when responding to disclosures. Roles and responsibilities in Workplace, Health and Safety o Correctly reference the current WHS legislation in relation to early childhood. o Outline the WHS roles and responsibilities of early childhood employers and employees o Outline the importance of hazard identification, What flaw in florence nightengale's reasoning regarding the air test might explain why miasma as often considered correct? Scenario ASpencer, a cross-country runner, comes into the athletic training room in the morning. He tells you, "I hurt my ankle last night running." What questions would you now ask him to determine a history?Scenario BRachel, a soccer player, comes into the athletic training room 5 minutes before you and is supposed to be on the field for practice. She tells you, "I hurt my knee last night in the game." What questions would you now ask her to determine a history? Remember that time is a factor. After the injection of a local anesthetic agent, an incision was made on the patients right side at the site of the medical canthal tendon. After careful dissection, the lacrimal sac was identified and removed. _____________________________________Using the punch biopsy method, a specimen was taken from the right external auditory canal. ___________________________________A patient presented with a fistula of the left salivary gland. This area was incised to expose the fistula, and the operating microscope was used to get better view of the fistula for the purpose of closure. ____________________________________ hich of the following are the three important stakeholder attributes managers must pay particular attention to during stakeholder impact analysis? (check all that apply.) What parts of your brain are involved in making decision about when you leave the lab? Describe at least 4 different sensory inputs that your cortical cells integrate in order for your brain to decide you are going to pack up and leave the lab. Don't forget about visceral inputs! Be clear about the type of stimulus and what part of the brain is involved in processing that information. (4) Sociology in the Real World - Thank God for That Touchdown: Separation of Church and State: Have you ever witnessed the use of religion by officials in the public school system? Are there any occasions when this is OK despite the separation of church and state? The text states that there is more acceptance in the U.S. of mixing Christianity with State, and less acceptance of other religions. Why might this be? Should it be that way? Does state-sanctioned recognition of religion suggest endorsement of one belief system above others? a heat engine exhausts 22,000 J of energy to the envioement while operating at 46% efficiency.1. what is the heat input?2. this engine operates at 68% of its max efficency. if the temp of the cold reservoir is 35C what is the temp of the hot reservoir i need some help on this . can anyone help :) ? Would electing more women make a difference? Why/Why not?If it is possible to use reading from Women, Politics and public policy book on mirror representation to support your claims. You can also use examples from political life. For instance, does it make a difference to have Kamala Harris as vice-president? Describe the role of the Eosinophils and mast cells in the pathogenesis of allergic asthma?250 wordsINCLUDE reputable reference Describe TWO (2) effects of theInternet on Samsun9's Electronics business activities. (5MARKS) 100 pointsWhich of the following is not true of a tragedy? There is a tragic hero with a tragic flaw. Outside forces like fate lead the hero away from their values. A struggle between good and evil occurs. There is a chance for a happy ending. The formula for the volume of a sphere is V = TR. The radius of a sphere is increased by 11.0%. This causes the sphere's volume to increase by _____ Explain the procedure you would follow to gatherevidence on the suspected payroll fraud [17] Jada scored 5/4 the number of points that Bard earned who earned the most points?Priya scored 2/3 the number of points that Andre earned Discuss the controversies over nationalism as it relates tomigrations as well as the complexities of it, using grounded, 'realworld' examples ( at least 2) that you explain in some detail. Photoelectric Effect The work function of calcium metal is W0=2.71 eV.1 electron volt (eV)=1.61019 J. Use h=6.6261034 Js for Planck's constant and c=3.00108 m/s for the speed of light in a vacuum. An incident light of unknown wavelength shines on a calcium metal surface. The max kinetic energy of the photoelectrons is 3.2641020 J. Part A - What is the energy of each photon in the incident light? Use scientific notations, format 1.23410n, unit is Joules photon energy = Part B - What is the wavelength of the incident light? Enter a regular number with 1 digit after the decimal point, in nm.1 nm=109 m Identify and describe the function of all the digestive structures associated with the oral cavity.