List the data in the following stem-and-leaf plot. The leaf
represents the tenths digit.
14
1366
15
16
28
17
122
18
1

Answers

Answer 1

Based on the provided stem-and-leaf plot, the data can be listed as follows:

1 | 4

1 | 3 6 6

1 | 5

1 | 6

2 | 8

1 | 7

1 | 2 2

1 | 8

In a stem-and-leaf plot, the stems represent the tens digit, and the leaves represent the ones or tenths digit. Each entry in the plot corresponds to a value.

For example, "1 | 4" represents the value 14, and "1 | 3 6 6" represents the values 13.6, 13.6, and 13.6.

The data in the stem-and-leaf plot consists of the following values: 14, 13.6, 13.6, 13.6, 15, 16, 28, 17, 12.2, 12.2, 18.

to know more about stem-and-leaf plot visit :

https://brainly.com/question/8649311

#SPJ11


Related Questions

Use the convolution theorem and Laplace transforms to compute 3 3 *2. 3 3 2= (Туре an expression using t as the variable.)

Answers

The convolution theorem is a technique used to simplify the multiplication of two Laplace transform functions, that is, the Laplace transform of the convolution of two functions is equal to the product of their Laplace transforms.

Consider the Laplace transform of the first function, f(t) = 3t3, which is given by F(s) = L{f(t)} = 3!/(s4). Likewise, the Laplace transform of the second function g(t) = 2t is given by G(s) = L{g(t)} = 2/(s2).Using the convolution theorem, we have the following relationship: L{f(t)*g(t)} = F(s)*G(s)where * denotes convolution of the two functions.

Hence, L{f(t)*g(t)} = (3!/(s4)) * (2/(s2))Multiplying the two Laplace transforms, we get: L{f(t)*g(t)} = 6/(s6)Hence, f(t)*g(t) = L-1{L{f(t)*g(t)}} = L-1{6/(s6)}Taking the inverse Laplace transform of the above expression, we obtain:f(t)*g(t) = 6 t5/5, where t ≥ 0Therefore, the expression using t as the variable is:f(t)*g(t) = (6t5)/5.

To know more about inverse visit :

https://brainly.com/question/30339780

#SPJ11

Week 5 portfolio project.....Need help on ideas how to put this
together. My research topic is the impact covid-19 has on the
healthcare industry.. zoom in for view
Statistics in Excel with Data Analysis Toolpak Week 5 . Due by the end of Week 5 at 11:59 pm, ET. This week your analysis should be performed in Excel and documented in your research paper. Data Analy

Answers

The COVID-19 pandemic has had a significant impact on the healthcare industry worldwide such as increased demand and strain on healthcare systems.

How to explain the impact

Increased demand and strain on healthcare systems: The rapid spread of the virus resulted in a surge in the number of patients requiring medical care.

Focus on infectious disease management: COVID-19 became a top priority for healthcare providers globally. Resources were redirected towards testing, treatment, and containment efforts, with a particular emphasis on developing effective diagnostic tools, vaccines, and therapeutics.

Telemedicine and digital health solutions: In order to minimize the risk of virus transmission and provide care to patients while maintaining social distancing, telemedicine and digital health solutions saw widespread adoption.

Supply chain disruptions: The pandemic disrupted global supply chains, causing shortages of essential medical supplies, personal protective equipment (PPE), and medications. Healthcare providers faced challenges in obtaining necessary equipment and resources, leading to rationing and prioritization of supplies.

Financial impact: The healthcare industry experienced significant financial implications due to the pandemic. Many hospitals and healthcare facilities faced revenue losses due to canceled procedures and decreased patient volumes, especially in areas with strict lockdowns or overwhelmed healthcare systems.

Mental health and well-being: The pandemic had a profound impact on the mental health of healthcare workers. They faced immense stress, burnout, and emotional exhaustion due to long working hours, high patient loads, and the emotional toll of treating severely ill or dying patients.

Leans more about pandemic on.

https://brainly.com/question/18759665

#SPJ4

If the zero conditional mean assumption holds, we can give our coefficients a causal interpretation. True False

Answers

True. If the zero conditional mean assumption holds, the coefficients can be given a causal interpretation.

True. If the zero conditional mean assumption, also known as the exogeneity assumption or the assumption of no omitted variables bias, holds in a regression model, then the coefficients can be given a causal interpretation.

The zero conditional mean assumption states that the error term in the regression model has an expected value of zero given the values of the independent variables. This assumption is important for establishing causality because it implies that there is no systematic relationship between the error term and the independent variables.

When this assumption is satisfied, we can interpret the coefficients as representing the causal effect of the independent variables on the dependent variable, holding other factors constant. However, if the zero conditional mean assumption is violated, the coefficients may be biased and cannot be interpreted causally.

To learn more about “variable” refer to the  https://brainly.com/question/28248724

#SPJ11

please solve this question within 20 Min
this is my main question
3. (简答题, 40.0分) Let X be a random variable with density function Compute (a) P{X>0}; (b) P{0 < X

Answers

The value of the probabilities are:

(a) P(X > 0) = 1/2

(b) P(0 < X < 1) = 1/2

We have,

To compute the probabilities, we need to integrate the density function over the given intervals.

(a) P(X > 0):

To find P(X > 0), we need to integrate the density function f(x) = k(1 - x²) from 0 to 1:

P(X > 0) = ∫[0,1] f(x) dx

First, we need to determine the constant k by ensuring that the total area under the density function is equal to 1:

∫[-1,1] f(x) dx = 1

∫[-1,1] k(1 - x²) dx = 1

Solving the integral:

k ∫[-1,1] (1 - x²) dx = 1

k [x - (x³)/3] | [-1,1] = 1

k [(1 - (1³)/3) - (-1 - (-1)³/3)] = 1

k [(1 - 1/3) - (-1  1/3)] = 1

k (2/3 + 2/3) = 1

k = 3/4

Now we can compute P(X > 0):

P(X > 0) = ∫[0,1] (3/4)(1 - x²) dx

P(X > 0) = (3/4) [x - (x³)/3] | [0,1]

P(X > 0) = (3/4) [(1 - (1³)/3) - (0 - (0³)/3)]

P(X > 0) = (3/4) [(2/3) - 0]

P(X > 0) = (3/4) * (2/3) = 1/2

Therefore, P(X > 0) = 1/2.

(b) P(0 < X < 1):

To find P(0 < X < 1), we integrate the density function f(x) = k(1 - x²) from 0 to 1:

P(0 < X < 1) = ∫[0,1] f(x) dx

Using the previously determined value of k (k = 3/4), we can compute P(0 < X < 1):

P(0 < X < 1) = ∫[0,1] (3/4)(1 - x²) dx

P(0 < X < 1) = (3/4) [x - (x³)/3] | [0,1]

P(0 < X < 1) = (3/4) [(1 - (1³)/3) - (0 - (0³)/3)]

P(0 < X < 1) = (3/4) [(2/3) - 0]

P(0 < X < 1) = (3/4) * (2/3) = 1/2

Therefore, P(0 < X < 1) = 1/2.

Thus,

The value of the probabilities are:

(a) P(X > 0) = 1/2

(b) P(0 < X < 1) = 1/2

Learn more about probability here:

https://brainly.com/question/14099682

#SPJ4

The complete question:

Let X be a random variable with the density function f(x) = k(1 - x^2) for -1 ≤ x ≤ 1 and 0 elsewhere.

Compute the following probabilities:

(a) P(X > 0)

(b) P(0 < X < 1)

A variable is normally distributed with mean 6 and standard deviation 2. Find the percentage of all possible values of the variable that lie between 5 and 8, find the percentage of all possible values of the variable that exceed 3, find the percentage of all possible values of the variable that are less than 4.

Answers

To find the percentage of all possible values of a normally distributed variable that lie within a certain range or satisfy certain conditions,

we can use the properties of the standard normal distribution.

1. Percentage of values between 5 and 8:

To calculate this, we need to standardize the values using the formula: z = (x - μ) / σ, where x is the value, μ is the mean, and σ is the standard deviation.

For the lower limit (5):

z_lower = (5 - 6) / 2 = -0.5

For the upper limit (8):

z_upper = (8 - 6) / 2 = 1

We can then look up the corresponding probabilities in the standard normal distribution table or use a calculator. The percentage of values between 5 and 8 can be found by subtracting the cumulative probabilities corresponding to z = -0.5 from the cumulative probabilities corresponding to z = 1:

P(5 ≤ x ≤ 8) = P(z ≤ 1) - P(z ≤ -0.5)

Using a standard normal distribution table or calculator, we find:

P(z ≤ 1) ≈ 0.8413

P(z ≤ -0.5) ≈ 0.3085

Therefore, P(5 ≤ x ≤ 8) ≈ 0.8413 - 0.3085 ≈ 0.5328 or 53.28%.

2. Percentage of values exceeding 3:

Again, we need to standardize the value using the formula: z = (x - μ) / σ.

For the value 3:

z = (3 - 6) / 2 = -1.5

To find the percentage of values that exceed 3, we can subtract the cumulative probability corresponding to z = -1.5 from 1 (since we want the values that are beyond this z-score):

P(x > 3) = 1 - P(z ≤ -1.5)

Using a standard normal distribution table or calculator, we find:

P(z ≤ -1.5) ≈ 0.0668

Therefore, P(x > 3) ≈ 1 - 0.0668 ≈ 0.9332 or 93.32%.

3. Percentage of values less than 4:

Again, we need to standardize the value using the formula: z = (x - μ) / σ.

For the value 4:

z = (4 - 6) / 2 = -1

To find the percentage of values that are less than 4, we can find the cumulative probability corresponding to z = -1:

P(x < 4) = P(z < -1)

Using a standard normal distribution table or calculator, we find:

P(z < -1) ≈ 0.1587

Therefore, P(x < 4) ≈ 0.1587 or 15.87%.

So, the percentages of all possible values of the variable are as follows:

- Percentage between 5 and 8: 53.28%

- Percentage exceeding 3: 93.32%

- Percentage less than 4: 15.87%

To know more about variable visit:

https://brainly.com/question/15078630

#SPJ11


#24 A particular cell in Excel is referred to by it's cell name,
such as D25. The D refers to the ______?
#32
The correct way to enter a cell address (for cell D3) in Excel
when you want the row to al

Answers

#24: The "D" in the cell name D25 refers to the column identifier in Excel.

#32: To enter a cell address in Excel, specifically for cell D3, when you want the row to always remain the same, you use the dollar sign ($) before the row number. So, the correct way to enter the cell address D3 while keeping the row fixed is "$D$3". By adding the dollar sign before both the column letter and the row number, the cell reference becomes an absolute reference, meaning it will not change when copied or filled down to other cells.

This is useful when you want to refer to a specific cell in formulas or when creating structured references in Excel tables.

Learn more about number here: brainly.com/question/28982016

#SPJ11

determine the mean and variance of the random variable with the following probability mass function. f(x)=(64/21)(1/4)x, x=1,2,3 round your answers to three decimal places (e.g. 98.765).

Answers

The mean of the given random variable is approximately equal to 1.782 and the variance of the given random variable is approximately equal to -0.923.

Let us find the mean and variance of the random variable with the given probability mass function. The probability mass function is given as:f(x)=(64/21)(1/4)^x, for x = 1, 2, 3

We know that the mean of a discrete random variable is given as follows:μ=E(X)=∑xP(X=x)

Thus, the mean of the given random variable is:

μ=E(X)=∑xP(X=x)

= 1 × f(1) + 2 × f(2) + 3 × f(3)= 1 × [(64/21)(1/4)^1] + 2 × [(64/21)(1/4)^2] + 3 × [(64/21)(1/4)^3]

≈ 0.846 + 0.534 + 0.402≈ 1.782

Therefore, the mean of the given random variable is approximately equal to 1.782.

Now, we find the variance of the random variable. We know that the variance of a random variable is given as follows

:σ²=V(X)=E(X²)-[E(X)]²

Thus, we need to find E(X²).E(X²)=∑x(x²)(P(X=x))

Thus, E(X²) is calculated as follows:

E(X²) = (1²)(64/21)(1/4)^1 + (2²)(64/21)(1/4)^2 + (3²)(64/21)(1/4)^3

≈ 0.846 + 0.801 + 0.604≈ 2.251

Now, we have:E(X)² ≈ (1.782)² = 3.174

Then, we can calculate the variance as follows:σ²=V(X)=E(X²)-[E(X)]²=2.251 − 3.174≈ -0.923

The variance of the given random variable is approximately equal to -0.923.

Know more about the probability mass function

https://brainly.com/question/30765833

#SPJ11

Consider the following plot. 50 40- 30- 20 10- 0- Frequency 0 5 10 15 20 25 Estimate the mean of the distribution. You are given full credit if the estimate is within 2 units of the actual mean. It is

Answers

The given plot represents a histogram and we have to estimate the mean of the distribution from the histogram.

Mean: The mean is a value that represents the average of a set of data points. It is calculated by dividing the sum of all the data points by the number of data points.

Frequency: The frequency of a data point refers to the number of times that data point appears in a set of data points.

The midpoint of each class interval is considered to be the value that is representative of that class interval. It is the value that is used to find the mean.

Let's calculate the midpoints of each class interval:

50: (40+50)/2 = 45 (class interval: 40-50)

30: (20+30)/2 = 25 (class interval: 20-30)

10: (0+10)/2 = 5 (class interval: 0-10).

Let's calculate the frequency distribution for the given plot:

50: 05: 10

30: 15

10: 0.

We know that, mean = (sum of the data points/total number of data points).

Let's calculate the mean using the midpoints and frequency of each class interval.

Mean = (45*5 + 25*15 + 5*0)/20

Mean = (225+375+0)/20

Mean = 600/20

Mean = 30

Therefore, the estimated mean of the distribution is 30 units.

To know more about mean, visit:

https://brainly.com/question/31101410

#SPJ11

I really need some of help please and thank you​

Answers

The angle m∠2 in the line is 54 degrees.

How to find the angles in a line?

complementary angles are angles that sum up to 90 degrees. The angles m∠1 and m∠2 sum up to 90 degrees. Therefore, they are complementary angles.

Let's find the angle m∠2 as follows:

m∠1 + m∠2 = 90

m∠1 = 36 degrees

Therefore,

36 + m∠2 = 90

m∠2 = 90 - 36

m∠2 = 54 degrees

learn more on angles here: https://brainly.com/question/23777548

#SPJ1

does each function describe exponential growth or exponential decay? exponential growth exponential decay a.y=12(1.3)t
b.y=21(1.3)t c.y = 0.3(0.95)t d.y = 200(0.73)t e.y=4(14)t
f.y=4(41)t g.y = 250(1.004)t

Answers

Among the given functions, the exponential growth functions are represented by (a), (b), (e), and (f), while the exponential decay functions are represented by (c), (d), and (g).

In an exponential growth function, the base of the exponential term is greater than 1. This means that as the independent variable increases, the dependent variable grows at an increasing rate. Functions (a), (b), (e), and (f) exhibit exponential growth.

(a) y = [tex]12(1.3)^t[/tex] represents exponential growth because the base 1.3 is greater than 1, and as t increases, y grows exponentially.

(b) y = [tex]21(1.3)^t[/tex] also demonstrates exponential growth as the base 1.3 is greater than 1, resulting in an exponential increase in y as t increases.

(e) y = [tex]4(14)^t[/tex] and (f) y = [tex]4(41)^t[/tex] also represent exponential growth, as the bases 14 and 41 are greater than 1, leading to an exponential growth of y as t increases.

On the other hand, exponential decay occurs when the base of the exponential term is between 0 and 1. In this case, as the independent variable increases, the dependent variable decreases at a decreasing rate. Functions (c), (d), and (g) demonstrate exponential decay.

(c) y = [tex]0.3(0.95)^t[/tex] represents exponential decay because the base 0.95 is between 0 and 1, causing y to decay exponentially as t increases.

(d) y = [tex]200(0.73)^t[/tex] also exhibits exponential decay, as the base 0.73 is between 0 and 1, resulting in a decreasing value of y as t increases.

(g) y = [tex]250(1.004)^t[/tex] represents exponential decay because the base 1.004 is slightly greater than 1, but still within the range of exponential decay. As t increases, y decays at a decreasing rate.

In summary, functions (a), (b), (e), and (f) represent exponential growth, while functions (c), (d), and (g) represent exponential decay.

Learn more about exponential growth function here:

https://brainly.com/question/14355665

#SPJ11

Suppose there is a medical screening procedure for a specific cancer that has sensitivity = .90, and a specificity = .95. Suppose the underlying rate of the cancer in the population is .001. Let B be the Event "the person has that specific cancer," and let A be the event "the screening procedure gives a positive result." What is the probability that a person has the disease given the result of the screening is positive?

Answers

The probability that a person has the disease given the result of the screening is positive is approximately 0.0162.

The probability that a person has the disease given the result of the screening is positive can be calculated using Bayes’ Theorem.

Bayes’ Theorem states that the probability of an event (A), given that another event (B) has occurred, can be calculated using the following formula:

[tex]$$P(A | B) = \frac{P(B | A) P(A)}{P(B)}$$[/tex]

where,

$$P(A | B)$$

is the probability of event A occurring given that event B has occurred, $$P(B | A)$$

is the probability of event B occurring given that event A has occurred,

$$P(A)$$

is the prior probability of event A occurring, and

$$P(B)$$

is the prior probability of event B occurring.

Using the given information, we can calculate the required probability as follows: Given,

[tex]$$P(B | A) = 0.90$$ (sensitivity)$$P(B' | A') = 0.95$$ (specificity)$$P(A) = 0.001$$$$P(A') = 1 - P(A) = 0.999$$[/tex]

We want to find

$$P(A | B)$$.

Using Bayes’ theorem, we can write:

[tex]$$P(A | B) = \frac{P(B | A) P(A)}{P(B | A) P(A) + P(B | A') P(A')}$$$$= \frac{0.90 \cdot 0.001}{0.90 \cdot 0.001 + 0.05 \cdot 0.999}$$$$≈ 0.0162$$[/tex]

Therefore, the probability that a person has the disease given the result of the screening is positive is approximately 0.0162.

To know more on probability visit:

https://brainly.com/question/13604758

#SPJ11

the product of all digits of positive integer $m$ is $105.$ how many such $m$s are there with distinct digits?

Answers

We need to find the total number of such $m$'s with distinct digits whose product of all digits of positive integer $m$ is $105. $Here we have, $105=3×5×7$Therefore, the number $m$ must have $1,3, $ and $5$ as digits.

Also, $m$ must be a three-digit number because $105$ cannot be expressed as a product of more than three digits. For the ones digit, we can use $5. $For the hundreds digit, we can use $1$ or $3. $We have two options to choose the digit for the hundred's place (1 or 3). After choosing the hundred's digit, the tens digit is forced to be the remaining digit, so we have only one option for that. Therefore, there are $2$ options for choosing the hundred's digit and $1$ option for choosing the tens digit. Hence the total number of $m$'s possible$=2 × 1= 2.$Therefore, there are two such $m$'s.

To know more about digits visit:

brainly.com/question/30142622

#SPJ11

Find the area of an equilateral triangle with a side of 6 inches.
a. 4.5√3 in²
b. 9√3 in²
c. 6√3 in²

Answers

The answer is b. 9 * sqrt(3) in^2.

To find the area of an equilateral triangle, we can use the formula:

Area = (side length^2 * sqrt(3)) / 4

Given that the side length of the equilateral triangle is 6 inches, we can substitute this value into the formula:

Area = (6^2 * sqrt(3)) / 4

Simplifying further:

Area = (36 * sqrt(3)) / 4

To simplify the expression, we can divide 36 by 4:

Area = 9 * sqrt(3)

So, the area of the equilateral triangle with a side length of 6 inches is 9 * sqrt(3) square inches.

the area of an equilateral triangle with a side of 6 inches is 9√3 square inches. Hence, option b is correct. by using formula A = (√3/4) × a²A

An equilateral triangle has all three sides equal. Therefore, each angle of the triangle is 60°. Let us now proceed to calculate the area of the equilateral triangle given side length 6 inches .The formula to find the area of an equilateral triangle is,A = (√3/4) × a²Where A is the area of the triangle and a is the length of the side of the equilateral triangle. Substitute the value of a = 6 inches in the formula and calculate the area of the equilateral triangle.A = (√3/4) × a²A = (√3/4) × 6²A = (√3/4) × 36A = 9√3 square inches.

To know more about equilateral triangle Visit:

https://brainly.com/question/27213413

#SPJ11

Find the global maximum and the global minimum values of function f(x, y) = x² + y² + x²y + 4 y²+x²y +4 on the region B = {(x, y) € R² | − 1 ≤ x ≤ 1, R2-1≤x≤1, -1≤ y ≤1}.

Answers

Therefore, the global maximum value of the function on the region B is 12, and the global minimum value is 4.

To find the global maximum and minimum values of the function f(x, y) = x² + y² + x²y + 4y² + x²y + 4 on the region B = {(x, y) ∈ R² | −1 ≤ x ≤ 1, -1 ≤ y ≤ 1}, we need to evaluate the function at its critical points within the given region and compare the function values.

1. Critical Points:

To find the critical points, we need to find the points where the gradient of the function is zero or undefined.

The gradient of f(x, y) is given by:

∇f(x, y) = (df/dx, df/dy) = (2x + 2xy + 2x, 2y + x² + 8y + x²).

Setting the partial derivatives equal to zero, we get:

2x + 2xy + 2x = 0          (Equation 1)

2y + x² + 8y + x² = 0      (Equation 2)

Simplifying Equation 1, we have:

2x(1 + y + 1) = 0

x(1 + y + 1) = 0

x(2 + y) = 0

So, either x = 0 or y = -2.

If x = 0, substituting this into Equation 2, we get:

2y + 0 + 8y + 0 = 0

10y = 0

y = 0

Thus, we have one critical point: (0, 0).

2. Evaluate Function at Critical Points and Boundary:

Next, we evaluate the function f(x, y) at the critical point and the boundary points of the region B.

(i) Critical point:

f(0, 0) = (0)² + (0)² + (0)²(0) + 4(0)² + (0)²(0) + 4

       = 0 + 0 + 0 + 0 + 0 + 4

       = 4

(ii) Boundary points:

- At (1, 1):

f(1, 1) = (1)² + (1)² + (1)²(1) + 4(1)² + (1)²(1) + 4

       = 1 + 1 + 1 + 4 + 1 + 4

       = 12

- At (1, -1):

f(1, -1) = (1)² + (-1)² + (1)²(-1) + 4(-1)² + (1)²(-1) + 4

         = 1 + 1 - 1 + 4 + (-1) + 4

         = 8

- At (-1, 1):

f(-1, 1) = (-1)² + (1)² + (-1)²(1) + 4(1)² + (-1)²(1) + 4

         = 1 + 1 - 1 + 4 + (-1) + 4

         = 8

- At (-1, -1):

f(-1, -1) = (-1)² + (-1)² + (-1)²(-1) + 4(-1)² + (-1)²(-1) + 4

          = 1 + 1 + 1 + 4 + 1 + 4

          = 12

Learn more about global minimum here:

brainly.com/question/14859752

#SPJ4

Find the curve in the xy-plane that passes through the point (9,4) and whose slope at each point is 3 x

. y=

Answers

The required curve in the xy-plane is y = (3x²) / 2 – 117.5.

The given differential equation is y′ = 3x.

Here we have to find the curve in the xy-plane that passes through the point (9, 4) and whose slope at each point is 3x.

To solve the given differential equation, we have to integrate both sides with respect to x, which is shown below;

∫dy = ∫3xdxIntegrating both sides, we get;y = (3x²)/2 + C

where C is a constant of integration.

Now, we have to use the given point (9, 4) to find the value of C.

Substituting x = 9 and y = 4, we get;4 = (3 * 9²) / 2 + C4 = 121.5 + C C = -117.5N

Now we can substitute the value of C in the above equation;y = (3x²) / 2 – 117.5

Therefore, the required curve in the xy-plane is y = (3x²) / 2 – 117.5.

Know more about a curve  here:

https://brainly.com/question/26460726

#SPJ11

Suppose that the weight of an newborn fawn is Uniformly distributed between 1.7 and 3.4 kg. Suppose that a newborn fawn is randomly selected. Round answers to 4 decimal places when possible. a. The mean of this distribution is 2.55 O b. The standard deviation is c. The probability that fawn will weigh exactly 2.9 kg is P(x - 2.9) - d. The probability that a newborn fawn will be weigh between 2.2 and 2.8 is P(2.2 < x < 2.8) = e. The probability that a newborn fawn will be weigh more than 2.84 is P(x > 2.84) = f. P(x > 2.3 | x < 2.6) = g. Find the 60th percentile.

Answers

The answer to the question is given in parts:

a. The mean of this distribution is 2.55.

The mean of a uniform distribution is the average of its minimum and maximum values, which is given by the following formula:

Mean = (Maximum value + Minimum value)/2

Therefore, Mean = (3.4 + 1.7)/2 = 2.55.

b. The standard deviation is 0.4243.

The formula for the standard deviation of a uniform distribution is given by the following formula:

Standard deviation = (Maximum value - Minimum value)/√12

Therefore, Standard deviation = (3.4 - 1.7)/√12 = 0.4243 (rounded to four decimal places).

c. The probability that fawn will weigh exactly 2.9 kg is 0.

The probability of a continuous random variable taking a specific value is always zero.

Therefore, the probability that the fawn will weigh exactly 2.9 kg is 0.

d. The probability that a newborn fawn will weigh between 2.2 and 2.8 is P(2.2 < x < 2.8) = 0.25.

The probability of a continuous uniform distribution is given by the following formula:

Probability = (Maximum value - Minimum value)/(Total range)

Therefore, Probability = (2.8 - 2.2)/(3.4 - 1.7) = 0.25.

e. The probability that a newborn fawn will weigh more than 2.84 is P(x > 2.84) = 0.27.

The probability of a continuous uniform distribution is given by the following formula:

Probability = (Maximum value - Minimum value)/(Total range)

Therefore, Probability = (3.4 - 2.84)/(3.4 - 1.7) = 0.27.f. P(x > 2.3 | x < 2.6) = 0.5.

This conditional probability can be found using the following formula:

P(x > 2.3 | x < 2.6) = P(2.3 < x < 2.6)/P(x < 2.6)

The probability that x is between 2.3 and 2.6 is given by the following formula:

Probability = (2.6 - 2.3)/(3.4 - 1.7) = 0.147

The probability that x is less than 2.6 is given by the following formula:

Probability = (2.6 - 1.7)/(3.4 - 1.7) = 0.441

Therefore,

P(x > 2.3 | x < 2.6) = 0.147/0.441 = 0.5g.

Find the 60th percentile. The 60th percentile is the value below which 60% of the observations fall. The percentile can be found using the following formula:

Percentile = Minimum value + (Percentile rank/100) × Total range

Therefore, Percentile = 1.7 + (60/100) × (3.4 - 1.7) = 2.38 (rounded to two decimal places).

Therefore, the 60th percentile is 2.38.

learn more about standard deviation here:

https://brainly.com/question/12402189

#SPJ11

Suppose there is a 60% chance that a white blood cell will be a neutrophil.If a group of researchers randomly selected 15 white blood cells for their pioneer study, what is the probability that half (i.e. 7.5) or less of the sample are neutrophils? OA60% OB) 0.21% C) 21.48% D) 78.52% O E) -0.79%

Answers

The probability that half or less of the sample are neutrophils is approximately C, 21.48%.

How to find probability?

To solve this problem, use the binomial distribution. The probability of success (p) is 0.60 (60% chance of selecting a neutrophil) and the sample size (n) is 15.

To find the probability that half or less of the sample are neutrophils, which means to find the cumulative probability from 0 to 7.5 (since we can't have a fraction of a white blood cell).

Using a binomial distribution calculator or a statistical software, calculate this probability.

P(X ≤ 7.5) = P(X = 0) + P(X = 1) + ... + P(X = 7) + P(X = 7.5)

P(X ≤ 7.5) = 0.000 + 0.001 + ... + 0.179 + P(X = 7.5)

Now, P(X = 7.5) represents the probability of getting exactly 7.5 neutrophils, which is not a whole number. However, in a binomial distribution, probabilities are calculated for discrete values, so make an adjustment.

Consider P(X = 7) and P(X = 8) as the probabilities surrounding 7.5, and split the probability evenly between them:

P(X = 7) = P(X = 8) = 0.179 / 2 = 0.0895

Now calculate the cumulative probability:

P(X ≤ 7.5) = 0.000 + 0.001 + ... + 0.179 + 0.0895 + 0.0895

P(X ≤ 7.5) ≈ 0.2148

Therefore, the probability that half or less of the sample are neutrophils is approximately 21.48%.

The correct answer is (C) 21.48%.

Find out more on probability here: https://brainly.com/question/25870256

#SPJ1

find the mean, , and standard deviation, , for a binomial random variable x. (round all answers for to three decimal places.)

Answers

The binomial random variable, X, denotes the number of successful outcomes in a sequence of n independent trials that may result in a success or failure. Here, we have to find the mean and standard deviation of a binomial random variable X.I

n a binomial experiment, we have the following probabilities:Probability of success, pProbability of failure, q = 1 - pThe mean of X is given by the formula:μ = npThe variance of X is given by the formula:σ² = npqThe standard deviation of X is given by the formula:σ = sqrt(npq)Where n is the number of trials.For the given problem, we have not been given the values of n, p, and q.

Hence, it's not possible to find the mean, variance, and standard deviation of X. Without these values, we cannot proceed further and thus the answer cannot be given.Following are the formulas of mean and standard deviation:Mean: μ = np; variance: σ² = npq and standard deviation: σ = sqrt(npq).These formulas are used to calculate the mean and standard deviation of a binomial distribution.

To Know more about deviation visit:

brainly.com/question/31835352

#SPJ11

Which results from multiplying the six trigonometric functions?
a. -3
b. -11
c. -1
d. 13

Answers

Answer:

The main answer:

The answer is c. -1.

What is the result when you multiply the six trigonometric functions?

The six trigonometric functions are sine (sin), cosine (cos), tangent (tan), cosecant (csc), secant (sec), and cotangent (cot). When these functions are multiplied together, the result is always equal to -1.

To understand why the product of the six trigonometric functions is -1, we can examine the reciprocal relationships between these functions. The reciprocals of sine, cosine, and tangent are cosecant, secant, and cotangent, respectively. Thus, if we multiply a trigonometric function by its reciprocal, the result will always be 1.

When we multiply all six trigonometric functions together, we can pair each function with its reciprocal, resulting in a product of 1 for each pair. However, since there are three pairs in total, the overall product is 1 x 1 x 1 = 1 cubed, which equals 1.

However, there is an additional factor to consider. The sign of the trigonometric functions depends on the quadrant in which the angle lies. In three quadrants, sine, tangent, cosecant, and cotangent are positive, while cosine and secant are negative. In the remaining quadrant, cosine and secant are positive, while sine, tangent, cosecant, and cotangent are negative. The negative sign from the cosine and secant functions cancels out the positive signs from the other functions, resulting in a final product of -1.

Learn more about:Trigonometry and its functions

brainly.com/question/17586607

#SPJ11

The average weight of randomly selected 35 compact automobiles was 2680 pounds. The sample standard deviation was 400 pounds.Find the following:(a) The point estimate and error of estimation.(b) The 98% confidence interval of the population mean.(c) The 98% confidence interval of the mean if a sample of 60 automobiles is used instead of a sample of 35.

Answers

The point estimate of the population mean weight of compact automobiles is 2680 pounds, based on a sample of 35 cars with a sample standard deviation of 400 pounds. The error of estimation represents the uncertainty associated with this point estimate.

To calculate the error of estimation, we use the formula:

Error of Estimation = (Z-score) * (Standard Deviation / Square Root of Sample Size)

For a 98% confidence interval, the Z-score is 2.33. Plugging in the values:

Error of Estimation = (2.33) * (400 / √35) = 147.79 pounds

Therefore, the point estimate of the population mean weight of compact automobiles is 2680 pounds, with an error of estimation of ±147.79 pounds.

To find the 98% confidence interval of the population mean, we use the formula:

Confidence Interval = Point Estimate ± (Error of Estimation)

Substituting the values:

Confidence Interval = 2680 ± 147.79

Confidence Interval = (2532.21, 2827.79) pounds

Thus, the 98% confidence interval of the population mean weight of compact automobiles is (2532.21, 2827.79) pounds.

If a sample of 60 automobiles is used instead of 35, we need to recalculate the error of estimation using the updated sample size:

Error of Estimation = (2.33) * (400 / √60) = 124.35 pounds

Therefore, the point estimate of the population mean weight remains 2680 pounds, but the new error of estimation is ±124.35 pounds.

To find the 98% confidence interval with a sample of 60 automobiles, we use the updated error of estimation:

Confidence Interval = 2680 ± 124.35

Confidence Interval = (2555.65, 2804.35) pounds

Hence, the 98% confidence interval of the population mean weight of compact automobiles, based on a sample of 60 cars, is (2555.65, 2804.35) pounds.

To know more about error of estimation refer here:

https://brainly.com/question/15521268#

#SPJ11

Statistics show that there is a weak relationship between education and income. True or False

Answers

The given statement is: False

There is a strong relationship between education and income, contrary to the statement that suggests a weak relationship. Numerous studies have consistently shown that individuals with higher levels of education tend to have higher incomes compared to those with lower levels of education.

Education provides individuals with knowledge, skills, and qualifications that are valued in the job market. Higher levels of education, such as obtaining a college degree or advanced professional certifications, often lead to access to higher-paying job opportunities. Additionally, education can also enhance individuals' problem-solving abilities, critical thinking skills, and overall cognitive abilities, which are highly sought after by employers in many industries.

Moreover, education acts as a mechanism for social mobility, enabling individuals from disadvantaged backgrounds to overcome economic barriers. By acquiring a higher education, individuals can increase their chances of securing well-paying jobs, which, in turn, can lead to improved income levels and a higher standard of living.

It is important to note that while education is a significant factor in determining income, it is not the sole determinant. Other factors such as job experience, industry, location, and economic conditions also play a role in influencing income levels.

Learn more about education and income

brainly.com/question/16206139

#SPJ11

if+you+deposit+$10,000+at+1.85%+simple+interest,+compounded+daily,+what+would+your+ending+balance+be+after+3+years?

Answers

The ending balance would be $11,268.55 after 3 years.

If you deposit $10,000 at 1.85% simple interest, compounded daily, what would your ending balance be after 3 years?The ending balance after 3 years is $11,268.55 for $10,000 deposited at 1.85% simple interest, compounded daily.

To calculate the ending balance after 3 years,

we can use the formula for compound interest which is given by;A = P (1 + r/n)^(n*t)Where A is the ending amount, P is the principal amount, r is the annual interest rate, n is the number of times

the interest is compounded per year and t is the number of years.

Using the given values, we get;P = $10,000r = 1.85%n = 365t = 3 years

Substituting the values in the formula, we get;A = 10000(1 + 0.0185/365)^(365*3)A = $11,268.55

To know more about balance visit:

https://brainly.com/question/27154367

#SPJ11

find the sum of the two matrices: 5 2 3 0 + 4 1 6 7 = a b c d a = b = c = d =

Answers

The sum of the two matrices is:

9 3

9 7

The sum of matrices is obtained by adding the corresponding elements of the matrices. In this case, we add the elements in the first row and first column, and then in the second row and second column.

In the given example, the sum of the elements in the first row and first column is 5+4 = 9, and the sum of the elements in the second row and second column is 2+1 = 3. Similarly, the sum of the elements in the first row and second column is 3+6 = 9, and the sum of the elements in the second row and second column is 0+7 = 7.

Therefore, the resulting matrix is:

9 3

9 7

Each element in the resulting matrix is the sum of the corresponding elements in the original matrices. In this case, a = 9, b = 3, c = 9, and d = 7.

Learn more about sum of matrices here:

https://brainly.com/question/12492706

#SPJ11

A particle moves in a vertical plane along the closed path seen in the figure(Figure 1) starting at A and eventually returning to its starting point. How much work is done on the particle by gravity?

Answers

the work done by the gravity on the particle will be zero ,by using formula of work done = force x displacement

Given that a particle moves in a vertical plane along the closed path seen in the figure, starting at A and eventually returning to its starting point. We are supposed to find the work done on the particle by gravity.What is work done?Work done is a physical quantity which is defined as the product of the force applied to an object and the distance it moves in the direction of the force. The formula for work done is given by:Work done = force x distance moved in the direction of force When the particle moves in a closed path and returns to the initial position, then the net displacement is zero.

To know more about work done Visit:

https://brainly.com/question/32263955

#SPJ11

Problem 4. (1 point) Construct both a 90% and a 95% confidence interval for $₁. Ĵ₁ = 30, s = 4.1, SSxx = 67, n = 20 90%:

Answers

The given data with a Sample mean of 30, a sample standard deviation of 4.1, a sample size of 20, and SSxx of 67, the 90% confidence interval is ($28.418, $31.582), and the 95% confidence interval is ($28.083, $31.917).

To construct a confidence interval for the population mean, we need to use the formula:

Confidence interval = sample mean ± margin of error

First, let's calculate the sample mean (Ĵ₁), which is given as 30.

Next, we need to calculate the standard error (SE) using the formula:

SE = s / √n

Where s is the sample standard deviation and n is the sample size.

Given that s = 4.1 and n = 20, we can calculate the standard error:

SE = 4.1 / √20 ≈ 0.917

To calculate the margin of error, we need to determine the critical value associated with the desired confidence level. For a 90% confidence level, the critical value can be obtained from a t-table or calculator. Since the sample size is small (n < 30), we use a t-distribution instead of a normal distribution.

For a 90% confidence level with 20 degrees of freedom, the critical value is approximately 1.725.

Now, we can calculate the margin of error:

Margin of error = critical value * standard error

                = 1.725 * 0.917

                ≈ 1.582

Now we can construct the 90% confidence interval:

Confidence interval = sample mean ± margin of error

                   = 30 ± 1.582

                   ≈ (28.418, 31.582)

Thus, the 90% confidence interval for $₁ is approximately ($28.418, $31.582).

To construct a 95% confidence interval, the process is the same, but we need to use the appropriate critical value. For a 95% confidence level with 20 degrees of freedom, the critical value is approximately 2.086.

Using the same formula as above, the margin of error is:

Margin of error = 2.086 * 0.917

              ≈ 1.917

So, the 95% confidence interval is:

Confidence interval = sample mean ± margin of error

                   = 30 ± 1.917

                   ≈ (28.083, 31.917)

Therefore, the 95% confidence interval for $₁ is approximately ($28.083, $31.917).the given data with a sample mean of 30, a sample standard deviation of 4.1, a sample size of 20, and SSxx of 67, the 90% confidence interval is ($28.418, $31.582), and the 95% confidence interval is ($28.083, $31.917).

For more questions Sample mean.

https://brainly.com/question/30331609

#SPJ8

Let n1=60, X1=10, n2=90, and X2=10. The estimated value of the
standard error for the difference between two population
proportions is
0.0676
0.0923
0.0154
0.0656

Answers

The estimated value of the standard error for the difference between the two population proportions is approximately 0.1092.

To estimate the standard error for the difference between two population proportions, you can use the following formula:

Standard Error = sqrt((p1 * (1 - p1) / n1) + (p2 * (1 - p2) / n2))

where p1 and p2 are the sample proportions, and n1 and n2 are the respective sample sizes.

In this case, you are given n1 = 60, X1 = 10, n2 = 90, and X2 = 10. To estimate the standard error, you need to calculate the sample proportions first:

p1 = X1 / n1 = 10 / 60 = 1/6

p2 = X2 / n2 = 10 / 90 = 1/9

Now, substitute these values into the formula:

Standard Error = sqrt((1/6 * (1 - 1/6) / 60) + (1/9 * (1 - 1/9) / 90))

Simplifying the expression:

Standard Error = sqrt((5/36 * 31/36) / 60 + (8/81 * 73/81) / 90)

Standard Error ≈ sqrt(0.0042 + 0.0077)

Standard Error ≈ sqrt(0.0119)

Standard Error ≈ 0.1092

Therefore, the estimated value of the standard error for the difference between the two population proportions is approximately 0.1092.

Learn more about  population from

https://brainly.com/question/25896797

#SPJ11

If the mean of the set of data
5,17,19,14,15,17,7,11,16,19,5,5,10,13,14,2,17,11,x is 61.14, what
is the value of x?

Answers

The value of x in the given set of data is 969.66 when the mean given is 61.14.

To find the value of x in the given set of data, we need to use the formula for calculating the mean of a set of data. The formula is:

Mean = (Sum of all the values in the set) / (Number of values in the set)

We are given that the mean of the set of data is 61.14. Therefore, we can write:

61.14 = (5+17+19+14+15+17+7+11+16+19+5+5+10+13+14+2+17+11+x) / (18 + 1)

Simplifying this equation, we get:

61.14 = (192 + x) / 19

Multiplying both sides by 19, we get:

1161.66 = 192 + x

Subtracting 192 from both sides, we get:

x = 969.66

To know more about mean refer here:

https://brainly.com/question/31101410#

#SPJ11

in this diagram bac = edf if the area of bac=15in what is the area of edf

Answers

In the diagram the area of edf is 15 sq. in.

In the given diagram bac = edf, and the area of bac is 15 in. Now we need to determine the area of edf.Using the area of a triangle formula:Area of a triangle = 1/2 × Base × Height

We know that both triangles have the same base (ac).Therefore, to find the area of edf, we need to find the height of edf.In triangle bac, we can find the height as follows:

Area of bac = 1/2 × ac × height

bac15 = 1/2 × ac × height

bac30 = ac × heightbacHeightbac = 30 / ac

Now that we have the heightbac, we can use it to find the area of edf as follows:

Area of edf = 1/2 × ac × heightedfArea of edf = 1/2 × ac × heightbacArea of edf = 1/2 × ac × 30/ac

Area of edf = 15

To know more about  triangles :

https://brainly.com/question/2773823

#SPJ11

When the graph of any continuous function y = f(x) for a ≤ x ≤ b is rotated about the horizontal line y = l, the volume obtained depends on l:
a) True
b) False

Answers

When the graph of any continuous function y = f(x) for a ≤ x ≤ b is rotated about the horizontal line y = l, the volume obtained depends on l: True.

The volume of a solid of revolution is determined by the method of cross-sectional areas of a solid with a curved surface rotating about an axis.

A cross-section of the solid made perpendicular to the axis of rotation by a plane is referred to as a disc or washer.

The volume of the solid can be calculated by summing up all of the cross-sectional areas as the limit of a Riemann sum as the width of the slice approaches zero.

Suppose we rotate the graph of any continuous function y = f(x) for a ≤ x ≤ b about the horizontal line y = l, as we do in solids of revolution.

So, the volume obtained will depend on l.

The formulas for the volume of the solid of revolution when the curve is rotated about the x-axis or y-axis can be derived from the formula for the volume of the solid of revolution as follows:

The solid with a curved surface generated by the curve y = f(x), rotated about the x-axis in the range a ≤ x ≤ b is referred to as a solid of revolution.

A line segment is perpendicular to the x-axis and forms a cross-sectional area that generates a washer with an outer radius R(x) = f(x) and an inner radius r(x) = 0, with thickness dx.

The cross-sectional area A(x) is given by:

A(x) = π[R(x)]2 – π[r(x)]2

= π[f(x)]2 – π(0)2

= π[f(x)]2

The volume of the washer, obtained by multiplying the cross-sectional area by the thickness, is given by

dV = A(x) dx

= π[f(x)]2dx

The total volume is given by integrating from a to b.

V = ∫_a^b π[f(x)]2dx

Therefore, the volume of the solid of revolution formed when the curve is rotated about the x-axis is given by V = π ∫_a^b[f(x)]2dx.

To know more about Volume, visit:

https://brainly.com/question/24086520

#SPJ11

Compute the least-squares regression line for predicting y from x given the following summary statistics. Round the slope and y- intercept to at least four decimal places. x = 42,000 S.. = 2.2 y = 41,

Answers

The slope of the least-squares regression line is 0 and the y-intercept is 41.

Given that

x = 42,000Sx

= 2.2y

= 41

We need to compute the least-squares regression line for predicting y from x.

For this, we first calculate the slope of the line as shown below:

slope, b = Sxy/Sx²

where Sxy is the sum of the products of the deviations for x and y from their means.

So we need to compute Sxy as shown below:

Sxy = Σxy - (Σx * Σy)/n

where Σxy is the sum of the products of x and y values.

Using the given values, we get:

Sxy = (42,000*41) - (42,000*41)/1= 0

So the slope of the line is:b = Sxy/Sx²= 0/(2.2)²= 0

So the least-squares regression line for predicting y from x is:y = a + bx

where a is the y-intercept and b is the slope of the line.

So substituting the values of x and y, we get:41 = a + 0(42,000)a = 41

Thus the equation of the line is:y = 41

So, the slope of the least-squares regression line is 0 and the y-intercept is 41.

Know more about the slope here:
https://brainly.com/question/3493733

#SPJ11

Other Questions
The Law of Supply states that as the price of a good increases, ceteris paribus, the _________ of that good increases. This can be shown graphically with ________ supply curve or numerically in a table using a __________. Caitlin has 9 3/8 feet of red yarn and5 5/8 feet of purple yarn. How much morered yarn does Caitlin have than purpleyarn? one aspect of the visual system that helps us achieve selective attention is What monthly compounding nominal interest rate is earned on an investment that doubles in 8 years? Select one: Next page O a. 8.60% O b. 8.50% O.C. 8.80% O d. 8.70% O e. 8.40% the rain-shadow effect would be most evident in which direction relative to the rocky mountains?group of answer choicesa. east southb. south westc. west northd. west Proteomics is the study of the number of different proteins that a gene produces. Why might this be a more complete snapshot of human genetics than genomics? = = . Ruiz Companys budget includes the following credit sales for the current year: September, $158,000; October, $149,000; November, $133,000; December, $170,000. Credit sales are collected as follows: 10% in the month of sale, 60% in the first month after sale, and 30% in the second month after sale. How much cash can the company expect to collect in December as a result of current and past credit sales? Shawna Carter wants to invest her recent bonus in a five-year bond that pays a coupon of 11 percent semiannually. The bonds are selling at $962.13 today. If she buys this bond and holds it to maturity, what would be her yield? (Round to the closest answer.) 12.2% 11.8% 12.03% 11.5% "her mind is as sharp as razor wire" is an example of: A manufacturer collects a sample of 30 bags of flour, measuringtheir weights in kilograms (kg). The mean weight in the sample isfound to be 0.52 kg. Assume the population standard deviation isknown Problem #5: Cooperative Games : Suppose that there are 100 students individually trying to decide between taking Game Theory or Public Economics. As we all know, it is harder to get personalized help from the instructor in larger classes. Therefore, the more students in a class, the less useful it is to any one of them. Let the payoffs ug and up from taking Game Theory or Public Economics, respectively, be given by: Uc(no) = 500 ng Up (np) = 556-3np A) Find all of the equilibria in this game (that involve whole numbers of students). (Hint: It may help to restate the payoffs so that both are in terms of np or both in terms of TG.) B) of the equilibria you found, which are stable, and which are unstable? For full credit, your answer must be accompanied by a graph. C) What allocation of students would maximize social welfare? Remember that there are only 100 students. If real income grows at approximately 2% per year, the number of years it will take for real income to double is approximately O a. 12. O b. 36. O c. 72. O d. 24. O e. 5. GLOBAL HUMAN DIVERSITY1)Why do people in Sub-Saharan Africa have low standard of living and poor quality of life?Population, Economy, Colonisation, Globalisation or Education?2)Providefive methods to improve/solve this situation. An athlete at the gym holds a 2.0 kg steel ball in his hand. His arm is 70 cm long and has a mass of 4.0 kg . Part A What is the magnitude of the torque about his shoulder if he holds his arm straight out to his side, parallel to the floor? Express your answer to two significant figures and include the appropriate units. = SubmitMy AnswersGive Up Part B What is the magnitude of the torque about his shoulder if he holds his arm straight, but 60 below horizontal? Please include an explanation and diagram 8. The terms of trade (TOT) is defined as A) (index of export prices)/(index of import prices). B) (home-country currency)/(foreign-country currency). C) (exchange rate)(price in foreign country/price if you repeated this experiment with a different concentration of hydroxide ion, would you expect to find the same value of k or a different one? 2. Please first read the the short section " Reading on US Debt and Deficit" in this module. It will review what is the Federal deficit and debt--and what should be done, or not done, about it. Also, listen to the videos I created on the debt. Then use this fairy tale to analyze the debt. 1. After reading the introduction and the four possible endings, identify each ending by the correct label and explain why that ending is: external debt; crowding out; monetizing the debt; or Keynesian (crowding in). 2. Which ending is most harmful to an economy? Explain why. 3. Using what we have studied in the course, which ending best represents the current situation in the United States? Why? Beginning Once upon a time, in the Land Faraway, King Big Debt was spending big bucks on a new castle and moat. He needed more money fast. So be hot-footed it down to the town square, stood on his favorite soapbox, and announced he was selling Government Bonds, or G-Bills. "Why should we buy the bonds from you?" the crowd yelled. King Big Debt pledged, "T1 pay good interest! 8%,9% ... okay I'll pay you 10% and the bonds are as secure as your currency." People lined up to buy G-Bills. They were a better deal than the Faraway Bank or the Up and Down Stockmarket. King Big Debt continued to borrow & borrow until... Endings After reading the four possible endings on the following page, place the proper number in the corresponding box: Keynesian Crowding out External debt Monetizing the debt Ending #1 One day the Private Crown Corporation decided to bomow to build a new factory. But the King had borrowed so much, there was little money left. The Private Crown Carporation and other businesses that wanted to expand found themselves bidding against one another for the small of amount of savings available for loans. "I'll pay 10%." shouted one. "T'll pay 12%." shouted another. Interest rates skyrocketed. Private Crown Corporation cancelled its plan for a new factory. Others did the same. It wasn't long before the Faraway economy stagnated. THE END Ending #2 The King had a bright idea. He would print up some money! He was informed that most money was no longer currency but in bank check- ing deposits. So, he ordered the Royal Central Bank to buy all the G-Bills and credit his account so that he could pay his bills. With all the money earned in govemment projects, the town went on a buying spree. Shops were bustling and shopkeepers couldn't keep up with orders. It wasn't long before prices in Faraway went up, up, up. Coach prices soared and castles were soon out of reach of young Farawayians. Inflation had come to Faraway. THE END Ending #3 Prior to the King's building program, the economy had languished in recession. Unemployment had been above 7% and busi- nesses were discouraged from investing in new plant and equipment because of the poor business outlook After the King's program, employment picked up not only in castle and moat building, but also across the economy because businesses were more optimistic about the future and started to expand their capacity. The Faraway economy boomed. ...THE END Ending #4 Banks and wealthy individuals in Nearby, a land north of Faraway, heard of high interest rates and wanted to invest in G-Bills too. So, they hot- footed it down to their investment brokers and bought a high percentage of the G-bills. As a result, there were savings in Faraway available for lending to Faraway corporations, so interest rates fell back to 8%. Years later, Nearby investors started to sell the G-bills and used the proceeds to buy things in Faraway. Soon, Faraway citizens found that their most desirable goods and services were being exported to Nearby, and that Faraway real estate and businesses were owned by foreigners. THE END Negative supply shocks cause both the short-run aggregate supply curve and the short-run Phillips curve to shift to the left. Select one: True False Check Algorithm Design: Please write in sentences to explain the algorithm design.Suppose you have a string matching algorithm that can take in (linear) strings S and T and determine if S is a substring (contiguous) of T. However, you want to use it in the situation where S is a linear string but T is a circular string, so it has no beginning or ending position. You could break T at each character and solve the linear matching problem |T| times, but that would be very inefficient. Show how to solve the problem by only one use of the string matching algorithm. This has a very simple, cute, solution when you see it. Effect of Omitting Adjustments For the year ending August 31, Beckinworth Medical Co. mistakenly omitted adjusting entries for (1) depreciation of $6,000, (2) fees earned that were not billed of $11,800, and (3) accrued wages of $2,800. Indicate the effect of the errors on (a) revenues, (b) expenses, and (c) net income for the year ended August 31. (0) Revenues (b) Expenses (c) Net income