Is the following statement true or false? Please justify with an
example or demonstration
If 0 is the only eigenvalue of A (matrix M3x3 (C) )
then A = 0.

Answers

Answer 1

The given statement is false. A square matrix A (m × n) has an eigenvalue λ if there is a nonzero vector x in Rn such that Ax = λx.

If the only eigenvalue of A is zero, it is called a zero matrix, and all its entries are zero. The matrix A is a scalar matrix with an eigenvalue λ if it is diagonal, and each diagonal entry is equal to λ.The matrix A will not necessarily be zero if 0 is its only eigenvalue. To prove the statement is false, we will provide an example; Let A be the following 3 x 3 matrix:

{0, 1, 0} {0, 0, 1} {0, 0, 0}A=0

is the only eigenvalue of A, but A is not equal to 0. The statement "If 0 is the only eigenvalue of A (matrix M3x3 (C)), then A = 0" is false. A matrix A (m × n) has an eigenvalue λ if there is a nonzero vector x in Rn such that

Ax = λx

If the only eigenvalue of A is zero, it is called a zero matrix, and all its entries are zero.The matrix A will not necessarily be zero if 0 is its only eigenvalue. To prove the statement is false, we can take an example of a matrix A with 0 as the only eigenvalue. For instance,

{0, 1, 0} {0, 0, 1} {0, 0, 0}A=0

is the only eigenvalue of A, but A is not equal to 0.

To know more about matrix visit:

https://brainly.com/question/29132693

#SPJ11


Related Questions

Find the cubic yards of concrete for the sidewalk (top view
pictured below, x = 63' and y = 40'), if it is 4 inches thick,
rounded to one decimal place. Assume the entire sidewalk is 4 feet
wide.

Answers

To find the cubic yards of concrete for the sidewalk, we need to calculate the volume of concrete needed. The cubic yards of concrete needed for the sidewalk is approximately 31.1 cubic yards.

First, let's calculate the area of the sidewalk in square feet. The area can be calculated by multiplying the length (x) by the width (y). In this case, the length (x) is 63 feet and the width (y) is 40 feet.

The calculation step by step to find the cubic yards of concrete for the sidewalk:

1. Calculate the area of the sidewalk.

Area = x * y = 63 ft * 40 ft = 2520 square feet

2. Convert the thickness of the sidewalk to feet.

Sidewalk Thickness = 4 inches / 12 = 1/3 feet

3. Calculate the volume of concrete needed.

Volume = Area * Thickness = 2520 square feet * (1/3) feet = 840 cubic feet

4. Convert cubic feet to cubic yards.

Cubic Yards = Volume / 27 = 840 cubic feet / 27 = 31.11 cubic yards

Therefore, rounding to one decimal place, the cubic yards of concrete needed for the sidewalk is approximately 31.1 cubic yards.

Learn more about volume of concrete visit

brainly.com/question/28419077

#SPJ11

Since the question is incomplete, so complete question is:

Find the cubic yards of concrete for the sidewalk (top view pictured below, x = 63' and y = 40'), if it is 4 inches thick, rounded to one decimal place. Assume the entire sidewalk is 4 feet wide.

Carter measured the length of his cell phone to 5.5 inches. The actual measurement is 6.2 inches. What is the percent error?​

Answers

Answer:

11.3%

Step-by-step explanation:

Percent error = (|theoretical value - expected value|)/(theoretical value)

= (|6.2-5.5|)/6.2

= 0.7/6.2

= 0.1129

= 11.3%

B Solve Problems 55-74 using augmented matrix methods 61. x1 + 2x2 = 4 2x1 + 4x₂ = −8

Answers

The given system of equations is inconsistent and has no solution.

Is the system of equations solvable using augmented matrix methods?

To solve the system of equations using augmented matrix methods, we can represent the system in matrix form as:

[tex]\left[\begin{array}{cc}1&2\\2&4\end{array}\right][/tex]  [tex]\left[\begin{array}{ccc}x_1\\x_2\end{array}\right][/tex]  = [tex]\left[\begin{array}{ccc}-4\\8\end{array}\right][/tex]

Augmented Matrix

We can write the augmented matrix as:

[tex]\left[\begin{array}{cc|c}1&2&4\\2&4&-8\end{array}\right][/tex]

Row Operations

We'll perform row operations to transform the augmented matrix into row-echelon form or reduced row-echelon form.

R2 = R2 - 2R1 (Multiply the first row by -2 and add it to the second row)

[tex]\left[\begin{array}{cc|c}1&2&4\\0&0&-16\end{array}\right][/tex]

Interpret the Result

From the row-echelon form of the augmented matrix, we can see that the second equation simplifies to 0 = -16, which is not a valid equation.

This implies that the system of equations is inconsistent and has no solution.

Therefore, the given system of equations:

x₁ + 2x₂ = 4

2x₁ + 4x₂ = -8

has no solution.

Learn more about linear equations using augmented matrix methods

brainly.com/question/31396411

#SPJ11

Solve 0.3x^2=2/5​(x−5/4​) using the quadratic formula. (Hint: Clear parentheses and then clear the fractions and decimals.) 3. Given the equation, 3x(x−1)=−10(x−2), solve the equation by a. factoring (if possible) b. completing the square and applying the square root property c. using the quadratic formula

Answers

The equation 0.3x² = (2/5)(x - 5/4) simplifies to 3x² - 4x + 5 = 0. Using the quadratic formula, we find that it has no real solutions.

To solve the equation 0.3x² = (2/5)(x - 5/4) using the quadratic formula, we first need to clear the parentheses and fractions.

Clear the parentheses
0.3x² = (2/5)(x) - (2/5)(5/4)

Simplifying, we have:
0.3x² = (2/5)x - (1/2)

Clear the fractions
Multiply the entire equation by the common denominator of 10 to eliminate the fractions.

10 * 0.3x² = 10 * (2/5)x - 10 * (1/2)

Simplifying, we get:
3x² = 4x - 5

Rearrange the equation
Move all terms to one side of the equation to obtain a quadratic equation in standard form (ax² + bx + c = 0).
3x² - 4x + 5 = 0

Now, we can use the quadratic formula to solve for x:
x = (-b ± √(b² - 4ac)) / (2a)

In this case, a = 3, b = -4, and c = 5.

Substituting these values into the quadratic formula, we get:
x = (-(-4) ± √((-4)² - 4(3)(5))) / (2(3))

Simplifying further, we have:
x = (4 ± √(16 - 60)) / 6
x = (4 ± √(-44)) / 6

Since the discriminant (b² - 4ac) is negative, the equation has no real solutions. Therefore, the equation 0.3x² = (2/5)(x - 5/4) has no real solutions.

To know more about real solutions, refer to the link below:

https://brainly.com/question/32669040#

#SPJ11

Use the rule of inference "If A implies B, then not B implies not A." to prove the following statements: (a) If an integer n is not divisible by 3, then it is not divisible by 6. (b) If vectors V₁,

Answers

A. (a) If an integer n is not divisible by 3, then it is not divisible by 6.

B. Let's prove statement (a) using the rule of inference "If A implies B, then not B implies not A."

Let A be the statement "n is divisible by 3" and B be the statement "n is divisible by 6."

We want to prove that if A is false (n is not divisible by 3), then B is also false (n is not divisible by 6).

By the contrapositive form of the rule of inference, we can rewrite the statement as follows: "If n is divisible by 6, then n is divisible by 3."

This is true because any number that is divisible by 6 must also be divisible by 3.

Therefore, by using the rule of inference "If A implies B, then not B implies not A," we have proven statement (a) to be true.

Learn more about rule of inference :

brainly.com/question/30641781

#SPJ11

What is the simplest radical form of the expression? (8x4y5)23

Answers

The simplest radical form of the expression (8x^4y^5)^(2/3) is 4∛(x^8y^10).

To find the simplest radical form of the expression (8x^4y^5)^(2/3), we can simplify the exponent and rewrite the expression using the properties of exponents.

First, let's simplify the exponent 2/3. Since the exponent is in fractional form, we can interpret it as a cube root.

∛((8x^4y^5)^2)

Next, we apply the exponent to each term within the parentheses:

∛(8^2 * (x^4)^2 * (y^5)^2)

Simplifying further:

∛(64x^8y^10)

The cube root of 64 is 4:

4∛(x^8y^10)

Therefore, the simplest radical form of the expression (8x^4y^5)^(2/3) is 4∛(x^8y^10).

for such more question on radical form

https://brainly.com/question/11680269

#SPJ8

5b) use your equation in part a to determine the cost for 60 minutes.

Answers

Based on the linear equation, y = 40 + 4x. the cost for 60 minutes is $260 since the fixed cost for the first 5 minutes or less is $40.

What is a linear equation?

A linear equation represents an algebraic equation written in the form of y = mx + b.

A linear equation involves a constant and a first-order (linear) term, where m is the slope and b is the y-intercept.

The fixed cost for the first 5 minutes or less = 40

The cost for 30 minutes = 140

Slope = (140 - 40)/(30 - 5)

= 100/25

= 4

Let the total cost = y

Let the number of minutes after the first 5 minutes = x

Linear Equation:

y = 40 + 4x

The cost for 60 minutes:

The additional minutes of usage after the first 5 minutes = 55 (60 - 5)

y = 40 + 4(55)

y = 260

= $260

Learn more about linear equations at https://brainly.com/question/28732353.

#SPJ1

What are 4 equivalent values that = 45%

Answers

Answer: 0.45, 45/100, 9/20, Any factors of the fractions.

Step-by-step explanation:

You need to provide a clear and detailed solution for the following questions: Question 1 : a) : Verify that the differential equation is exact: (-y sin(x)+7x6y³)dx+(8y7 cos(x)+3x7y²)dy = 0. b) : Find the general solution to the above differential equation. Question 2 : a) : Solve the following linear system in detailed, by using Gauss-Jordan elimination: x-3y - 5z = 2 2x + 5y-z = 1 x + 3y - 3z = -5 b) Is the system homogeneous and consistent? What about the solution type? Is it unique ? Question 3 : Let -3x - 6y=k² + 3k - 18 -6x - 3v = k²-9k +18 Question 3 : Let -3x - 6y = k² + 3k - 18 -6x - 3y = k² - 9k + 18 be a system of equations. a) : If the system is homogeneous, what is the value(s) for k ? b) : Solve the homogeneous system. Is the solution trivial? Is the solution unique ?

Answers

1a: The given differential equation is not exact.

1b: The general solution to the above differential equation is y = (x^7 - C)/(7x^6), where C is an arbitrary constant.

2a: The solution to the linear system using Gauss-Jordan elimination is x = 1, y = -1, z = -1.

2b: The system is homogeneous and consistent. The solution is unique.

For Question 1a, to determine if a differential equation is exact, we need to check if the partial derivatives of the coefficients with respect to the variables satisfy a certain condition. In this case, the equation is not exact because the partial derivative of (-y sin(x)+7x^6y³) with respect to y is not equal to the partial derivative of (8y^7 cos(x)+3x^7y²) with respect to x.

Moving on to Question 1b, we can find the general solution by integrating the equation. Integrating the terms with respect to their respective variables, we obtain y = (x^7 - C)/(7x^6), where C is the constant of integration. This represents the family of solutions to the given differential equation.

In Question 2a, we are asked to solve a linear system using Gauss-Jordan elimination. By performing the necessary row operations, we find the solution x = 1, y = -1, and z = -1.

Regarding Question 2b, the system is homogeneous because the right-hand side of each equation is zero. The system is consistent because it has a solution. Furthermore, the solution is unique since there are no free variables in the system after performing Gauss-Jordan elimination.

Learn more about differential equation

brainly.com/question/32645495

#SPJ11

Let A and B be two n by n square matrices. If B is symmetric, then the matrix C = AT BA is Not symmetric Symmetric Undefined Not necessarily symmetric None of these

Answers

if B is a symmetric matrix, then the matrix C = [tex]\rm A^TBA[/tex] is also symmetric. The correct answer is: C. Symmetric.

It means that [tex]\rm B^T[/tex]= B, where [tex]\rm B^T[/tex] denotes the transpose of matrix B.

Now let's consider the matrix C = [tex]\rm A^TBA[/tex].

To determine whether C is symmetric or not, we need to check if C^T = C.

Taking the transpose of C:

[tex]\rm C^T = (A^TBA)^T[/tex]

[tex]\rm = A^T (B^T)^T (A^T)^T[/tex]

[tex]\rm = A^TB^TA[/tex]

Since B is symmetric ([tex]\rm B^T = B[/tex]), we have:

[tex]\rm C^T = A^TB^TA[/tex]

[tex]\rm = A^TB(A^T)^T[/tex]

[tex]\rm = A^TBA[/tex]

Comparing [tex]\rm C^T[/tex] and C, we can see that [tex]\rm C^T[/tex] = C.

As a result, if matrix B is symmetric, then matrix [tex]\rm C = A^TBA[/tex] is also symmetric. The right response is C. Symmetric.

Learn more about symmetric matrix

https://brainly.com/question/14405062

#SPJ11

Solve the following differential equations (Use Laplace Transforms Method) 1. Y' – yr et With y(0) = 1 2. X"(t) – x(t) = 4Cost With x(0) = 0, x'(0) = 1 = 3. Y'(t) – 6y'(t) – 9y(t) = 6t?e3t With y'(O) = y(0) = 0 =

Answers

The differential equations are:

1. `y(t) = (e^(0.5t)sin((sqrt(4r - 3)t)/2))/(sqrt(4r - 3))`

2. `x(t) = 1 - cos(t)`

3. `y(t) = 3te^(3t) - e^(3t) + (1/2)e^(15t)`

Here are the properly spaced solutions:

The Laplace transform of Y' is sY(s) - y(0). The Laplace transform of yr et is Y(s-r). Therefore, sY(s) - y(0) - Y(s-r) = 0. Solving this equation for Y(s), we get: Y(s) = (y(0))/(s-1) + (1)/(s-1+r). Substituting y(0) = 1 and rearranging the terms, we get: Y(s) = (s-1+r)/(s^2 - s - r) = (s - 0.5 + r - 0.5)/(s^2 - s - r). Using the inverse Laplace transform formula, we get: y(t) = (e^(0.5t)sin((sqrt(4r - 3)t)/2))/(sqrt(4r - 3)).

The Laplace transform of X'' is s^2 X(s) - sx(0) - x'(0). The Laplace transform of x(t) is X(s). Therefore, s^2 X(s) - x'(0) - X(s) = 4/(s^2 + 1). Substituting x'(0) = 1 and rearranging the terms, we get: X(s) = (s^2 + 1)/(s^3 + s). Using partial fraction decomposition, we can rewrite this as: X(s) = 1/s - 1/(s^2 + 1) + 1/s. Using the inverse Laplace transform formula, we get: x(t) = 1 - cos(t).

The Laplace transform of Y' is sY(s) - y(0). The Laplace transform of 6y' is 6sY(s) - 6y(0). The Laplace transform of 9y is 9Y(s). The Laplace transform of 6t e^(3t) is 6/(s-3)^2. Therefore, sY(s) - y(0) - (6sY(s) - 6y(0)) - 9Y(s) = 6/(s-3)^2. Simplifying this equation, we get: Y(s) = 6/(s-3)^2(s-15). Using partial fraction decomposition, we can rewrite this as: Y(s) = (1)/(s-3)^2 - (1)/(s-3) + (1)/(s-15). Using the inverse Laplace transform formula, we get: y(t) = 3te^(3t) - e^(3t) + (1/2)e^(15t).

Learn more about differential equations here :-

https://brainly.com/question/32645495

#SPJ11

The Bourassas decide to sell a home for $410,000. They are charged a real estate commission of 8% of the selling price, title insurance that is 1.4% of the selling price, and an escrow fee of $825. (a) What amount (in dollars) do the Bourassas receive after fees? $ (b) What percentage of the selling price was fees? Round to the nearest tenth of a percent. %

Answers

(a) The Bourassas receive $370,635 after deducting fees of $39,365 from the selling price of $410,000, which includes a real estate commission of $32,800, title insurance of $5,740, and an escrow fee of $825.

(b) The fees amount to 9.6% of the selling price, indicating that they represent a significant portion of the total transaction.

The total cost of fees is the sum of the real estate commission, title insurance, and the escrow fee:

Real estate commission = 8% of $410,000 = $32,800Title insurance = 1.4% of $410,000 = $5,740Escrow fee = $825

Total fees = $32,800 + $5,740 + $825 = $39,365

The amount the Bourassas receive after fees is the selling price minus the total fees:

Selling price = $410,000Amount received after fees = $410,000 - $39,365 = $370,635

Therefore, the Bourassas receive $370,635 after fees.

To find the percentage of the selling price that represents the fees, divide the total fees by the selling price and multiply by 100:

Percent fees = (Total fees / Selling price) x 100Percent fees = ($39,365 / $410,000) x 100Percent fees = 9.6% (rounded to the nearest tenth of a percent)

Therefore, the fees were 9.6% of the selling price.

Learn more about selling price: https://brainly.com/question/28420607

#SPJ11

Orthogonally diagonalize the matrix, giving an orthogonal matrix P and a diagonal matrix D. To save time, the eigenvalues are 4 and 0. A = ONO 4 00 0 0 20-2 0 04 0-20 2 0 Enter the matrices P and D below. (...) (Use a comma to separate answers as needed. Type exact answers, using radicals as needed

Answers

The orthogonal matrix P is [sqrt(2)/2, -sqrt(2)/2; sqrt(2)/2, sqrt(2)/2] and the diagonal matrix D is [4, 0; 0, 0].

To orthogonally diagonalize the given matrix A, we need to find the eigenvalues and eigenvectors of A. Since the eigenvalues are given as 4 and 0, we can start by finding the eigenvectors corresponding to these eigenvalues.

For the eigenvalue 4, we solve the equation (A - 4I)v = 0, where I is the identity matrix. This gives us the equation:

[O -4 0; 0 20 -2; 0 0 -4]v = 0

Simplifying, we get:

[-4 0 0; 0 20 -2; 0 0 -4]v = 0

This system of equations can be written as three separate equations:

-4v1 = 0

20v2 - 2v3 = 0

-4v3 = 0

From the first equation, we get v1 = 0. From the third equation, we get v3 = 0. Substituting these values into the second equation, we get 20v2 = 0, which implies v2 = 0 as well. Therefore, the eigenvector corresponding to the eigenvalue 4 is [0, 0, 0].

For the eigenvalue 0, we solve the equation (A - 0I)v = 0. This gives us the equation:

[O 0 0; 0 20 -2; 0 0 0]v = 0

Simplifying, we get:

[0 0 0; 0 20 -2; 0 0 0]v = 0

This system of equations can be written as two separate equations:

20v2 - 2v3 = 0

0 = 0

From the second equation, we can see that v2 is a free variable, and v3 can take any value. Let's choose v2 = 1, which implies v3 = 10. Therefore, the eigenvector corresponding to the eigenvalue 0 is [0, 1, 10].

Now that we have the eigenvectors, we can form the orthogonal matrix P by normalizing the eigenvectors. The first column of P is the normalized eigenvector corresponding to the eigenvalue 4, which is [0, 0, 0]. The second column of P is the normalized eigenvector corresponding to the eigenvalue 0, which is [0, 1/sqrt(101), 10/sqrt(101)]. Therefore, P = [0, 0; 0, 1/sqrt(101); 0, 10/sqrt(101)].

The diagonal matrix D is formed by placing the eigenvalues on the diagonal, which gives D = [4, 0; 0, 0].

Learn more about orthogonal diagonalization.
brainly.com/question/31970381
#SPJ11

pls help asap if you can!!!

Answers

Answer:

We have no information about the sides of these triangles. So we can't tell if these triangles are congruent.

The population of a city was 101 thousand in 1992. The exponential growth rate was 1.8% per year. a) Find the exponential growth function in terms of t, where t is the number of years since 1992. P(t)=

Answers

The population of a city was 101 thousand in 1992. The exponential growth rate was 1.8% per year. We need to find the exponential growth function in terms of t, where t is the number of years since 1992.So, the formula for exponential growth is given by;[tex]P(t)=P_0e^{rt}[/tex]

Where;P0 is the population at time t = 0r is the annual rate of growth/expansiont is the time passed since the start of the measurement period101 thousand can be represented in scientific notation as 101000.Using the above formula, we can write the population function as;[tex]P(t)=101000e^{0.018t}[/tex]

So, P(t) is the population of the city t years since 1992, where t > 0.P(t) will give the city population for a given year if t is equal to that year minus 1992. Example, To find the population of the city in 2012, t would be 2012 - 1992 = 20.P(20) = 101,000e^(0.018 * 20)P(20) = 145,868.63 Rounded to the nearest whole number, the population in 2012 was 145869. Therefore, the exponential growth function in terms of t, where t is the number of years since 1992 is given as:[tex]P(t)=101000e^{0.018t}[/tex]

To know more about thousand visit:

https://brainly.com/question/1847329

#SPJ11

Question Evaluate: 3²2w+6 when w=-5. Provide your answer below: Content attribution JE FEEDBACK SUBMIT

Answers

The expression is evaluated to -36

What are algebraic expressions

Algebraic expression are defined as mathematical expressions that are made up of terms, variables, constants, factors and coefficients.

These algebraic expressions are also composed of arithmetic operations. These operations are listed as;

BracketParenthesesSubtractionAdditionMultiplicationDivision

From the information given, we have that;

3²2w+6 for when w = -5

substitute the values, we have;

3²(2(-5) + 6)

find the square and expand the bracket, we have;

9(-10 + 6)

add the values, we have;

9(-4)

expand the bracket, we get;

-36

Learn more about algebraic expressions at: https://brainly.com/question/4344214

#SPJ4

When w = -5, the value of the expression 3²2w+6 is -84.

To evaluate the expression 3²2w+6 when w = -5, we substitute -5 for w in the expression:

3²2(-5) + 6

First, we calculate the exponent:

3² = 3 * 3 = 9

Next, we multiply 9 by 2 and -5:

9 * 2(-5) + 6

Multiplying 2 by -5 gives us -10:

9 * (-10) + 6

Now we can perform the multiplication:

-90 + 6

Finally, we add -90 and 6:

-84

Therefore, when w = -5, the value of the expression 3²2w+6 is -84.

Learn more about expression here:

https://brainly.com/question/1859113

#SPJ11

What is the equation of a vertical ellipse with a center at point (8,-4) , a major axis that is 12 units long, and a minor axis that is 6 units long?

Answers

The equation of the vertical ellipse with a center at point (8, -4), a major axis of 12 units, and a minor axis of 6 units is ((x - 8)^2 / 36) + ((y + 4)^2 / 144) = 1.

To find the equation of a vertical ellipse, we need to determine the values of the center and the lengths of the major and minor axes. The center of the ellipse is given as (8, -4), the major axis has a length of 12 units, and the minor axis has a length of 6 units.

The general equation of a vertical ellipse with center (h, k), a length of 2a along the major axis, and a length of 2b along the minor axis is:

((x - h)^2 / a^2) + ((y - k)^2 / b^2) = 1

Plugging in the given values, we have:

((x - 8)^2 / 6^2) + ((y + 4)^2 / 12^2) = 1

Simplifying further, we get the equation of the vertical ellipse:

((x - 8)^2 / 36) + ((y + 4)^2 / 144) = 1

Learn more about vertical ellipse here :-

https://brainly.com/question/12043717

#SPJ11

The following relations are on {1,3,5, 7}. Letr be the relation xry iff y=x+2 and s the relation xsy iff x < y. List all elements in rs.

Answers

The elements in rs are {1, 3, 5} with given two relations: r and s.

The relation s states that x is less than y. Therefore, in order to determine the elements in rs, we need to find all pairs (x, y) where x < y.

Given the set {1, 3, 5, 7}, we can examine all possible pairs. However, since the relation r states that y = x + 2, we can simplify the process. For any element x, if we add 2 to it, we get y, which is a potential candidate for a pair.

Let's consider each element in the set:

For x = 1, adding 2 gives y = 3. Since 1 is less than 3, (1, 3) satisfies the relation s, and it is an element in rs.

For x = 3, adding 2 gives y = 5. Again, 3 is less than 5, so (3, 5) satisfies the relation s and is an element in rs.

For x = 5, adding 2 gives y = 7. As 5 is less than 7, (5, 7) satisfies the relation s and is an element in rs.

For x = 7, adding 2 gives y = 9. However, 7 is not less than 9, so (7, 9) does not satisfy the relation s and is not an element in rs.

Therefore, the elements in rs are (1, 3), (3, 5), and (5, 7), which can be represented as {1, 3, 5}.

Learn more about relations

brainly.com/question/32789785

#SPJ11

Chose the correct answer for the provided statement. In a normal probability distribution, nomal curve is symmetric about: a. varianco b. standard deviotion c. mean d. all the options

Answers

In a normal probability distribution, normal curve is symmetric about: mean. The Option C.

What is the point of symmetry in a normal probability distribution?

In a normal probability distribution, the normal curve is symmetric about the mean. This means that the curve is equally balanced on both sides of the mean, creating a mirror image.

The mean represents the center or average value of the distribution, and the symmetry indicates that the probabilities of observing values to the left and right of the mean are equal. The standard deviation and variance play important roles in describing the spread or dispersion of the distribution, but they do not determine the symmetry of the curve.

Read more about normal curve

brainly.com/question/13781953

#SPJ4

The correct answer is c. mean. The normal curve is symmetric about the mean.

In a normal probability distribution, the normal curve is symmetric about the mean. This fundamental property of the normal distribution is one of its defining characteristics. It means that the probability density function of a normal distribution is perfectly symmetrical, with the highest point of the curve located at the mean.

The mean is the central value of a normal distribution and represents its location or center point. The symmetric nature of the normal curve implies that the probabilities of observing values to the left and right of the mean are equal. This symmetry indicates that the mean, as well as the median and mode, are all located at the same point on the distribution.

On the other hand, the variance and standard deviation are measures of dispersion or spread within the distribution. They quantify how data points deviate from the mean. While the variance and standard deviation are important characteristics of a normal distribution, they do not affect the symmetry of the normal curve.

Therefore, the correct answer is c. mean. The normal curve is symmetric about the mean.

Learn more about probability distribution from:

https://brainly.com/question/23286309

#SPJ11



Consider the conjecture If two points are equidistant from a third point, then the three points are collinear. Is the conjecture true or false? If false, give a counterexample.

Answers

The conjecture “If two points are equidistant from a third point, then the three points are collinear” is true.

A conjecture is a statement that we believe to be true based on previous observations or an explanation of an observed pattern. Before any conjecture is believed, it must first be tested and proved to be correct.

If two points are equidistant from a third point, then it means they are the same distance from that point, and this forms a circle centered on the third point. If two points in space share the same distance from a third point, the three points must fall on the same line that passes through the third point; thus, the statement is true.

The conjecture is true and the statement is an example of Euclid's first postulate: two points can be joined by a straight line.

You can learn more about collinear at: brainly.com/question/5191341

#SPJ11

The table shows the relationship between the amount of money earned and the time spent working, in hours. Write an equation relating the numbers of hours worked, x, and the total amount earned,y,
Table Hr: 5 10 15 20
earned: 42. 50 85 127. 50 170

Answers

The equation that represents the relationship between the number of hours worked (x) and the total amount earned (y) based on the given table is y = 5x + 17.50.

To write an equation relating the number of hours worked (x) and the total amount earned (y) based on the given table, we can use the method of linear regression. This involves finding the equation of a straight line that best fits the data points.

Let's assign x as the number of hours worked and y as the total amount earned. From the table, we have the following data points:

(x, y) = (5, 42.50), (10, 50), (15, 85), (20, 127.50), (25, 170)

We can calculate the equation using the least squares method to minimize the sum of the squared differences between the actual y-values and the predicted y-values on the line.

The equation of a straight line can be written as y = mx + b, where m represents the slope of the line and b represents the y-intercept.

By performing the linear regression calculations, we find that the equation relating the hours worked (x) and the total amount earned (y) is:

y = 5x + 17.50

Therefore, the equation that represents the relationship between the number of hours worked (x) and the total amount earned (y) based on the given table is y = 5x + 17.50.

Learn more about equation here :

brainly.com/question/29657983

#SPJ11

Given f(x)=2x+1 and g(x)=3x−5, find the following: a. (f∘g)(x) b. (g∘g)(x) c. (f∘f)(x) d. (g∘f)(x)

Answers

The compositions between f(x) and g(x) are:

a. (f∘g)(x) = 6x - 9

b. (g∘g)(x) = 9x - 20

c. (f∘f)(x) = 4x + 3

d. (g∘f)(x) = 6x - 2

How to find the compositions between the functions?

To get a composition of the form:

(g∘f)(x)

We just need to evaluate function g(x) in f(x), so we have:

(g∘f)(x) = g(f(x))

Here we have the functions:

f(x) = 2x + 1

g(x) = 3x - 5

a. (f∘g)(x)

To find (f∘g)(x), we first evaluate g(x) and then substitute it into f(x).

g(x) = 3x - 5

Substituting g(x) into f(x):

(f∘g)(x) = f(g(x))

= f(3x - 5)

= 2(3x - 5) + 1

= 6x - 10 + 1

= 6x - 9

Therefore, (f∘g)(x) = 6x - 9.

b. (g∘g)(x)

To find (g∘g)(x), we evaluate g(x) and substitute it into g(x) itself.

g(x) = 3x - 5

Substituting g(x) into g(x):

(g∘g)(x) = g(g(x))

= g(3x - 5)

= 3(3x - 5) - 5

= 9x - 15 - 5

= 9x - 20

Therefore, (g∘g)(x) = 9x - 20.

c. (f∘f)(x)

To find (f∘f)(x), we evaluate f(x) and substitute it into f(x) itself.

f(x) = 2x + 1

Substituting f(x) into f(x):

(f∘f)(x) = f(f(x))

= f(2x + 1)

= 2(2x + 1) + 1

= 4x + 2 + 1

= 4x + 3

Therefore, (f∘f)(x) = 4x + 3.

d. (g∘f)(x)

To find (g∘f)(x), we evaluate f(x) and substitute it into g(x).

f(x) = 2x + 1

Substituting f(x) into g(x):

(g∘f)(x) = g(f(x))

= g(2x + 1)

= 3(2x + 1) - 5

= 6x + 3 - 5

= 6x - 2

Therefore, (g∘f)(x) = 6x - 2.

Learn more about compositions at:

https://brainly.com/question/10687170

#SPJ4

im having trouble to find the inverse function in slope for f(x)=-x-6

Answers

Answer:

y=-x-6

Step-by-step explanation:

First step is to put y=-x-6

Second step is to replace the y with x and the x with y:

x=-y-6

Now solve for y:

-y=x+6

y=-x-6

In this case the inverse is the same as the equation

9. (6 pts)Due to a slump in the economy, Val's mutual fund dropped in value from last quarter to this quarter. Last quarter her fund was worth $37,500 and this quarter it is worth only $32,100. What is the percent decrease in Val's fund from last quarter to this quarter?

Answers

The percent decrease in Val's fund from last quarter to this quarter is 14.4%

To calculate the percent decrease in Val's mutual fund from last quarter to this quarter, we can use the following formula:

Percent Decrease = (Change in Value / Initial Value) * 100

Given that last quarter her fund was worth $37,500 and this quarter it is worth $32,100, we can calculate the change in value:

Change in Value = Initial Value - Final Value

= $37,500 - $32,100

= $5,400

Now we can plug these values into the formula for percent decrease:

Percent Decrease = (5,400 / 37,500) * 100

= 0.144 * 100

= 14.4%

Therefore, the percent decrease in Val's fund from last quarter to this quarter is 14.4%.

This means that the value of Val's mutual fund decreased by 14.4% over the given time period. It is important to note that this calculation assumes a simple percentage decrease based on the initial and final values and does not take into account any additional factors such as fees or dividends.

Learn more about: percent decrease

https://brainly.com/question/2913116

#SPJ11

Please help with #2 The Assignment
1. Let B be an invertible n x n matrix, and let T : Mn,n → Mɲn be defined by T(A) = AB. Prove that T is an isomorphism.
2. Prove that statement 1 in Theorem 6.12 (below) is equivalent to statement 2. In other words, prove that a linear transformation is invertible if and only if it is an isomorphism. (Do not use statement 3 in your proof.)
THEOREM 6.12 Existence of an Inverse Transformation
Let T: R"→R" be a linear transformation with standard matrix A. Then the conditions listed below are equivalent.
1. 7 is invertible.
2. 7' is an isomorphism.
3. A is invertible.
If T is invertible with standard matrix A, then the standard matrix for 7-¹ is A-¹.
You should have the proof that statements 2 and 3 are equivalent in your notes (from a video earlier in this module).

Answers

We have shown that statement 1 and statement 2 in Theorem 6.12 are equivalent, i.e., a linear transformation is invertible if and only if it is an isomorphism.

1. To prove that T : Mn,n → Mɲn is an isomorphism, we need to show that it is linear, injective (one-to-one), and surjective (onto).

- Linearity: Let A, B be matrices in Mn,n and let c be a scalar. We have T(cA + B) = (cA + B)B = cAB + BB = cT(A) + T(B), which shows that T is linear.

- Injectivity: Suppose T(A) = T(B) for some matrices A, B in Mn,n. Then AB = BB implies A = B by left multiplying both sides by B⁻¹, which shows that T is injective.

- Surjectivity: For any matrix C in Mɲn, we can find a matrix A = CB⁻¹, where B⁻¹ exists since B is invertible. Then T(A) = (CB⁻¹)B = CB⁻¹B = C, which shows that T is surjective.

Since T is linear, injective, and surjective, we conclude that T is an isomorphism.

2. To prove the equivalence between statement 1 and statement 2 in Theorem 6.12, we need to show that a linear transformation T is invertible if and only if it is an isomorphism.

- (=>) If T is invertible, then there exists an inverse transformation T⁻¹. Since T⁻¹ exists, it is a linear transformation. We can compose T and T⁻¹ to obtain the identity transformation, i.e., T∘T⁻¹ = T⁻¹∘T = I, where I is the identity transformation. This shows that T is one-to-one and onto, which means T is an isomorphism.

- (<=) If T is an isomorphism, then it is one-to-one and onto. Since T is onto, there exists an inverse transformation T⁻¹, which is also one-to-one. This shows that T is invertible.

Therefore, we have shown that statement 1 and statement 2 in Theorem 6.12 are equivalent, i.e., a linear transformation is invertible if and only if it is an isomorphism.

Learn more about we have shown that statement 1 and statement 2 in Theorem 6.12 are equivalent, i.e., a linear transformation is invertible if and only if it is an isomorphism.

Learn more about matrix

https://brainly.com/question/29132693

#SPJ11

If a fair coin is flipped 15 times what is the probability of of getting exactly 10 tails? (You do not need to simplify your answer). 9. Show that events A and B are independent if P(A)=0.8,P(B)=0.6, and P(A∪B)=0.92.

Answers

The probability of getting exactly 10 tails when flipping a fair coin 15 times is approximately 0.0916 or 9.16%. Additionally, events A and B are independent since their intersection probability is equal to the product of their individual probabilities.

The probability of getting exactly 10 tails when a fair coin is flipped 15 times can be calculated using the binomial probability formula.

To find the probability, we need to determine the number of ways we can get 10 tails out of 15 flips, and then multiply it by the probability of getting a single tail raised to the power of 10, and the probability of getting a single head raised to the power of 5.

The binomial probability formula is:
P(X=k) = C(n,k) * p^k * (1-p)^(n-k)
Where:
- P(X=k) is the probability of getting exactly k tails
- n is the total number of coin flips (15 in this case)
- k is the number of tails we want (10 in this case)
- C(n,k) is the number of ways to choose k tails out of n flips (given by the binomial coefficient)
- p is the probability of getting a single tail (0.5 for a fair coin)
- (1-p) is the probability of getting a single head (also 0.5 for a fair coin)

Using the formula, we can calculate the probability as follows:

P(X=10) = C(15,10) * (0.5)¹⁰ * (0.5)¹⁵⁻¹⁰

Calculating C(15,10) = 3003 and simplifying the equation, we get:

P(X=10) = 3003 * (0.5)¹⁰ * (0.5)⁵
        = 3003 * (0.5)¹⁵
        = 3003 * 0.0000305176
        ≈ 0.0916

Therefore, the probability of getting exactly 10 tails when a fair coin is flipped 15 times is approximately 0.0916, or 9.16%.

Moving on to the second question about events A and B being independent. Two events A and B are considered independent if the occurrence of one event does not affect the probability of the other event.

To show that events A and B are independent, we need to check if the probability of their intersection (A∩B) is equal to the product of their individual probabilities (P(A) * P(B)).

Given:
P(A) = 0.8
P(B) = 0.6
P(A∪B) = 0.92

We can use the formula for the probability of the union of two events to find the probability of their intersection:
P(A∪B) = P(A) + P(B) - P(A∩B)

Rearranging the equation, we get:
P(A∩B) = P(A) + P(B) - P(A∪B)

Plugging in the given values, we have:
P(A∩B) = 0.8 + 0.6 - 0.92
       = 1.4 - 0.92
       = 0.48

Now, let's check if P(A∩B) is equal to P(A) * P(B):
0.48 = 0.8 * 0.6
    = 0.48

Since P(A∩B) is equal to P(A) * P(B), we can conclude that events A and B are independent.

To know more about binomial probability, refer to the link below:

https://brainly.com/question/33174773#

#SPJ11



Analyze the function. Find the intercepts, extrema, intervals of

increase/decrease and concavity, points of inflection an make a

sketch of the function, f(x) = (x - 8)^2/3

Answers

The function f(x) = (x - 8)^(2/3) has no x-intercepts and a y-intercept at (-8)^(2/3). It has no extrema or points of inflection. The function is increasing for x < 8 and decreasing for x > 8. It is concave down for the entire domain. Based on this analysis, a sketch of the function would show a concave-down curve with no intercepts, extrema, or points of inflection.

To analyze the function f(x) = (x - 8)^(2/3), we'll examine its properties step by step.

1. Intercepts:

To find the x-intercept, we set f(x) = 0 and solve for x:

(x - 8)^(2/3) = 0

Since a number raised to the power of 2/3 can never be zero, there are no x-intercepts for this function.

To find the y-intercept, we substitute x = 0 into the function:

f(0) = (0 - 8)^(2/3) = (-8)^(2/3)

The y-intercept is (-8)^(2/3).

2. Extrema:

To find the extrema, we take the derivative of the function and set it equal to zero:

f'(x) = (2/3)(x - 8)^(-1/3)

Setting f'(x) = 0, we get:

(2/3)(x - 8)^(-1/3) = 0

This equation has no real solutions, which means there are no local extrema.

3. Intervals of Increase/Decrease:

To determine the intervals of increase and decrease, we analyze the sign of the derivative. We can see that f'(x) > 0 for x < 8 and f'(x) < 0 for x > 8. Therefore, the function is increasing on the interval (-∞, 8) and decreasing on the interval (8, ∞).

4. Concavity:

To determine the concavity, we take the second derivative of the function:

f''(x) = (-2/9)(x - 8)^(-4/3)

Analyzing the sign of f''(x), we can see that it is negative for all real values of x. This means the function is concave down for the entire domain.

5. Points of Inflection:

To find the points of inflection, we set the second derivative equal to zero and solve for x:

(-2/9)(x - 8)^(-4/3) = 0

This equation has no real solutions, indicating that there are no points of inflection.

Based on the analysis above, we can sketch the function f(x) = (x - 8)^(2/3) as a concave-down curve with no intercepts, extrema, or points of inflection. The y-intercept is at (-8)^(2/3). The function is increasing for x < 8 and decreasing for x > 8.

Learn more about concave-down curve here :-

https://brainly.com/question/29142394

#SPJ11

A group of students at a high school took a
standardized test. The number of students who
passed or failed the exam is broken down by gender
in the following table. Determine whether gender
and passing the test are independent by filling out
the blanks in the sentence below, rounding all
probabilities to the nearestthousandth.
Passed Failed
Male 48 24
Female 70 36
Since p(male)xp(fail)= _ and p(male and fail) = _, the two results are _ so the events are_

Answers

p(male) * p(fail) = 0.2069 and P(male and fail) = 0.2034. The two results are different and so the events are independent

What is the probability of selection?

Independent Events are said to be when the probability of one event does not affect the probability of a second event. Dependent Events are said to be when the probability of one event affects the probability of a second event.

Now, the total number of people both male and female are:

48 + 70 = 118

Thus, probability of selecting a male = 48/118 = 0.4068

Probability of selecting someone that failed = (36 + 24)/118 = 0.5085

p(male) * p(fail)= 0.4068 * 0.5085 = 0.2069

P(male and fail) = 24/118 = 0.2034

The two results are different and so the events are independent

Read more about Probability of selection at: brainly.com/question/251701

#SPJ1

Determine whether this argument is valid: Lynn works part time or full time. If Lynn does not play on the team, then she does not work part time. If Lynn plays on the team, she is busy. Lynn does not work full time. Therefore, Lynn is busy.

Answers

The argument is not valid. The argument presented does not follow a valid logical structure.

Valid arguments are those where the conclusion necessarily follows from the given premises. In this case, the conclusion that "Lynn is busy" cannot be definitively derived from the given premises.

The premises state that Lynn works either part time or full time and that if she does not play on the team, she does not work part time.

It is also stated that if Lynn plays on the team, she is busy. Finally, it is mentioned that Lynn does not work full time.

Based on these premises, we cannot conclusively determine whether Lynn is busy or not. It is possible for Lynn to work part time, not play on the team, and therefore not be busy.

Alternatively, she may play on the team and be busy, but the argument does not establish whether she works part time or full time in this scenario.

To make a valid argument, additional information would be needed to establish a clear link between Lynn's work schedule and her busyness. Without that additional information, we cannot logically conclude that Lynn is busy solely based on the premises provided.

Valid arguments and logical reasoning to understand how premises and conclusions are connected in a valid argument.

Learn more about: argument

brainly.com/question/2645376

#SPJ11

Find the general solution of the differential equation y" - 81y = -243t + 162t². NOTE: Use t as the independent variable. Use c₁ and cg as arbitrary constants. C1 y(t) =

Answers

The general solution to the second order homogenous differential equation is  [tex]\(C_1 y(t) = c_1 e^{9t} + c_2 e^{-9t} - 2t^2 + 3t - \frac{4}{81}\)[/tex], where c₁ is a constant multiple of the entire expression.

What is the general solution to the differential equation?

To find the general solution of the given differential equation y'' - 81y = -243t + 162t², we can start by finding the complementary solution by solving the associated homogeneous equation y'' - 81y = 0.

The characteristic equation for the homogeneous equation is:

r² - 81 = 0

Factoring the equation:

(r - 9)(r + 9) = 0

This equation has two distinct roots: r = 9 and r = -9

Therefore, the complementary solution is:

[tex]\(y_c(t) = c_1 e^{9t} + c_2 e^{-9t}\)[/tex]    where c₁ and c₂ are arbitrary constants

To find a particular solution to the non-homogeneous equation, we can use the method of undetermined coefficients. Since the right-hand side of the equation is a polynomial in t of degree 2, we'll assume a particular solution of the form:

[tex]\(y_p(t) = At^2 + Bt + C\)[/tex]

Substituting this assumed form into the original differential equation, we can determine the values of A, B, and C. Taking the derivatives of [tex]\(y_p(t)\)[/tex]:

[tex]\(y_p'(t) = 2At + B\)\\\(y_p''(t) = 2A\)[/tex]

Plugging these derivatives back into the differential equation:

[tex]\(y_p'' - 81y_p = -243t + 162t^2\)\\\(2A - 81(At^2 + Bt + C) = -243t + 162t^2\)[/tex]

Simplifying the equation:

-81At² - 81Bt - 81C + 2A = -243t + 162t²

Now, equating the coefficients of the terms on both sides:

-81A = 162   (coefficients of t² terms)

-81B = -243  (coefficients of t terms)

-81C + 2A = 0  (constant terms)

From the first equation, we find A = -2.

From the second equation, we find B = 3.

Plugging these values into the third equation, we can solve for C:

-81C + 2(-2) = 0

-81C - 4 = 0

-81C = 4

C = -4/81

Therefore, the particular solution is:

[tex]\(y_p(t) = -2t^2 + 3t - \frac{4}{81}\)[/tex]

The general solution of the differential equation is the sum of the complementary and particular solutions:

[tex]\(y(t) = y_c(t) + y_p(t)\)\(y(t) = c_1 e^{9t} + c_2 e^{-9t} - 2t^2 + 3t - \frac{4}{81}\)[/tex]

Learn more on homogenous differential equation here;

https://brainly.com/question/14926412

#SPJ4

The general solution of the given differential equation is:

y(t) = c₁e^(9t) + c₂e^(-9t) - 2t² + 3t, where c₁ and c₂ are arbitrary constants.

To find the general solution of the given differential equation y" - 81y = -243t + 162t², we can solve it by first finding the complementary function and then a particular solution.

Complementary Function:

Let's find the complementary function by assuming a solution of the form y(t) = e^(rt).

Substituting this into the differential equation, we get:

r²e^(rt) - 81e^(rt) = 0

Factoring out e^(rt), we have:

e^(rt)(r² - 81) = 0

For a nontrivial solution, we require r² - 81 = 0. Solving this quadratic equation, we find two distinct roots: r = 9 and r = -9.

Therefore, the complementary function is given by:

y_c(t) = c₁e^(9t) + c₂e^(-9t), where c₁ and c₂ are arbitrary constants.

Particular Solution:

To find a particular solution, we can assume a polynomial of degree 2 for y(t) due to the right-hand side being a quadratic polynomial.

Let's assume y_p(t) = At² + Bt + C, where A, B, and C are constants to be determined.

Differentiating twice, we find:

y_p'(t) = 2At + B

y_p''(t) = 2A

Substituting these derivatives into the differential equation, we have:

2A - 81(At² + Bt + C) = -243t + 162t²

Comparing coefficients of like powers of t, we get the following equations:

-81A = 162 (coefficient of t²)

-81B = -243 (coefficient of t)

-81C + 2A = 0 (constant term)

Solving these equations, we find A = -2, B = 3, and C = 0.

Therefore, the particular solution is:

y_p(t) = -2t² + 3t

The general solution is the sum of the complementary function and the particular solution:

y(t) = y_c(t) + y_p(t)

= c₁e^(9t) + c₂e^(-9t) - 2t² + 3t

Therefore, the general solution of the given differential equation is:

y(t) = c₁e^(9t) + c₂e^(-9t) - 2t² + 3t, where c₁ and c₂ are arbitrary constants.

Learn more about differential equation from the given link.

https://brainly.com/question/25731911

#SPJ11

Other Questions
The lengths of the adjacent sides of a parallelogram 54 cm and 78cm . The larger angle measures 110 . What is the length of the longer diagonal? Round your answer to the nearest centimeter. 1.1 Calculate the expectation value of p in a stationary state of the hydrogen atom (Write p2 in terms of the Hamiltonian and the potential V). Write a short 400 words analysis for this1) Of all the characters in the short story The Things They Carried, who could you trust the most in war? Why do you believe this is so? Use elements from the story to support your perspective. Summarize the topic of Epistemology . Hana conducted a study and found that being neurotic (i.e., anxious) was related to traveling. Her correlation coefficient was r = -.89. This effect size represents? a) a strong relationship b) a weak relationship c) no relationship d) not enough information to determine How is it conclude that the result of scatter plotshow dots with along the model completely exist along theregression line? A company just paid a dividend of $1.20 per share. The consensus forecast of financial analysts is a dividend of $1.70 per share next year and $2.40 per share two years from now. Thereafter, you expect the dividend to grow 6% per year indefinitely into the future. If the required rate of return is 14% per year, what would be a fair price for this stock today? (Answer to the nearest penny.) Which of the following statements is true about Aristotles Virtue Ethics?No partial credit will be given for this question.a.It is encouraged to emulate a moral exemplar which is someone who already possess virtues.b.Virtues can be acquired overnight.c.It is possible to be wise without having a good character.d.All of the abovee.a but not b & cf.b & c onlyg.None of the above A company owns and operates an electric sign that uses 300 individual lamps to display messages. The sign currently uses bulbs that cost $2.50 each and last for an average of 2 years. These lamps draw 60 watts of power each. The company is considering switching to LED bulbs that have an estimated life span of 10 years and cost $30 each. The LED bulbs only draw 7.5 watts of power for the same light levels. Replacing the lamps requires special equipment and labor that will cost $1,200 dollars. This work is performed every two years for the current lamps and at the end of 10 years for the LED lamp. The sign operates 2500 hours each year. Electricity costs $0.075/kWh. The company uses 7% as its rate of return. Assume that the maintenance protocol replaces all 300 lamps when the average lifetime is reached. Consider costs to be negative numbers and benefits as positive a.) Compute the total annual cost of operating the sign using the 300, 60 watt lamps. DO NOT include dollar signs the answer. b.) Compute the total annual cost of operating the sign using the 300, 7.5 watt LED lamps. DO NOT include a dollar sign in the answer. (Note: this is a cost and should be a negative value c.) Determine the present worth of benefits by subtracting the expenses of owning and operating the LED bulbs from the conventional bulbs. (Hint: comparing the alternatives requires equal life spans. Use least common multiple of lives) d.) Compute the benefit-cost ratio Conflict theory is concerned with how mass media perpetuatesharmful stereotypes regarding what?Select one:a.Conflict theory is concerned with all of theseb.Genderc.Racializationd.Sexual orie Which of these is a significant personal cost associated with the flu Compare the child soldier definition to what you know about human trafficking. Do you support the notion that forced recruitment of children into armed forces and groups constitutes human trafficking?This is a Criminal justice class 5. Identify the true statement.a. Electric charge is a fundamental quantity that has units of coulombs (C) and, like mass, can only be positive.b. Electric charge is a fundamental quantity that has units of coulombs (C) and can be positive or negative.c. Electric charge is a fundamental quantity that has units of volts (V) and can be positive or negative.d. Electric charge is a fundamental quantity that has units of volts (V) and, like mass, can only be positive.Potential difference is measured inOhms.Amperes.Newtons.Volts.In magnetism,like poles attract each other while unlike poles repel each other.like poles repel each other while unlike poles attract each other.like poles repel each other and unlike poles repel each other.like poles attract each other and unlike poles attract each other. An alarm emits a 200 Hz frequency noise with a wavelength of 1.5 m. If that alarm was moving towards you rapidly, what frequency and wavelength of the following would you be most likely to observe?A. 100 Hz, 0.75 mB. 200 Hz, 1.5 mC. 100 Hz, 3.0 mD. 400 Hz, 3.0 m Please answer the following questions: In the case, is India upstream or downstream in the global value system? 1. 2. In the case, what specific value does the country offer to IKEA and other retailers? 3. Three long term options are available - which one would you chose and why? a. Ikea should deal with the issue with its supplier, Rangan, directly? b. Let Rugmark do it? C. Withdraw NEED HELP FASTT PLEASE What are the efficiency and equity arguments in support ofwork-life balance policies and is there one better? 2. Jossy is 6-year-old girl and is in elementary school. At her last doctor's visit, her measured height was 46 inches and her weight was 61 pounds. Her pediatrician voiced concern over Jossys excessive weight gain over the past year. Her usual diet consists of sweetened cereal with whole milk and fruit juice for breakfast and a juice drink and crackers for her mid-morning snack. On school days, Jossy buys her lunch at school; her favorite menu items are pizza and tacos. Jossys mom states that she started a new job this past year, which requires that Jossy attend an after-school program until 6 in the evening. She receives a snack there, usually an 8 oz box of fruit juice and crackers. Jossys parents report that Jossy is "always hungry" and they will often stop for her favorite chicken nuggets, fries, and soda on late evenings when the family is too tired to cook. Jossy likes to play video games and has a computer and television in her room. Her father complains that she spends more time in her room than playing outside. Jossys mother is overweight and her father is of normal weight, although he states he was overweight when he was a child. The family has discussed getting more exercise on the weekends but are not sure how to add this to their already busy schedules.e. Based on her usual intake, identify at least 2 or 3 nutrients likely to be deficient in Jossys diet. What major food groups provide these nutrients?f. Assuming her current level of activity, what are Jossys estimated daily kcalorie needs according to Table 16-7? ST and TS have the same eigenvalues. = Problem 24. Suppose T E L(F2) is defined by T(x, y) eigenvalues and eigenvectors of T. [10 marks] (y,x). Find all [10 marks] What was the main reason the United Nations was established? A. To prevent another world war B. To promote economic stability c. To remove trade barriers D. To provide humanitarian relief