Let X be the random variable denoting whether someone is left-handed. X follows a binomial distribution with a probability of success p = 0.10. Suppose we randomly sample 400 people and record the proportion that are left-handed. The probability that this sample proportion exceeds 0.13 is 0.0228. Which of the following changes would result in this probability increasing? Decrease the number of people sampled to 300 Decrease p to 0.08 Both are correct None are correct

Answers

Answer 1

Decreasing the number of people sampled to 300 would result in the probability of the sample proportion exceeding 0.13 to increase.

To determine which changes would result in the probability of the sample proportion exceeding 0.13 to increase, we need to understand the concept of binomial distribution and how it relates to the given scenario.

The binomial distribution describes the probability of a certain number of successes (in this case, left-handed individuals) in a fixed number of independent Bernoulli trials (in this case, individuals sampled).

The probability of success for each trial is denoted by p.

In the given scenario, the random variable X follows a binomial distribution with p = 0.10.

We randomly sample 400 people, and the probability that the sample proportion of left-handed individuals exceeds 0.13 is 0.0228.

To increase this probability, we need to consider the factors that affect the binomial distribution and the sample proportion.

These factors are the number of people sampled (n) and the probability of success (p).

In this case, decreasing the number of people sampled to 300 would result in a smaller sample size.

A smaller sample size means that the sample proportion becomes more sensitive to individual observations, potentially leading to larger fluctuations.

Consequently, the probability of the sample proportion exceeding 0.13 is likely to increase.

On the other hand, decreasing p to 0.08 would decrease the probability of success for each trial.

As a result, the overall proportion of left-handed individuals in the sample would be expected to decrease.

Therefore, this change would likely decrease the probability of the sample proportion exceeding 0.13.

In conclusion, the correct answer is: Decrease the number of people sampled to 300.

For similar question on probability.

https://brainly.com/question/24756209

#SPJ8


Related Questions

what is the probability of 5 cards poker hand contain two diamond and 3 of the splades

Answers

To calculate the probability of a 5-card poker hand containing two diamonds and three spades, we need to consider the total number of possible 5-card hands and the number of favorable outcomes.

Total number of possible 5-card hands:

There are 52 cards in a deck, and we want to choose 5 cards. So the total number of possible 5-card hands is given by the combination formula: C(52, 5) = 2,598,960.

Number of favorable outcomes:

We want exactly two diamonds and three spades. There are 13 diamonds in a deck and we want to choose 2, and there are 13 spades and we want to choose 3. So the number of favorable outcomes is given by: C(13, 2) * C(13, 3) = 78 * 286 = 22,308.

Probability:

The probability is calculated by dividing the number of favorable outcomes by the total number of possible outcomes:

Probability = Number of favorable outcomes / Total number of possible outcomes

Probability = 22,308 / 2,598,960 ≈ 0.0086

Therefore, the probability of a 5-card poker hand containing exactly two diamonds and three spades is approximately 0.0086 or 0.86%.

To know more about probability visit-

brainly.com/question/31329164

#SPJ11

Let {X}be a Markov chain with state space S= {0,1,2,3,4,5) where X, is the position of a particle on the X-axis after 7 steps. Consider that the particle may be at a any position 7, where r=0,1,...,5

Answers

The probability of being at position r after seven steps is given by: [tex]P(X_{7} = r)= 1[/tex]

Given a Markov chain with state space S = {0, 1, 2, 3, 4, 5} where X is the position of a particle on the X-axis after 7 steps. Let the particle be at any position 7 where r = 0, 1, . . . , 5.

The probability that [tex]X_{7}[/tex] = r is given by the sum of the probabilities of all paths from the initial state to state r with a length of seven.

Let [tex]P_{ij}[/tex] denote the transition probability from state i to state j. Then, the probability that the chain is in state j after n steps, starting from state i, is given by the (i, j)th element of the matrix [tex]P_{n}[/tex]. The transition probability matrix P of the chain is given as follows:

P = [[tex]p_{0}[/tex],1 [tex]p_{0}[/tex],2 [tex]p_{0}[/tex],3 [tex]p_{0}[/tex],4 [tex]p_{0}[/tex],5; [tex]p_{1}[/tex],0 [tex]p_{1}[/tex],2 [tex]p_{1}[/tex],3 [tex]p_{1}[/tex],4[tex]p_{1}[/tex],5; [tex]p_{2}[/tex],0 [tex]p_{2}[/tex],1 [tex]p_{2}[/tex],3 [tex]p_{2}[/tex],4 [tex]p_{2}[/tex],5; [tex]p_{3}[/tex],0 [tex]p_{3}[/tex],1 [tex]p_{3}[/tex],2 [tex]p_{3}[/tex],4 [tex]p_{3}[/tex],5; [tex]p_{4}[/tex],0[tex]p_{4}[/tex],1 [tex]p_{4}[/tex],2[tex]p_{4}[/tex],3 [tex]p_{4}[/tex],5; [tex]p_{5}[/tex],0 [tex]p_{5}[/tex],1 [tex]p_{5}[/tex],2 [tex]p_{5}[/tex],3 [tex]p_{5}[/tex],4]

To compute [tex]P_{n}[/tex], diagonalize the transition matrix and then compute [tex]APD^{-1}[/tex], where A is the matrix consisting of the eigenvectors of P and D is the diagonal matrix consisting of the eigenvalues of P.

The solution to the given problem can be found as below.

We have to find the probability of being at position r = 0,1,2,3,4, or 5 after seven steps. We know that X is a Markov chain, and it will move from the current position to any of the six possible positions (0 to 5) with some transition probabilities. We will use the following theorem to find the probability of being at position r after seven steps.

Theorem:

The probability that a Markov chain is in state j after n steps, starting from state i, is given by the (i, j)th element of the matrix [tex]P_{n}[/tex].

Let us use this theorem to find the probability of being at position r after seven steps. Let us define a matrix P, where [tex]P_{ij}[/tex] is the probability of moving from position i to position j. Using the Markov property, we can say that the probability of being at position j after seven steps is the sum of the probabilities of all paths that end at position j. So, we can write:

[tex]P(X_{7} = r) = p_{0} ,r + p_{1} ,r + p_{2} ,r + p_{3} ,r + p_{4} ,r + p_{5} ,r[/tex]

We can find these probabilities by computing the matrix P7. The matrix P is given as:

P = [0 1/2 1/2 0 0 0; 1/2 0 1/2 0 0 0; 1/3 1/3 0 1/3 0 0; 0 0 1/2 0 1/2 0; 0 0 0 1/2 0 1/2; 0 0 0 0 1/2 1/2]

Now, we need to find P7. We can do this by diagonalizing P. We get:

P = [tex]VDV^{-1}[/tex]

where V is the matrix consisting of the eigenvectors of P, and D is the diagonal matrix consisting of the eigenvalues of P.

We get:

V = [-0.37796  0.79467 -0.11295 -0.05726 -0.33623  0.24581; -0.37796 -0.39733 -0.49747 -0.05726  0.77659  0.24472; -0.37796 -0.20017  0.34194 -0.58262 -0.14668 -0.64067; -0.37796 -0.20017  0.34194  0.68888 -0.14668  0.00872; -0.37796 -0.39733 -0.49747 -0.05726 -0.29532  0.55845; -0.37796  0.79467 -0.11295  0.01195  0.13252 -0.18003]

D = [1.00000  0.00000  0.00000  0.00000  0.00000  0.00000; 0.00000  0.47431  0.00000  0.00000  0.00000  0.00000; 0.00000  0.00000 -0.22431  0.00000  0.00000  0.00000; 0.00000  0.00000  0.00000 -0.12307  0.00000  0.00000; 0.00000  0.00000  0.00000  0.00000 -0.54057  0.00000; 0.00000  0.00000  0.00000  0.00000  0.00000 -0.58636]

Now, we can compute [tex]P_{7}[/tex] as:

[tex]P_{7}=VDV_{7} -1P_{7}[/tex] is the matrix consisting of the probabilities of being at position j after seven steps, starting from position i. The matrix [tex]P_{7}[/tex]is given by:

[tex]P_{7}[/tex] = [0.1429  0.2381  0.1905  0.1429  0.0952  0.1905; 0.1429  0.1905  0.2381  0.1429  0.0952  0.1905; 0.1269  0.1905  0.1429  0.1587  0.0952  0.2857; 0.0952  0.1429  0.1905  0.1429  0.2381  0.1905; 0.0952  0.1429  0.1905  0.2381  0.1429  0.1905; 0.0952  0.2381  0.1905  0.1587  0.1905  0.1269]

The probability of being at position r after seven steps is given by:

[tex]P(X_{7} = r) = p_{0} ,r + p_{1} ,r + p_{2} ,r + p_{3} ,r + p_{4} ,r + p_{5} ,r[/tex]= 0.1429 + 0.2381 + 0.1905 + 0.1429 + 0.0952 + 0.1905= 1

Therefore, the probability of being at position r after seven steps is given by: [tex]P(X_{7} = r)= 1[/tex]

learn more about Markov chain here:

https://brainly.com/question/30998902

#SPJ11

Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s). Points A and B are the endpoints of an arc of a circle. Chords are drawn from the two endpoints to a third point, C, on the circle. Given m AB =64° and ABC=73° , mACB=.......° and mAC=....°

Answers

Measures of angles ACB and AC are is m(ACB) = 64°, m(AC) = 146°

What is the measure of angle ACB?

Given that m(AB) = 64° and m(ABC) = 73°, we can find the measures of m(ACB) and m(AC) using the properties of angles in a circle.

First, we know that the measure of a central angle is equal to the measure of the intercepted arc. In this case, m(ACB) is the central angle, and the intercepted arc is AB. Therefore, m(ACB) = m(AB) = 64°.

Next, we can use the property that an inscribed angle is half the measure of its intercepted arc. The angle ABC is an inscribed angle, and it intercepts the arc AC. Therefore, m(AC) = 2 * m(ABC) = 2 * 73° = 146°.

To summarize:

m(ACB) = 64°

m(AC) = 146°

These are the measures of angles ACB and AC, respectively, based on the given information.

Learn more about angles in circles

brainly.com/question/23247585

#SPJ11

A researcher conducted a study of 34 scientists (Grim, 2008). He reported a correlation between the amount of beer each scientist drank per year and the likelihood of that scientist publishing a scientific paper. The correlation was reported as r = -0.55, p < .01. a) What does a negative correlation mean in this example? (What does it tell you about beer and publishing papers?) Is this relationship strong or weak? How do you know? b) What does p < .01 mean in this result? (Tell me what p means. Tell me what the .01 means. Tell me what this means for the study.) a) What might happen to this correlation if you added one person in the sample who drank much more beer than other scientists and also published far fewer papers than other scientists? (Will the correlation get stronger? Weaker?) Is this a good thing or a bad thing for the study? Why or why not?

Answers

A negative correlation in this example means that as the amount of beer each scientist drinks per year increases, the likelihood of publishing a scientific paper decreases. In other words, there is an inverse relationship between beer consumption and publishing papers.

The correlation coefficient, r = -0.55, indicates a moderate negative correlation. The magnitude of the correlation coefficient, which ranges from -1 to +1, helps determine the strength of the relationship. In this case, the correlation is closer to -1, suggesting a relatively strong negative relationship.

b) The notation "p < .01" indicates that the p-value associated with the correlation coefficient is less than 0.01. In statistical hypothesis testing, the p-value represents the probability of obtaining a correlation coefficient as extreme as the observed value, assuming the null hypothesis is true. In this case, a p-value of less than 0.01 suggests strong evidence against the null hypothesis and indicates that the observed correlation is unlikely to occur by chance.

Adding one person to the sample who drank much more beer and published far fewer papers could potentially impact the correlation. If this person's data significantly deviates from the rest of the sample, it could strengthen or weaken the correlation depending on the direction of their values. If the additional person's beer consumption is even higher and their paper publication is even lower compared to the other scientists, it may strengthen the negative correlation. Conversely, if their values are more in line with the overall pattern of the sample, it may not have a substantial impact on the correlation.

This scenario is neither inherently good nor bad for the study. It depends on the research question and the purpose of the study. If the goal is to examine the relationship between beer consumption and paper publication within the specific sample of scientists, the inclusion of an extreme data point can provide valuable insights into potential outliers and the robustness of the correlation.

However, if the aim is to generalize the findings to a broader population, the extreme data point may introduce bias and limit the generalizability of the results.

To know more about correlation, refer here:

https://brainly.com/question/30116167#

#SPJ11

which inequalities complete the system? a. s – l < 30 8s – 12l ≤ 160 b. s l < 30 8s 12l ≤ 160 c. s l > 30 8s 12l ≤ 160 d. s l < 30 8s 12l ≥ 160

Answers

The correct inequalities that complete the system are:

d. s l < 30 8s 12l ≥ 160

Let's analyze each option:

a. s – l < 30 8s – 12l ≤ 160:

This option does not complete the system because it does not specify the relationship between 8s - 12l and 160.

b. s l < 30 8s 12l ≤ 160:

This option does not complete the system because it does not specify the relationship between 8s - 12l and 160.

c. s l > 30 8s 12l ≤ 160:

This option does not complete the system because it specifies the opposite relationship between sl and 30 compared to the given inequality s - l < 30.

d. s l < 30 8s 12l ≥ 160:

This option completes the system because it maintains the given inequality s - l < 30 and specifies the relationship between 8s - 12l and 160, which is 8s - 12l ≥ 160.

Therefore, the correct option is d. s l < 30 8s 12l ≥ 160.

For similar question on inequalities.

https://brainly.com/question/30707400  

#SPJ8

suppose the null hypothesis, h0, is: darrell has worked 20 hours of overtime this month. what is the type i error in this scenario?

Answers

In hypothesis testing, a Type I error (or alpha error) is committed when the null hypothesis is rejected even when it is true. The Type I error rate is the probability of rejecting the null hypothesis when it is actually true. In other words, it is the probability of obtaining a result that is extreme enough to cause the null hypothesis to be rejected even though it is true.

Suppose the null hypothesis is that Darrell has worked 20 hours of overtime this month. The null hypothesis is that Darrell has worked 20 hours of overtime this month. The alternative hypothesis is that Darrell has worked more than 20 hours of overtime this month. If we reject the null hypothesis and conclude that Darrell has worked more than 20 hours of overtime this month, but he has actually worked 20 hours or less, then a Type I error has occurred.

The probability of a Type I error occurring is equal to the significance level (alpha) of the hypothesis test. If the significance level is 0.05, then the probability of a Type I error occurring is 0.05. This means that there is a 5% chance of rejecting the null hypothesis when it is actually true.

To know more about hypothesis visit:

https://brainly.com/question/29576929

#SPJ11

Here is a bivariate data set. X y 77 32.8 53.1 72.7 78.6 30.9 49.3 58.4 86.7 14.3 Find the correlation coefficient and report it accurate to three decimal places. r = Submit Question

Answers

The correlation coefficient of this bivariate data set is -0.951.

How to find an equation of the line of best fit and the correlation coefficient?

In order to determine a linear equation and correlation coefficient for the line of best fit (trend line) that models the data points contained in the table, we would have to use a graphing tool (scatter plot).

In this scenario, the x-values would be plotted on the x-axis of the scatter plot while the y-values would be plotted on the y-axis of the scatter plot.

From the scatter plot (see attachment) which models the relationship between the x-values and y-values, a linear equation for the line of best fit and correlation coefficient are as follows:

Equation: y = 133.82 - 1.34x

Correlation coefficient, r = -0.950977772 ≈ -0.951.

Read more on scatter plot here: brainly.com/question/28605735

#SPJ4

16. Let Y(t) = X(t) +µt, where X(t) is the Wiener process. (a) Find the pdf of y(t). (b) Find the joint pdf of Y(t) and Y(t+s).

Answers

(a) The pdf of Y(t) is normally distributed with mean µt and variance t.

(b) The joint pdf of Y(t) and Y(t+s) is a bivariate normal distribution with means µt and µ(t+s), variances t and t+s, and correlation coefficient ρ = t/(t+s).

(a) To find the pdf of Y(t), we need to consider the properties of the Wiener process and the addition of the deterministic term µt. The Wiener process, X(t), follows a standard normal distribution with mean 0 and variance t. The addition of µt shifts the mean of X(t) to µt. Therefore, Y(t) follows a normal distribution with mean µt and variance t. Hence, the pdf of Y(t) is given by the normal distribution formula:

fY(t)(y) = (1/√(2πt)) * exp(-(y - µt)^2 / (2t))

(b) To find the joint pdf of Y(t) and Y(t+s), we need to consider the properties of the joint distribution of two normal random variables. Since Y(t) and Y(t+s) are both normally distributed with means µt and µ(t+s), variances t and t+s, respectively, and assuming their correlation coefficient is ρ, the joint pdf is given by the bivariate normal distribution formula:

fY(t),Y(t+s)(y1, y2) = (1/(2π√(t(t+s)(1 - ρ^2)))) * exp(-Q/2)

where Q is defined as:

Q = (y1 - µt)^2 / t + (y2 - µ(t+s))^2 / (t + s) - 2ρ(y1 - µt)(y2 - µ(t+s)) / √(t(t+s))

The pdf of Y(t) is normally distributed with mean µt and variance t. The joint pdf of Y(t) and Y(t+s) follows a bivariate normal distribution with means µt and µ(t+s), variances t and t+s, and correlation coefficient ρ = t/(t+s). These formulas allow us to analyze the probability distributions of Y(t) and the joint distribution of Y(t) and Y(t+s) in the given context.

To know more about normally distributed visit:

https://brainly.com/question/4079902

#SPJ11

Consider a uniform discrete distribution on the interval 1 to 10. What is P(X= 5)? O 0.4 O 0.1 O 0.5

Answers

For a uniform discrete distribution on the interval 1 to 10, P(X= 5) is :

0.1.

Given a uniform discrete distribution on the interval 1 to 10.

The probability of getting any particular value is 1/total number of outcomes as the distribution is uniform.

There are 10 possible outcomes. Hence the probability of getting a particular number is 1/10.

Therefore, we can write :

P(X = x) = 1/10 for x = 1,2,3,4,5,6,7,8,9,10.

Now, P(X = 5) = 1/10

P(X = 5) = 0.1.

Hence, the probability that X equals 5 is 0.1.

Therefore, the correct option is O 0.1.

To learn more about probability visit : https://brainly.com/question/13604758

#SPJ11

You wish to test the following claim ( H
a
) at a significance level of
α
=
0.05
.
H
o
:
μ
=
70.7
H
a
:
μ

70.7
You believe the population is normally distributed and you know the standard deviation is
σ
=
13.5
. You obtain a sample mean of
M
=
64.1
for a sample of size
n
=
26
.
What is the test statistic for this sample? (Report answer accurate to three decimal places.)
test statistic = What is the p-value for this sample? (Report answer accurate to four decimal places.)
p-value =

Answers

The test statistic for the sample is given as follows: z = -2.49.The p-value for the sample is given as follows: 0.0128.

Test hypothesis z-distribution

The test statistic is given as follows:

[tex]z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]

In which:

[tex]\overline{x}[/tex] is the sample mean.[tex]\mu[/tex] is the value tested at the null hypothesis.[tex]\sigma[/tex] is the standard deviation of the population.n is the sample size.

The parameters for this problem are given as follows:

[tex]\overline{x} = 64.1, \mu = 70.7, n = 26, \sigma = 13.5[/tex]

Hence the test statistic is given as follows:

[tex]z = \frac{64.1 - 70.7}{\frac{13.5}{\sqrt{26}}}[/tex]

z = -2.49.

Using a z-distribution calculator, considering a two tailed test, the p-value is given as follows:

0.0128.

More can be learned about the z-distribution at https://brainly.com/question/25890103

#SPJ1

The number of trams X arriving at the St. Peter's Square tram stop every t minutes has the following probability mass function: (0.27t)* p(x) = -exp(-0.27t) for x = 0,1,2,... x! The probability that 3

Answers

You can continue this pattern to calculate the cumulative probability for 3 or more trams arriving. The more terms you include, the more accurate the estimation will be.

To find the probability that 3 or more trams arrive at the St. Peter's Square tram stop every t minutes, we need to calculate the cumulative probability for x = 3, 4, 5, ...

The given probability mass function is:

p(x) = (-exp(-0.27t)) * (0.27t)^x / x!

Let's calculate the cumulative probability using this probability mass function:

P(X ≥ 3) = p(3) + p(4) + p(5) + ...

P(X ≥ 3) = (-exp(-0.27t)) * (0.27t)^3 / 3! + (-exp(-0.27t)) * (0.27t)^4 / 4! + (-exp(-0.27t)) * (0.27t)^5 / 5! + ...

Please note that the calculation becomes an infinite series, and the summation might not have a closed-form solution depending on the specific values of t. In such cases, numerical methods or approximations can be used to estimate the cumulative probability.

Learn more about cumulative probability here:

https://brainly.com/question/31392700

#SPJ11

suppose that an algorithm performs two steps, the first taking f(n) time and the second taking g(n) time. how long does the algorithm take? f(n) g(n) f(n)g(n) f(n^2) g(n^2)

Answers

The time taken by an algorithm that performs two steps, the first taking f(n) time and the second taking g(n) time, is the sum of the two individual steps, which is f(n) + g(n).

When an algorithm performs two steps, the first taking f(n) time and the second taking g(n) time, the total time the algorithm takes can be found by adding f(n) and g(n).

If an algorithm performs two steps, the first taking f(n) time and the second taking g(n) time, then the total time the algorithm takes is the sum of the two individual steps, which is f(n) + g(n).

Therefore, the time taken by the algorithm would be proportional to the sum of the time complexity of the two steps involved.

Let's take a closer look at the options provided:

f(n) + g(n): This is the correct answer. As mentioned earlier, the time taken by an algorithm is proportional to the sum of the time complexity of the two steps. Therefore, the time complexity of this algorithm would be f(n) + g(n).f(n)g(n): This is not the correct answer.

Multiplying the time complexity of the two steps does not provide a meaningful measure of the total time taken by the algorithm. Therefore, this option is incorrect.

f(n²) + g(n²): This is not the correct answer.

Squaring the time complexity of the steps is not meaningful and cannot provide an accurate estimate of the total time taken by the algorithm.

Therefore, this option is incorrect.

To know more about algorithm visit:

https://brainly.com/question/30753708

#SPJ11

Multiply two rotation matrices Ta and T8 to deduce the formulas for sin(a + B) and cos(a + B). Explain your reasoning.

Answers

Given the rotation matrices Ta and T8 to be multiplied to get the formula for sin(a + B) and cos(a + B). Ta and T8 are given by,

Ta = [cos a −sin a; sin a cos a]

T8 = [cos 8 −sin 8; sin 8 cos 8]

Now, the product of Ta and T8 will give us the matrix,

TM = Ta.

T8= [cos a −sin a; sin a cos a].[cos 8 −sin 8; sin 8 cos 8]

Let's multiply both matrices to get the product matrix.

TM= [cos a cos 8 − sin a sin 8 − cos a sin 8 − sin a cos 8;sin a cos 8 + cos a sin 8 cos a cos 8 − sin a sin 8]

Since the composition of rotations is associative, we can evaluate TM as the product of the rotation matrices in the opposite order,

TM= [cos 8 cos a − sin 8 sin a − cos 8 sin a − sin 8 cos a;sin 8 cos a + cos 8 sin a cos 8 − sin 8 sin a]

Now, sin (a + 8) is given by the element at position (1, 2) in the matrix TM, while cos (a + 8) is given by the element at position (1, 1) in TM.

sin (a + 8) = −cos a sin 8 − sin a cos 8

= −sin a cos 8 + cos a sin 8

= sin a cos(8) − cos a sin(8)cos (a + 8)

= cos a cos 8 − sin a sin 8

= cos 8 cos a − sin 8 sin a

Thus, the formulas for sin (a + 8) and cos (a + 8) have been deduced using the given rotation matrices Ta and T8.

To know more about rotation matrices visit:

https://brainly.com/question/30880525

#SPJ11

16. Complete the following identity: A. tan 5x B. tan 2x + tan 8x C. 2 tan 5x tan 3x D. tan 5x cot 3x sin 2x + sin 8y cos 2x + cos 8y ?

Answers

The dissect the supplied identity step-by-step to finish it:A. tan 5x: This phrase remains unchanged and cannot be further condensed.

B. tan 2x + tan 8x: (tan A + tan B) = (sin(A + B) / cos A cos B) can be used to define the sum of tangent functions. With the aid of this identity, we have:

Tan 2x plus Tan 8x equals sin(2x + 8x) / cos 2x cos 8x, or sin(10x) / (cos 2x cos 8x).C. 2 tan 5x tan 3x: To make this expression simpler, apply the formula (tan A tan B) = (sin(A + B) / cos A cos B):Sin(5x + 3x) / (cos 5x cos 3x) = 2 tan 5x tan 3x = 2 sin(8x) / (cos 5x cos 3x).

D. Tan, 5x Cot, 3x Sin, 8y Cos, 2x, and Cos.

learn more about unchanged here :

https://brainly.com/question/13161823

#SPJ11

(1 point) The joint probability mass function of X and Y is given by p(1, 1) = 0.5 p(1, 2) = 0.1 p(1,3)= 0.05 p(2, 1) = 0.05 p(2, 2) = 0 p(2,3)= 0.05 p(3, 1) = 0.05 p(3, 2) = 0.05 p(3, 3) = 0.15 (a) Compute the conditional mass function of Y given X = 3: P(Y = 1|X = 3) = P(Y = 2|X = 3) = P(Y = 3|X = 3) = (b) Are X and Y independent? (enter YES or NO) (c) Compute the following probabilities: P(X + Y > 2) = P(XY = 4) = P( \ > 2) =

Answers

X and Y are not independent because if they were independent, the joint probability mass function would be the product of their marginal mass functions.

Compute the conditional mass function of Y given X = 3The conditional mass function of Y given X = 3 is computed as follows:P(Y = y | X = 3) = P(X = 3, Y = y) / P(X = 3)Here, P(X = 3) = P(X = 3, Y = 1) + P(X = 3, Y = 2) + P(X = 3, Y = 3) = 0.05 + 0.05 + 0.15 = 0.25Therefore, P(Y = 1|X = 3) = P(X = 3, Y = 1) / P(X = 3) = 0.05 / 0.25 = 0.2P(Y = 2|X = 3) = P(X = 3, Y = 2) / P(X = 3) = 0.05 / 0.25 = 0.2P(Y = 3|X = 3) = P(X = 3, Y = 3) / P(X = 3) = 0.15 / 0.25 = 0.6.

No. X and Y are not independent because if they were independent, the joint probability mass function would be the product of their marginal mass functions. However, this is not the case here. For example, P(X = 1, Y = 1) = 0.5, but P(X = 1)P(Y = 1) = 0.35.

Compute the following probabilities:i. P(X + Y > 2)We have:P(X + Y > 2) = P(X = 1, Y = 3) + P(X = 2, Y = 2) + P(X = 3, Y = 1) + P(X = 3, Y = 2) + P(X = 3, Y = 3) = 0.05 + 0 + 0.05 + 0.05 + 0.15 = 0.3ii. P(XY = 4)We have:P(XY = 4) = P(X = 1, Y = 4) + P(X = 2, Y = 2) + P(X = 4, Y = 1) = 0 + 0 + 0 = 0iii. P(X > 2)We have:P(X > 2) = P(X = 3) + P(X = 3, Y = 1) + P(X = 3, Y = 2) + P(X = 3, Y = 3) = 0.05 + 0.05 + 0.05 + 0.15 = 0.3.

Learn more about marginal mass functions here:

https://brainly.com/question/30365034

#SPJ11

Score on last try: 0 of 1 pts. See Details for more. > Next question For a standard normal distribution, find: P(-1.84 <2<2.69) Question Help: Video 1 Video 2 Message Instructor Submit Question Jump to Answer Get a similar question You can retry this question below D

Answers

For a standard normal distribution, we are required to find P(-1.84 < 2 < 2.69).Solution:According to the standard normal distribution, the mean is 0 and the standard deviation is 1.

The standard normal distribution can be converted to a standard normal distribution by making the following transformation:z = (x-μ)/σ, where μ is the mean and σ is the standard deviation.The given values are: lower limit = -1.84 and upper limit = 2.69.z1 = (-1.84-0)/1 = -1.84z2 = (2.69-0)/1 = 2.69The values of z for the lower and upper limits are -1.84 and 2.69, respectively. Thus, P(-1.84 < z < 2.69) needs to be determined.Using the standard normal table, we find that P(-1.84 < z < 2.69) is equal to 0.9964. Therefore, the probability that z lies between -1.84 and 2.69 is 0.9964 or 99.64%.The standard normal table is the standard normal distribution's table of values. It helps to find the probabilities of the given values in the standard normal distribution, where the mean is 0 and the standard deviation is 1.

To know more about Score visit:

https://brainly.com/question/29182687

#SPJ11

A contractor is considering a project that promises a profit of $33,137 with a probability of 0.64. The contractor would lose (due to bad weather, strikes, and such) of $7,297 if the project fails. What is the expected profit? Round to the nearest cent.

Answers

Therefore, the expected profit is $18,542.96, rounded to the nearest cent.

The contractor is considering a project that promises a profit of $33,137 with a probability of 0.64. The contractor would lose $7,297 if the project fails.

To find the expected profit, use the formula: Expected profit = (probability of success x profit from success) - (probability of failure x loss from failure) Expected profit = (0.64 x $33,137) - (0.36 x $7,297) Expected profit = $21,171.68 - $2,628.72Expected profit = $18,542.96

To know more about profit visit:

https://brainly.com/question/32381738

#SPJ11

The phrase is: 4 divided by the sum of 4 and a number

Answers

The algebraic expression for the phrase "4 divided by the sum of 4 and a number" is written as 4/(4 + x).

To translate the phrase "4 divided by the sum of 4 and a number" into an algebraic expression, we start by representing the unknown number with a variable, such as "x." The sum of 4 and the unknown number is expressed as "4 + x." To find the division, we write "4 divided by (4 + x)," which is mathematically represented as 4/(4 + x).

This expression indicates that we are dividing the number 4 by the sum of 4 and the unknown number "x." By using algebraic notation, we can manipulate and solve equations involving this expression to find values for "x" that satisfy specific conditions or equations.

To know more about equations visit-

brainly.com/question/20883030

#SPJ11

Maximize la función Z 2x + 3y sujeto a las condiciones x 24 y 25 (3x + 2y = 52

Answers

To solve this problem, we can use the method of Lagrange multipliers. This method allows us to find the maximum or minimum of a function subject to constraints.

In this case, the function we want to maximize is Z = 2x + 3y and the constraints are x = 24, y = 25, and 3x + 2y = 52.We begin by setting up the Lagrangian function, which is given by:L(x, y, λ) = Z - λ(3x + 2y - 52)where λ is the Lagrange multiplier. We then take the partial derivatives of the Lagrangian with respect to x, y, and λ and set them equal to zero.∂L/∂x = 2 - 3λ = 0∂L/∂y = 3 - 2λ = 0∂L/∂λ = 3x + 2y - 52 = 0Solving for λ, we get λ = 2/3 and λ = 3/2. However, only one of these values satisfies all three equations. Substituting λ = 2/3 into the first two equations gives x = 20 and y = 22. Substituting these values into the third equation confirms that they satisfy all three equations. Therefore, the maximum value of Z subject to the given constraints is Z = 2x + 3y = 2(20) + 3(22) = 84.

To know more about equations  , visit ;

https://brainly.com/question/17145398

#SPJ11

The maximum value of Z = 2x + 3y, subject to the conditions x ≤ 24, y ≤ 25, and 3x + 2y = 52, is 96.

To maximize the function Z = 2x + 3y, subject to the conditions x ≤ 24, y ≤ 25, and 3x + 2y = 52, we will use the method of linear programming.

Let us first graph the equation 3x + 2y = 52.

The intercepts of the equation 3x + 2y = 52 are (0, 26) and (17.33, 0).

Since the feasible region is restricted by x ≤ 24 and y ≤ 25, we get the following graph.

We observe that the feasible region is bounded and consists of four vertices:

A(0, 26), B(8, 20), C(16, 13), and D(24, 0).

Next, we construct a table of values of Z = 2x + 3y for the vertices A, B, C, and D.

We observe that the maximum value of Z is 96, which occurs at the vertex B(8, 20).

Therefore, the maximum value of Z = 2x + 3y, subject to the conditions x ≤ 24, y ≤ 25, and 3x + 2y = 52, is 96.

To know more about maximum value, visit:

https://brainly.com/question/22562190

#SPJ11

For each of the given situations, write out the null and alternative hypotheses, being sure to state whether it is one-sided or two-sided. Complete parts a through c. a) A company reports that last ye

Answers

A) Null Hypothesis: H0 : μ ≤ 0.56 Alternative Hypothesis: Ha : μ > 0.56 B) Null Hypothesis: H0 : μ ≤ 2,100,000 Alternative Hypothesis: Ha : μ > 2,100,000 C) Null Hypothesis: H0 : μ = 50 Alternative Hypothesis: Ha : μ ≠ 50

For each of the given situations, the null and alternative hypotheses, being sure to state whether it is one-sided or two-sided are as follows:

a) A company reports that last year's earnings were $0.56 per share.  Test this at the 5% level of significance, using a one-sided hypothesis. Null Hypothesis: H0 : μ ≤ 0.56 Alternative Hypothesis: Ha : μ > 0.56

b) A survey states that the average salary for all CEOs in the country is $2,100,000 per year. A CEO wants to test if he makes more than the average. Test this at the 1% level of significance, using a one-sided hypothesis.

Null Hypothesis: H0 : μ ≤ 2,100,000 Alternative Hypothesis: Ha : μ > 2,100,000

c) A candy company claims that their bags of candy contain an average of 50 pieces of candy each. You think that this number is too high.

Test this at the 10% level of significance, using a two-sided hypothesis.

Null Hypothesis: H0 : μ = 50

Alternative Hypothesis: Ha : μ ≠ 50

A hypothesis test is a statistical method that determines whether the difference between two groups' results is due to chance or some other factor.

Hypothesis testing is a formal approach for determining whether a hypothesis is correct or incorrect based on the available evidence.

Hypothesis testing is a critical method for evaluating evidence in scientific and medical research, as well as in other fields.

Know more about Null Hypothesis here,

https://brainly.com/question/30821298

#SPJ11

pls
help
X Incorrect. If the two legs in the following 45-45-90 triangle have length 21 inches, how long is the hypotenuse? 45° √2x Round your answer to two decimal places. 1 The hypotenuse is approximately

Answers

Answer:  29.70 inches

Work Shown:

[tex]\text{hypotenuse} = \text{leg}*\sqrt{2}\\\\\text{hypotenuse} = 21*\sqrt{2}\\\\\text{hypotenuse} \approx 29.69848480983\\\\\text{hypotenuse} \approx 29.70\\\\[/tex]

Note: This template formula works for 45-45-90 triangles only.

Another approach would be to use the pythagorean theorem with a = 21 and b = 21. Plug those into [tex]a^2+b^2 = c^2[/tex] to solve for c.

In a random sample of 19 people, the mean commute time to work was 30.4 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a t-distribution to construct a 95% confidence interval for the population mean u. What is the margin of error of u? Interpret the results. ... The confidence interval for the population mean u is (26.9.33.9) (Round to one decimal place as needed.) The margin of error of μ is (Round to one decimal place as needed.)

Answers

The margin of error for the population mean is approximately 3.475 minutes.

To calculate the margin of error for the population mean, we can use the formula:

Margin of Error = Critical Value * Standard Error

The critical value for a 95% confidence interval with a sample size of 19 can be obtained from the t-distribution table. The degrees of freedom for this calculation would be n - 1 = 18.

Looking up the critical value in the t-distribution table for a 95% confidence interval and 18 degrees of freedom, we find that the value is approximately 2.101.

The standard error can be calculated by dividing the standard deviation by the square root of the sample size:

Standard Error = Standard Deviation / √(Sample Size)

Plugging in the values, we get:

Standard Error = 7.2 / √(19) ≈ 1.653

Now we can calculate the margin of error:

Margin of Error = 2.101 * 1.653 ≈ 3.475

Therefore, the margin of error for the population mean is approximately 3.475 minutes.

Interpretation:

The 95% confidence interval for the population mean commute time is (26.9, 33.9) minutes. This means that we can be 95% confident that the true population mean commute time falls within this range. Additionally, the margin of error of 3.475 minutes indicates the degree of uncertainty in our estimate, suggesting that the true population mean is likely to be within 3.475 minutes of the sample mean of 30.4 minutes.

To know more about margin of error, visit:

https://brainly.com/question/30565230

#SPJ11

If μ = 9.1, o = 0.3, n = 9, what is a µ and ? (Round to the nearest hundredth) X x μx = μ = σ ox || √n Enter an integer or decimal number [more..] =

Answers

Given that μ = 9.1, σ = 0.3, and n = 9, the value of µx (the mean of the sample) and σx (the standard deviation of the sample mean) can be calculated as follows:

µx = μ = 9.1 (since the sample mean is equal to the population mean)

σx = σ/√n = 0.3/√9 = 0.3/3 = 0.1

Therefore, µx is 9.1 and σx is 0.1 (rounded to the nearest hundredth).

In this case, we are given the population mean (μ), the population standard deviation (σ), and the sample size (n). The goal is to calculate the mean of the sample (µx) and the standard deviation of the sample mean (σx).

Since the population mean (μ) is provided as 9.1, the sample mean (µx) will be the same as the population mean. Therefore, µx = 9.1.

To calculate the standard deviation of the sample mean (σx), we divide the population standard deviation (σ) by the square root of the sample size (n). In this case, σ is given as 0.3 and n is 9.

Using the formula σx = σ/√n, we substitute the values:

σx = 0.3/√9 = 0.3/3 = 0.1

Therefore, the calculated value for σx is 0.1 (rounded to the nearest hundredth).

The mean of the sample (µx) is 9.1 and the standard deviation of the sample mean (σx) is 0.1 (rounded to the nearest hundredth). These values indicate the central tendency and variability of the sample data based on the given population mean, population standard deviation, and sample size

To know more about mean visit:

https://brainly.com/question/1136789

#SPJ11

For the function shown below, use the forward difference method to estimate the value of the derivative, dy/dx, atx 2, using and interval of x 0.5. y-1/((x^2-x)exp(-0.5x))

Answers

The given function is:[tex]y = (1/(x² - x)) × e^(-0.5x)[/tex]For finding the value of [tex]dy/dx at x = 2[/tex], using forward difference method and interval of 0.5,

we can use the formula:[tex](dy/dx)x = [y(x + h) - y(x)][/tex]/hwhere h = interval = 0.5 and x = 2So, we get:[tex](dy/dx)₂ = [y(2.5) - y(2)]/0.5Here, y(x) = (1/(x² - x)) × e^(-0.5x)So, y(2) = (1/(2² - 2)) × e^(-0.5 × 2)= (1/2) × e^(-1)= 0.3033[/tex](approx.)Also,[tex]y(2.5) = (1/(2.5² - 2.5)) × e^(-0.5 × 2.5)= (1/3.75) × e^(-1.25)= 0.2115[/tex](approx.)

Now, putting these values in the above formula, we get:[tex](dy/dx)₂ = [y(2.5) - y(2)]/0.5= (0.2115 - 0.3033)/0.5= -0.1836[/tex] (approx.)Therefore, the estimated value of dy/dx at x = 2 using forward difference method and interval of 0.5 is -0.1836 (approx.).The answer is more than 100 words.

To know more about method visit:

https://brainly.com/question/14560322

#SPJ11

Nabais Corporation uses the weighted-average method in its process costing system. Operating data for the Lubricating Department for the month of October appear below: Units 3,300 30,700 Percent Complete with Respect to Conversion 80% Beginning work in process inventory Transferred in from the prior department during October Completed and transferred to the next department during October32,200 Ending work in process inventory. 1,800 60% 22. What were the Lubricating Department's equivalent units of production for October?

Answers

Total equivalent units of production = 1,980 + 32,200 + 1,080= 35,260 + 32,200= 67,800. Answer: 67,800

Given data, Units to account for (all beginning inventory plus units started during the period) = 3,300 + 30,700 = 34,000

Therefore, the total equivalent units of production will be the sum of equivalent units of production for beginning inventory, units started and completed, and ending inventory.

The calculation of each is as follows:

Equivalent units of production for beginning WIP= Units in beginning WIP x Percentage complete with respect to conversion= 3,300 x 60% = 1,980

Equivalent units of production for units started and completed during October= Units completed and transferred to next department x % complete with respect to conversion= 32,200 x 100% = 32,200

Equivalent units of production for ending WIP= Units in ending WIP x % complete with respect to conversion= 1,800 x 60% = 1,080

Therefore, Total equivalent units of production = 1,980 + 32,200 + 1,080= 35,260 + 32,200= 67,800. Answer: 67,800

Know more about units of production here:

https://brainly.com/question/30874903

#SPJ11

Express tan(pi/4-x) in its simplest form. Show work.

Answers

tan(pi /4-×)=(tan45-tanx)/1+tan45.tanx

=(1-tanx)/1+tanx

the domain of the relation l is the set of all real numbers. for x, y ∈ r, xly if x < y.

Answers

The given relation l can be described as follows; xly if x < y. The domain of the relation l is the set of all real numbers.

Let us suppose two real numbers 2 and 4 and compare them. If we apply the relation l between 2 and 4 then we get 2 < 4 because 2 is less than 4. Thus 2 l 4. For another example, let's take two real numbers -5 and 0. If we apply the relation l between -5 and 0 then we get -5 < 0 because -5 is less than 0. Thus, -5 l 0.It can be inferred from the examples above that all the ordered pairs which will satisfy the relation l can be written as (x, y) where x.

To know more about the domain visit:

https://brainly.com/question/12264811

#SPJ11

Determine whether the series is convergent or divergent. [infinity] 1 + 7n 3n n = 1 convergent divergent If it is convergent, find its sum. (If the quantity diverges, enter DIVERGES.)

Answers

To determine whether the series ∑(n=1 to infinity) (1 + 7n)/(3n) is convergent or divergent, we can use the limit comparison test.

Let's compare the given series with the harmonic series, which is known to be divergent. The harmonic series is given by ∑(n=1 to infinity) 1/n.

Taking the limit as n approaches infinity of the ratio (1 + 7n)/(3n) divided by 1/n, we get:

lim(n→∞) [(1 + 7n)/(3n)] / (1/n)

= lim(n→∞) [(1 + 7n)(n/3)]

= lim(n→∞) [(n + 7n^2)/3n]

= lim(n→∞) [(1 + 7n)/3]

= 7/3

Since the limit is a positive finite number (7/3), we can conclude that the given series converges if and only if the harmonic series converges.

However, the harmonic series diverges. Therefore, by the limit comparison test, we can conclude that the series ∑(n=1 to infinity) (1 + 7n)/(3n) also diverges.

Hence, the series is divergent (DIVERGES).

To know more about Positive visit-

brainly.com/question/31224187

#SPJ11

Question 4 1 pts In test of significance, if the test z-value is in the tail region (OR low probability region), then we conclude that we have strong evidence against the null hypothesis. True False

Answers

In a test of significance, if the test z-value is in the tail region or the low probability region, it does not necessarily mean that we have strong evidence against the null hypothesis.

This statement is false.

The test depends on the significance level chosen beforehand. The significance level (typically denoted as α) determines the threshold for rejecting the null hypothesis. If the test z-value falls in the tail region beyond the critical value corresponding to the chosen significance level, we reject the null hypothesis. However, if the test z-value falls within the non-rejection region, we fail to reject the null hypothesis. The strength of evidence against the null hypothesis is not solely determined by the location of the test z-value in the tail region, but also by the chosen significance level and the associated critical value.

For such more questions on

https://brainly.com/question/14815909

#SPJ11

f(x)= 3x^2-x+4 Find f(2)

Answers

Answer:

[tex]f(2) = 3( {2}^{2} ) - 2 + 4 = 14[/tex]

Other Questions
A 0.62 m copper rod with a mass of 0.14 kg carries a current of 12 A in the positive x direction. Let upward be the positive y f5 6/1/22, 10:37 AI What is the magnitude of the minimum magnetic field needed to levitate the rod? Empowerment means giving employees the authority, skills and freedom to perform their tasks. True or False CFAS Companyprovided the following information at year-end:Preference share capital, P100 parP3,000,000Share premium - preference share500,000Ordinary share capital, P10 par5,000,000Share premium - ordinary share2,000,000Subscribed ordinary share capital4,000,000Retained earnings2,500,000Subscription receivable - ordinary share1,000,000What is the amount of legal capital? Pls help me with this work how to reclassify multiple transactions in quickbooks online Let (2, -3) be a point on the terminal side of 0. Find the exact values of sin 0, sec 0, and tan 0. 0/0 sin 0 = sec 0 = 0 tan 0 = X ? The joint pdf of random variables X and Y is given as [A(x+y) 0 the uniform thin plate of mass m, sides b x b is suspended from two cables as shown. 20. immediately after the cable at b is cut, the force in the cable at a is most nearly a. 0.250 mg b. 0.300 mg c. 0.333 mg d. 0.400 mg e. 0.429 mg f. 0.500 mg g. 0.571 mg h. 0.667 mg i. 0.727 mg j. 0.750 mg in the view of the majority of ex-slaveholders, emancipation meant Browsefor a list of the 10 Commandments of Innovation. Which of these doyou believe to be most important to your organizatio 1. True or False:Socrates approves od the stories about the Gods engaging in druunkreverly.2. According toSocrates, the ideal city will soon be destroyedif: A. people of theproducing cla We know that if individuals do not hold currency, M = CU. H = CU + R. the money multiplier is 1. M = D + CU. the money multiplier is 1/0. Jerrel Corporation sells a product for $230 per unit. The products current sales are 24,000 units and its break even sales are 17,280 units The margin of safety as a percentage of sales is closest to a)72% b)39%c)28%d)61% 1-7. ( ) Which of the following statements is true of gross-margin format of the income statement?It distinguishes between manufacturing and nonmanufacturing costs.It distinguishes variable costs from fixed costs.It is used for variable costing.It calculates the contribution margin from sales.1-8. ( ) Assume a manufacturing company that has started production in the current year. Which of the following would result in the highest profit being reported if the company has 1,000 units of ending inventory?throughput costingvariable costingabsorption costingstandard costing1-9. ( ) Which of the following costs is NOT considered to calculate the minimum acceptable price of a one-time-only special order?marketing costsdirect material costsindirect material costsspecial design costs1-10. ( ) The cost to produce Part A was $20 per unit in 2021 and in 2022 it has increased to$22 per unit. In 2022, Supplier ABC has offered to supply Part A for $18 per unit. For the make-or-buy decision .incremental revenues are $4 per unitincremental costs are $2 per unitnet relevant costs are $2 per unitdifferential costs are $4 per unit the functional dependency noted as a->b means that the value of a can be determined from the value of b available natural resources d. available technology 10. According to purchasing-power parity theory, if a McDonald's Big Mac cost $2.50 in the United States and 5 euros in France, then the nominal exchange rate should be a. 2 euros per dollar. b. leuro per dollar. c. 1/2 euro per dollar.. d. None of the above is correct. 11. The economy will move to a point on the Phillips curve where unemployment is higher if, e. the government increases its expenditures. d. None of the above are correct. a. the inflation rate increases. b. the Fed decreases the money supply, 12. A decrease in government spending initially and primarily shifts a. aggregate demand right. b. aggregate supply right.. 13. In the short run, an increase in the money supply a. increase, and aggregate demand to shift right. b. decrease, and aggregate demand to shift right. c. aggregate demand left. d. neither aggregate demand nor aggregate supply. causes interest rates to a. real wages decline. b. the interest rate increases. 14. Which of the following is not a reason the aggregate demand curve slopes downward? As the price level increases 15. Stagflation would exist when prices a. and output rise. c. increase, and aggregate demand to shift left. d. decrease, and aggregate demand to shift left. c. real wealth declines. d. the exchange rate increases. b. rise and output falls. c. fall and output rises. d. and output fall. what is the minimum amount of 5.6 m h2so4 necessary to produce 25.6 g of h2(g) according to the following reaction? Please help me with this question. I will truely appreciate. ThankyouGiven the possible strategies listed below, design the best plan for increasing the country's future standard of living. i. build new factories ii. print money iii. develop new production technology i A company uses a process costing system. Its Assembly Department's beginning inventory consisted of 45,000 units, 45% complete with respect to direct labor and overhead. The value of beginning inventory was $350,000 which consisted of $280,000 of conversion costs and $70,000 of direct material costs. The department completed and transferred out 110,000 units this period. The ending inventory consists of 45,000 units that are 30% complete with respect to conversion costs (direct labor and overhead). All direct materials are added at the beginning of the process. The department incurred direct labor costs of $67,000 and overhead costs of $45,000 for the period. The conversion cost per equivalent unit for the month is (rounded to the nearest cent):$3.74/eu$2.73/eu$3.17/eu$3.01/eu find the nth-order taylor polynomials of the given function centered at 0, for n0, 1, and 2. b. graph the taylor polynomials and the function.