The true statements among the given options are:
b. The greater the force, the greater the acceleration.
d. If the force is zero, the speed is constant. Option B and D are correct
a. There is only movement when there is force: This statement is not entirely true. According to Newton's first law of motion, an object will remain at rest or continue moving with a constant velocity (in a straight line) unless acted upon by an external force. So, in the absence of external forces, an object can maintain its state of motion.
b. The greater the force, the greater the acceleration: This statement is true. According to Newton's second law of motion, the acceleration of an object is directly proportional to the net force applied to it and inversely proportional to its mass. Therefore, increasing the force applied to an object will result in a greater acceleration.
c. Force and velocity always point in the same direction: This statement is not true. The direction of force and velocity can be the same or different depending on the specific situation. For example, when an object is thrown upward, the force of gravity acts downward while the velocity points upward.
d. If the force is zero, the speed is constant: This statement is true. When the net force acting on an object is zero, the object will continue to move with a constant speed in a straight line. This is based on Newton's first law of motion, also known as the law of inertia.
e. Sometimes the speed is zero even if the force is not: This statement is true. An object can have zero speed even if a force is acting on it. For example, if a car experiences an equal and opposite force of friction, its speed can decrease to zero while the force is still present.
Therefore, Option B and D are correct.
Complete Question-
Mark all the options that are true:
a. There is only movement when there is force
b. The greater the force, the greater the acceleration
c. Force and velocity always point in the same direction
d. If the force is zero, the speed is constant.
e. Sometimes the speed is zero even if the force is not
To know more about acceleration, click here-
brainly.com/question/2303856
#SPJ11
pls help
A +2.0 microCoulomb charge and a -5.0 microCoulomb charge are separated by a distance of 9.0 cm. Please find the size of the force that the -5.0 microCoulomb charge experiences.
An object with a char
The force that the -5.0 microCoulomb charge encounters is around [tex]1.11 * 10^7[/tex] Newtons in size.
For finding the size of the force between two charges, you can use Coulomb's Law, which states that the force between two charges is proportional to the product of the charges and inversely proportional to the square of the distance between them. Mathematically, Coulomb's Law is expressed as:
F = k * (|q1| * |q2|) / r^2
Where:
F is the magnitude of the electrostatic force,
k is Coulomb's constant (k = [tex]8.99 * 10^9 Nm^2/C^2[/tex]),
|q1| and |q2| are the magnitudes of the charges, and
r is the distance between the charges.
In this case, we have a +2.0 microCoulomb charge (2.0 μC) and a -5.0 microCoulomb charge (-5.0 μC), separated by a distance of 9.0 cm (0.09 m). Let's calculate the force experienced by the -5.0 microCoulomb charge:
|q1| = 2.0 μC
|q2| = -5.0 μC (Note: The magnitude of a negative charge is the same as its positive counterpart.)
r = 0.09 m
Plugging these values into Coulomb's Law, we get:
F = [tex](8.99 * 10^9 Nm^2/C^2) * ((2.0 * 10^{-6} C) * (5.0 * 10^{-6} C)) / (0.09 m)^2[/tex]
Calculating this expression:
F [tex](8.99 * 10^9 Nm^2/C^2) * (10^-5 C^2) / (0.09^2 m^2)\\\\ = (8.99 * 10^9 N * 10^{-5}) / (0.09^2 m^2)\\\\ = (8.99 x 10^4 N) / (0.0081 m^2)[/tex]
= [tex]1.11 * 10^7[/tex] N
Therefore, the size of the force that the -5.0 microCoulomb charge experiences is approximately [tex]1.11 * 10^7[/tex] Newtons.
To know more about Coulomb's Law and electrostatics refer here:
https://brainly.com/question/30407638?#
#SPJ11
Question 14 It is possible to wholly convert a given amount of heat energy into mechanical energy True False
It is possible to wholly convert a given amount of heat energy into mechanical energy is False. There are many ways of converting energy into mechanical work such as steam engines, gas turbines, electric motors, and many more.
It is not possible to wholly convert a given amount of heat energy into mechanical energy because of the laws of thermodynamics. The laws of thermodynamics state that the total amount of energy in a system is constant and cannot be created or destroyed, only transferred from one form to another.
Therefore, when heat energy is converted into mechanical energy, some of the energy will always be lost as waste heat. This means that it is impossible to convert all of the heat energy into mechanical energy. In practical terms, the efficiency of the conversion of heat energy into mechanical energy is limited by the efficiency of the conversion process.
To know more about mechanical visit:
https://brainly.com/question/20885658
#SPJ11
A beam of light is incident from air on the surface of a liquid. If the angle of incidence is 29.5° and the angle of refraction is 19.7°, find the critical angle for total internal reflection for the liquid when surrounded by air. o Need Help? Read It Master It
When a beam of light passes through one medium into another, it is refracted. The refractive index of a substance is the ratio of the speed of light in a vacuum to the speed of light in the substance.
Snell's law can be used to calculate the angle of refraction when light passes from one medium to another. The critical angle is the angle of incidence in a refractive medium, such as water or glass, at which the angle of refraction is 90 degrees. The formula for calculating the critical angle is given by:
Critcal angle= sin⁻¹ (1/μ) Where,μ is the refractive index of the substance
In this case, the liquid is surrounded by air, which has a refractive index of 1. Therefore, the critical angle for total internal reflection in this case is:
Critical angle = sin⁻¹ (1/μ)
Critical angle = sin⁻¹ (1/1.33)
Critical angle = 48.75 degrees
The answer to the question is the critical angle for total internal reflection for the liquid when surrounded by air is 48.75 degrees.
The angle of incidence and the angle of refraction were given in the question, and the critical angle for total internal reflection for the liquid when surrounded by air was calculated using the formula Critcal angle= sin⁻¹ (1/μ) where μ is the refractive index of the substance. The critical angle is 48.75 degrees in this case.
to know more about refractive index visit:
brainly.com/question/30761100
#SPJ11
Acircular loop of 10m diameter carries 2A current. Find the magnetic field strength at a distance of 20m along the axis of the loop. Also find the magnetic flux density in the plane of the loop as a function of distance from the center of the loop.
The magnetic flux density in the plane of the loop as a function of distance from the center is (4π × 10^-7 T·m) / ((25m² + x²)^(3/2)).
To find the magnetic field strength at a distance of 20m along the axis of the loop, we can use the formula for the magnetic field produced by a current-carrying loop at its center:
B = (μ₀ * I * N) / (2 * R),
where B is the magnetic field strength, μ₀ is the permeability of free space (4π × 10^-7 T·m/A), I is the current, N is the number of turns in the loop, and R is the radius of the loop.
Since the diameter of the loop is 10m, the radius is half of that, R = 5m. The current is given as 2A, and there is only one turn in this case, so N = 1.
Substituting these values into the formula, we have:
B = (4π × 10^-7 T·m/A * 2A * 1) / (2 * 5m) = (2π × 10^-7 T·m) / (5m) = 4π × 10^-8 T.
Therefore, the magnetic field strength at a distance of 20m along the axis of the loop is 4π × 10^-8 Tesla.
To find the magnetic flux density in the plane of the loop as a function of distance from the center, we can use the formula for the magnetic field produced by a current-carrying loop at a point on its axis:
B = (μ₀ * I * R²) / (2 * (R² + x²)^(3/2)),
where x is the distance from the center of the loop along the axis.
Substituting the given values, with R = 5m, I = 2A, and μ₀ = 4π × 10^-7 T·m/A, we have:
B = (4π × 10^-7 T·m/A * 2A * (5m)²) / (2 * ((5m)² + x²)^(3/2)).
Simplifying the equation, we find:
B = (4π × 10^-7 T·m) / ((25m² + x²)^(3/2)).
Therefore, The magnetic flux density in the plane of the loop as a function of distance from the center is (4π × 10^-7 T·m) / ((25m² + x²)^(3/2)).
Learn more about magnetic flux density here:
https://brainly.com/question/16234377
#SPJ11
2- Magnetic brakes are used to bring subway cars to a stop. Treat the 4000 kg subway cart as a 3m long bar sliding along a pair of conducting rails as shown. There is a magnetic field perpendicular to the plane of the rails with a strength of 2 T. a) Given an initial speed 20m/s, find the average deceleration and force required to bring the train to a stop over a distance of 40m. b) As the train moves along the rails, a current is induced in the circuit. What is the magnitude & direction of the initial induced current? (Assume the rails are frictionless, and the subway car has a resistance of 1 kilo-ohm, and the magnitude c) What must be the direction of the magnetic field so as to produce a decelerating force on the subway car? There is no figure.
a) The average deceleration required to bring the train to a stop over a distance of 40m is approximately -5 m/s^2. The force required is approximately -20,000 N (opposite to the initial direction of motion).
b) The magnitude of the initial induced current is approximately 10 A, flowing in the direction opposite to the initial motion of the subway car.
c) The magnetic field should be directed opposite to the initial direction of motion of the subway car to produce a decelerating force.
a) To find the average deceleration and force required, we can use the equations of motion. The initial speed of the subway car is 20 m/s, and it comes to a stop over a distance of 40 m.
Using the equation:
Final velocity^2 = Initial velocity^2 + 2 × acceleration × distance
Substituting the values:
0^2 = (20 m/s)^2 + 2 × acceleration × 40 m
Simplifying the equation:
400 m^2/s^2 = 800 × acceleration × 40 m
Solving for acceleration:
acceleration ≈ -5 m/s^2 (negative sign indicates deceleration)
To find the force required, we can use Newton's second law:
Force = mass × acceleration
Substituting the values:
Force = 4000 kg × (-5 m/s^2)
Force ≈ -20,000 N (negative sign indicates the force opposite to the initial direction of motion)
b) According to Faraday's law of electromagnetic induction, a changing magnetic field induces an electromotive force (EMF) and, consequently, a current in a closed circuit. In this case, as the subway car moves along the rails, the magnetic field perpendicular to the rails induces a current.
The magnitude of the induced current can be calculated using Ohm's law:
Current = Voltage / Resistance
The induced voltage can be found using Faraday's law:
Voltage = -N × ΔΦ/Δt
Since the rails are frictionless, the only force acting on the subway car is the magnetic force, which opposes the motion. The induced voltage is therefore equal to the magnetic force multiplied by the length of the bar.
Voltage = Force × Length
Substituting the given values:
Voltage = 20,000 N × 3 m
Voltage = 60,000 V
Using Ohm's law:
Current = Voltage / Resistance
Current = 60,000 V / 1000 Ω
Current ≈ 60 A
The magnitude of the initial induced current is approximately 60 A, flowing in the direction opposite to the initial motion of the subway car.
c) To produce a decelerating force on the subway car, the direction of the magnetic field should be opposite to the initial direction of motion. This is because the induced current generates a magnetic field that interacts with the external magnetic field, resulting in a force that opposes the motion of the subway car. The direction of the magnetic field should be such that it opposes the motion of the subway car.
To bring the subway car to a stop over a distance of 40 m, an average deceleration of approximately -5 m/s^2 is required, with a force of approximately -20,000 N (opposite to the initial direction of motion). The magnitude of the initial induced current is approximately 60 A, flowing in the opposite direction to the initial motion of the subway car. To produce a decelerating force, the direction of the magnetic field should be opposite to the initial direction of motion.
To know more about deceleration visit,
https://brainly.com/question/75351
# SPJ11
An electron and a proton have charges of an equal magnitude but opposite sign of 1.60x10^-19 C. If the electron and proton and a hydrogen atom are separated by a distance of 2.60x10^-11 m, what are the magnitude and direction of the electrostatic force exerted on the electron by the proton?
The magnitude of the electrostatic force exerted on the electron by the proton is 2.31x[tex]10^{-8}[/tex] N, and it is directed towards the proton.
The electrostatic force between two charged particles can be calculated using Coulomb's law. Coulomb's law states that the magnitude of the electrostatic force (F) between two charges (q1 and q2) separated by a distance (r) is given by the formula F = (k * |q1 * q2|) / r², where k is the electrostatic constant (k = 8.99x[tex]10^{9}[/tex] N·m²/C²).
In this case, the magnitude of the charge of both the electron and the proton is 1.60x[tex]10^{-19}[/tex] C. Plugging in the values, the magnitude of the electrostatic force between the electron and the proton is F = (8.99x[tex]10^{9}[/tex] * |1.60x [tex]10^{-19}[/tex] * 1.60x[tex]10^{-19}[/tex]|) / (2.60x[tex]10^{-11}[/tex])². Evaluating the expression, we find F = 2.31 x [tex]10^{-8}[/tex] N.
Since the charges of the electron and the proton have opposite signs, the electrostatic force between them is attractive. Therefore, the direction of the force is towards the proton.
To learn more about electrostatic force visit:
brainly.com/question/18541575
#SPJ11
Water flows straight down from an open faucet. The cross-sectional area of the faucet is 2.5 x 10^4m^2 and the speed of the water is
0.50 m/s as it leaves the faucet. Ignoring air resistance, find the cross-sectional area of the water stream at a point 0.10 m below the
manical
The cross-sectional area of the water stream at a point 0.10m in A2 = (2.5 x 10^(-4) m²)(0.50 m/s) / v2
Since the velocity at that point is not given, we cannot determine the exact cross-sectional area of the water stream at a point 0.10 m below the faucet without additional information about the velocity at that specific location.
To solve this problem, we can apply the principle of conservation of mass, which states that the mass flow rate of a fluid remains constant in a continuous flow.
The mass flow rate (m_dot) is given by the product of the density (ρ) of the fluid, the cross-sectional area (A) of the flow, and the velocity (v) of the flow:
m_dot = ρAv
Since the water is incompressible, its density remains constant. We can assume the density of water to be approximately 1000 kg/m³.
At the faucet, the cross-sectional area (A1) is given as 2.5 x 10^(-4) m² and the velocity (v1) is 0.50 m/s.
At a point 0.10 m below the faucet, the velocity (v2) is unknown, and we need to find the corresponding cross-sectional area (A2).
Using the conservation of mass, we can set up the following equation:
A1v1 = A2v2
Substituting the known values, we get:
(2.5 x 10^(-4) m²)(0.50 m/s) = A2v2
To solve for A2, we divide both sides by v2:
A2 = (2.5 x 10^(-4) m²)(0.50 m/s) / v2
Since the velocity at that point is not given, we cannot determine the exact cross-sectional area of the water stream at a point 0.10 m below the faucet without additional information about the velocity at that specific location.
Learn more about velocity:
https://brainly.com/question/80295
#SPJ11
(20 pts) The chemical reaction for the formation of ammonia, NH3, from its elements at 25°C is: N₂(g) + 3H₂(g) → 2NH, (g), AG (25°C) = -32.90 kJ (a) What is the equilibrium constant for the reaction at 25 °C ? (b) What is the AG for the reaction at 35 °C, if all species have partial pressure of 0.5 atm. Assume that the standard enthalpy of the above reaction, AH° = -92.66 kJ, is constant in this temperature range.
a) The equilibrium constant for the formation of ammonia at 25 °C is approximately 3.11 x 10^-4.
The equilibrium constant (K) is a measure of the extent to which a reaction reaches equilibrium. It is defined as the ratio of the product concentrations to the reactant concentrations, with each concentration raised to the power of its stoichiometric coefficient in the balanced equation.
For the reaction N₂(g) + 3H₂(g) → 2NH₃(g), the equilibrium constant expression is:
K = [NH₃]² / [N₂][H₂]³
The value of K can be calculated using the given information. Since the reaction is exothermic (ΔH° = -92.66 kJ), a decrease in temperature will favor the formation of ammonia. Therefore, at 25 °C, the value of K will be less than 1.
Using the relationship between ΔG° and K, which states that ΔG° = -RT ln(K), where R is the gas constant and T is the temperature in Kelvin, we can calculate ΔG°:
ΔG° = -RT ln(K)
-32.90 kJ = -(8.314 J/mol·K)(25 + 273) ln(K)
Solving for ln(K):
ln(K) = -32.90 kJ / [(8.314 J/mol·K)(298 K)]
ln(K) ≈ -0.0158
Taking the exponent of both sides to find K:
[tex]K ≈ e^(^-^0^.^0^1^5^8^)[/tex]
K ≈ 3.11 x 10^-4
Therefore, the equilibrium constant for the reaction at 25 °C is approximately 3.11 x 10^-4.
b) The ΔG for the reaction at 35 °C, with all species having a partial pressure of 0.5 atm, can be calculated as approximately -33.72 kJ.
To calculate ΔG at 35 °C, we can use the equation:
ΔG = ΔG° + RT ln(Q)
Where ΔG° is the standard free energy change, R is the gas constant, T is the temperature in Kelvin, and Q is the reaction quotient.
At equilibrium, Q = K, so ΔG = 0. Since the partial pressures are given, we can calculate Q:
Q = [NH₃]² / [N₂][H₂]³
Assuming the partial pressures of all species are 0.5 atm, we have:
Q = (0.5)² / (0.5)(0.5)³ = 1
Now we can calculate ΔG at 35 °C:
ΔG = ΔG° + RT ln(Q)
ΔG = -32.90 kJ + (8.314 J/mol·K)(35 + 273) ln(1)
ΔG ≈ -33.72 kJ
Therefore, the ΔG for the reaction at 35 °C, with all species having a partial pressure of 0.5 atm, is approximately -33.72 kJ.
Learn more about equilibrium constant
brainly.com/question/29809185
#SPJ11
(14.9) Atom 1 of mass 38.5 u and atom 2 of mass 40.5 u are both singly ionized with a charge of +e. After being introduced into a mass spectrometer (see the figure below) and accelerated from rest through a potential difference V = 8.09 kV, each ion follows a circular path in a uniform magnetic field of magnitude B = 0.680 T. What is the distance Δx between the points where the ions strike the detector?
The distance Δx between the points where the ions strike the detector is 0.0971 meters. In a mass spectrometer, ions are accelerated by a potential difference and then move in a circular path due to the presence of a magnetic field.
To solve this problem, we can use the equation for the radius of the circular path:
r = (m*v) / (|q| * B)
where m is the mass of the ion, v is its velocity, |q| is the magnitude of the charge, and B is the magnetic field strength. Since the ions are accelerated from rest, we can use the equation for the kinetic energy to find their velocity:
KE = q * V
where KE is the kinetic energy, q is the charge, and V is the potential difference.
Once we have the radius, we can calculate the distance Δx between the two points where the ions strike the detector. Since the ions follow circular paths with the same radius, the distance between the two points is equal to the circumference of the circle, which is given by:
Δx = 2 * π * r
By substituting the given values into the equations and performing the calculations, we find that Δx is approximately 0.0971 meters.
To learn more about distance click here brainly.com/question/31713805
#SPJ11
(a) One of the moon of Jupitec, named 10, has an orbital radius of 4,22×10 11 m and a period of 1.77 daysi, Assuming the artie is circular, caiculate the mass of Jupitel. (b) The largest moon of Jupiter, named Ganymede, has an orbital radius of 1.07×10 9 m and a period of 7.16 days. Calculate the mass of Jupitar from this data. lig (c) Are your results to parts (a) and (b) consistent?
a) The mass of Jupiter can be calculated as 1.95×10²⁷ kg.
b) The mass of Jupiter can be calculated as 1.89×10²⁷ kg.
c) The results from parts (a) and (b) are consistent.
a) To calculate the mass of Jupiter using the data for moon 10, we can utilize Kepler's third law of planetary motion, which states that the square of the orbital period (T) is proportional to the cube of the orbital radius (R) for objects orbiting the same central body. Using this law, we can set up the equation T² = (4π²/GM)R³, where G is the gravitational constant.
Rearranging the equation to solve for the mass of Jupiter (M), we get M = (4π²R³)/(GT²). Plugging in the values for the orbital radius (4.22×10¹¹ m) and period (1.77 days, converted to seconds), we can calculate the mass of Jupiter as 1.95×10²⁷ kg.
b) Applying the same approach to calculate the mass of Jupiter using data for Ganymede, we can use the equation T² = (4π²/GM)R³. Plugging in the values for the orbital radius (1.07×10⁹ m) and period (7.16 days, converted to seconds), we can calculate the mass of Jupiter as 1.89×10²⁷ kg.
c) Comparing the results from parts (a) and (b), we can see that the masses of Jupiter calculated using the two different moons are consistent, as they are within a similar order of magnitude. This consistency suggests that the calculations are accurate and the values obtained for the mass of Jupiter are reliable.
To know more about Kepler's third law refer here:
https://brainly.com/question/30404084#
#SPJ11
2. What are the similarities and differences between BJTs and MOSFTs? Why MOSFETs are more commonly used in integrated circuits than other types of transistors?
BJTs (Bipolar Junction Transistors) and MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) are two types of transistors commonly used in electronic circuits. They share the similarity of being capable of functioning as amplifiers and switches. However, they differ in their mode of operation and characteristics.
One difference is that BJTs are current-controlled devices, while MOSFETs are voltage-controlled devices. This means that BJTs are better suited for small-signal applications, whereas MOSFETs excel in high-power scenarios, efficiently handling large currents with minimal losses. BJTs have lower input resistance, leading to voltage drops and power losses when used as switches. In contrast, MOSFETs boast high input resistance, making them more efficient switches, particularly in high-frequency applications.
MOSFETs, preferred in integrated circuits, offer high input impedance and low on-resistance, making them ideal for high-frequency and power-efficient applications. Their compact size further suits integrated circuits with limited space. Additionally, MOSFETs exhibit fast switching speeds, making them highly suitable for digital applications.
To learn more about transistors and their applications, click this link:
brainly.com/question/31675260
#SPJ11
Mr. Duncan is riding a merry-go-round at the carnival. It starts from rest and accelerates at a constant rate. After 60 seconds, Mr. Duncan has rotated an angular displacement of 125.7 radians. . What is Mr. Duncan's angular acceleration? a) 0.011 rad/s² b) 0.0056 rad/s² A c) 0.035 rad/s² d) 0.07 rad/s²
Angular displacement represents the change in the angular position of an object or particle as it rotates about a fixed axis. It is measured in radians (rad) or degrees (°). Angular acceleration refers to the rate of change of angular velocity. It represents how quickly an object's angular velocity is changing as it rotates.
Angular displacement is a vector quantity that indicates both the magnitude and direction of the rotation. For example, if an object starts at an initial angular position of θ₁ and rotates to a final angular position of θ₂, the angular displacement (Δθ) is given by: Δθ = θ₂ - θ₁
Angular acceleration is measured in radians per second squared (rad/s²). Mathematically, angular acceleration (α) is defined as the change in angular velocity (Δω) divided by the change in time (Δt): α = Δω / Δt. If an object's initial angular velocity is ω₁ and the final angular velocity is ω₂, the angular acceleration can also be expressed as: α = (ω₂ - ω₁) / Δt. In summary, angular displacement describes the change in angular position, while angular acceleration quantifies the rate of change of angular velocity.
The given quantities are as follows: Angular displacement, θ = 125.7 radians Time, t = 60 s Angular acceleration is the rate of change of angular velocity, which can be given as:α = angular acceleration,ω0 = initial angular velocity,ωf = final angular velocity, t = time taken. Now, the angular displacement of Mr. Duncan is given as:θ = (1/2) × (ω0 + ωf) × t. We know that initial angular velocity ω0 = 0 rad/sSo,θ = (1/2) × (0 + ωf) × t ⇒ ωf = 2θ/t= (2 × 125.7)/60= 4.2 rad/s. Now, angular acceleration, α = (ωf - ω0) / t= 4.2/60= 0.07 rad/s². Therefore, the correct option is d) 0.07 rad/s².
For similar problems on rotational motion visit:
https://brainly.com/question/31356485
#SPJ11
A bus is travelling forward at a constant velocity. A student sitting in the bus drops a ball which hits the floor of the bus. Relative to a stationary observer, outside the bus and to one side, which statement is true?
A. The ball falls vertically.
B. The ball hits the floor of the bus in front of the student.
C. The ball hits the floor of the bus in behind the student.
D. The ball hits the floor of the bus directly beneath the student's hand.
The correct statement is the ball hits the floor of the bus directly beneath the student's hand.
When the student drops the ball inside the bus, both the student and the ball are initially moving forward with the same constant velocity as the bus.
Since there are no horizontal forces acting on the ball, it will continue to move forward horizontally with the same velocity as the bus.
In the reference frame of a stationary observer outside the bus and to one side, the ball still retains the forward velocity of the bus when it is dropped.
This means that as the ball falls vertically due to the force of gravity, it maintains its forward velocity.
As a result, the ball will land on the floor directly beneath the student's hand because the ball continues to move forward with the same velocity as the bus while falling due to gravity.
The other statements are false because they do not account for the fact that the ball and the bus share the same constant forward velocity.
The ball will not fall vertically straight down (Statement A), it will not hit the floor in front of the student (Statement B), and it will not hit the floor behind the student (Statement C).
Learn more about velocity from the given link :
https://brainly.com/question/80295
#SPJ11
2. DETAILS OSCOLPHYS2016 17.3.P.013. The warning tag on a lawn mower states that it produces noise at a level of 88.0 dB. What is this in W/m2; W/m2
the lawn mower produces a sound intensity level of approximately 3.98 x 10^(-6) W/m².
Sound intensity is the amount of energy transmitted through a unit area perpendicular to the direction of sound propagation. The sound intensity level (SIL) is a logarithmic representation of the sound intensity, measured in decibels (dB). To convert the given decibel level to sound intensity in watts per square meter (W/m²), we need to use the formula:SIL = 10 * log₁₀(I / I₀),where SIL is the sound intensity level, I is the sound intensity, and I₀ is the reference sound intensity level (typically set at 10^(-12) W/m²).
Rearranging the formula, we have:
I = I₀ * 10^(SIL / 10).Substituting the given SIL of 88.0 dB into the formula, we get:I = (10^(-12) W/m²) * 10^(88.0 dB / 10) = (10^(-12) W/m²) * 10^(8.8) ≈ 3.98 x 10^(-6) W/m².Therefore, the lawn mower produces a sound intensity level of approximately 3.98 x 10^(-6) W/m².
Learn more about sound intensity here
https://brainly.com/question/32194259
#SPJ11
An energy of 38.3 eV is required to ionize a molecule of the gas inside a Geiger tube, thereby producing an ion pair. Suppose a particle of ionizing radiation deposits 0.516 MeV of energy in this Geiger tube. What maximum number of ion pairs can it create? pairs Additional Materials Reading
The maximum number of ion pairs that can be created is approximately 13,472.
To calculate the maximum number of ion pairs that can be created, we need to determine how many times the energy of 38.3 eV can be contained within the energy deposited by the particle of ionizing radiation (0.516 MeV).
First, let's convert the given energies to the same unit. Since 1 eV is equal to 1.6 x 10⁻¹⁹ joules and 1 MeV is equal to 1 x 10⁶ eV, we have:
Energy required to ionize a molecule = 38.3 eV = 38.3 x 1.6 x 10⁻¹⁹ J
Energy deposited by the particle = 0.516 MeV = 0.516 x 10⁶ eV = 0.516 x 10⁶ x 1.6 x 10⁻¹⁹ J
Now, we can calculate the maximum number of ion pairs using the ratio of the energy deposited to the energy required:
Number of ion pairs = (Energy deposited) / (Energy required)
= (0.516 x 10⁶ x 1.6 x 10⁻¹⁹ J) / (38.3 x 1.6 x 10⁻¹⁹ J)
Simplifying the expression:
Number of ion pairs = (0.516 x 10⁶) / 38.3
Calculating this:
Number of ion pairs = 13,471.98
Therefore, the maximum number of ion pairs that can be created is approximately 13,472.
To know more about ion pairs, refer to the link below:
https://brainly.com/question/33217517#
#SPJ11
Maxwell's equations are a set of equations which become the foundation of all known
phenomena in electrodynamics.
Write the so-called Maxwell's equations before the time of James Clerk Maxwell. Name and describe briefly the equation in part i. which is acceptable in static cases
but can be problematic in electrodynamics.
Maxwell's equations revolutionized electrodynamics by unifying electric and magnetic fields and explaining time-varying phenomena, surpassing the limitations of Gauss's law for electric fields in static cases.
Gauss's law for electricity states that the electric flux passing through a closed surface is proportional to the total electric charge enclosed by that surface. Mathematically, it can be expressed as:
∮E·dA = ε₀∫ρdV
In this equation, E represents the electric field vector, dA is a differential area vector, ε₀ is the permittivity of free space, ρ denotes the charge density, and dV is a differential volume element.
While Gauss's law for electricity works well in static situations, it becomes problematic in electrodynamics due to the absence of a magnetic field term. It fails to account for the interplay between changing electric and magnetic fields, which are interconnected according to the other Maxwell's equations. James Clerk Maxwell later unified these equations, leading to the complete set known as Maxwell's equations.
learn more about "electrodynamics":- https://brainly.com/question/25847009
#SPJ11
The magnetic field of an electromagnetic wave is given by B(x, t) = (0.60 µT) sin [(7.00 × 106 m¯¹) x x- Calculate the amplitude Eo of the electric field. Eo = Calculate the speed v. V= Calculate the frequency f. f = Calculate the period T. T = (2.10 × 10¹5 s-¹) t] N/C m/s Hz Question Source: Freedman Co Calculate the speed v. Calculate the frequency f. f = Calculate the period T. T = Calculate the wavelength 2. λ = m/s Hz S m
The magnetic field of an electromagnetic wave is given by B(x, t) = (0.60 µT) sin [(7.00 × 10^6 m¯¹) x - (2.10 × 10¹5 s-¹) t]
Calculate the amplitude Eo of the electric field:Eo = B(x, t) * c = (0.60 µT) * 3.00 × 10^8 m/s = 1.80 × 10^-4 NC^-1
Calculate the speed v:v = 1/√(μ * ε)where, μ = 4π × 10^-7 T m/ε = 8.854 × 10^-12 F/mv = 1/√(4π × 10^-7 T m/ 8.854 × 10^-12 F/m)v = 2.998 × 10^8 m/s
Calculate the frequency f:f = (2.10 × 10¹5 s-¹) / 2πf = 3.34 × 10^6 Hz
Calculate the period T:T = 1/fT = 3.00 × 10^-7 s
Calculate the wavelength 2. λ:λ = v / fλ = 2.998 × 10^8 m/s / 3.34 × 10^6 Hzλ = 89.8 m
Thus, the amplitude Eo of the electric field is 1.80 × 10^-4 NC^-1, the speed of the electromagnetic wave is 2.998 × 10^8 m/s, the frequency is 3.34 × 10^6 Hz, the period is 3.00 × 10^-7 s and the wavelength is 89.8 m.
to know more about electromagnetic wave here:
brainly.com/question/29774932
#SPJ11
The resolution of the timer on your phone is 0.01 s How fast would your phone need to be moving (relative to you) in ms so that the effects of special relativity on its accuracy become significant when measuring a 1
minute process?
The resolution of the timer on the phone is 0.01 s , therefore, the phone would need to be moving at approximately 299,792.45784 meters per millisecond (m/ms) relative to the effects of special relativity on its accuracy to become significant when measuring a 1-minute process.
To calculate the speed required for such significant effects, one can use the formula for time dilation:
Δt' = Δt × √(1 - ([tex]v^2[/tex]/[tex]c^2[/tex]))
Where:
Δt' is the measured time interval by the moving phone (60 seconds + 0.01 seconds)
Δt is the proper time interval (60 seconds)
v is the relative velocity between the phone and the observer
c is the speed of light (approximately 299,792,458 meters per second)
Rearranging the formula,
v = √((1 - (Δ[tex]t'^2[/tex] / Δ[tex]t^2[/tex])) ×[tex]c^2[/tex])
Substituting the given values:
v = √((1 - ((60.01[tex]s^)^2[/tex] / (60 [tex]s^)^2[/tex])) × (299,792,458 m/[tex]s^)^2[/tex])
Calculating the expression:
v ≈ 299,792,457.84 m/s
Converting the speed to meters per millisecond (ms):
v ≈ 299,792,457.84 m/s × (1 ms / 1000 s)
v ≈ 299,792.45784 m/ms
Learn more about resolution here.
https://brainly.com/question/30454928
#SPJ4
A concave shaving mirror has a radius of curvature of +38.7 cm. It is positioned so that the (upright) image of a man's face is 2.38 times the size of the face. How far is the mirror from the face? Nu
The concave mirror is approximately 26.8015 cm away from the man's face.
To determine the distance between the concave shaving mirror and the man's face, we can use the mirror equation and magnification equation.
The mirror equation relates the object distance (u), image distance (v), and focal length (f) of the mirror:
1/f = 1/v - 1/u
In this case, the mirror is concave, so the focal length (f) is negative. The radius of curvature (R) is twice the focal length, so we have f = -R/2.
The magnification equation relates the image height (h') and object height (h):
h'/h = -v/u
Given that the image is 2.38 times the size of the object, we have h'/h = 2.38.
Now, let's solve these equations for the distance between the mirror and the face.
Using the mirror equation, we can substitute f = -R/2:
1/(-R/2) = 1/v - 1/u
Simplifying, we have:
-2/R = 1/v - 1/u
Now, using the magnification equation, we can substitute h'/h = 2.38:
2.38 = -v/u
Rearranging the magnification equation to solve for v, we have:
v = -2.38u
Substituting this expression for v into the mirror equation:
-2/R = 1/(-2.38u) - 1/u
Simplifying, we have:
-2/R = -1.38/u
Now, let's solve for u, the distance between the mirror and the face:
-2/R = -1.38/u
Cross-multiplying, we get:
-2u = -1.38R
Simplifying further, we have:
u = (1.38R)/2
Substituting the given radius of curvature R = 38.7 cm:
u = (1.38 * 38.7 cm)/2
Calculating this expression, we find:
u ≈ 26.8015 cm
Therefore, the mirror is approximately 26.8015 cm away from the man's face.
Learn more about concave mirror from the given link
https://brainly.com/question/27841226
#SPJ11
A concave mirror has a radius of curvature of 33.6 What is its focal length? Express your answer in centimeters.
A ladybug 745 mm tall is located 21.4 cm from this mirror along the principal axis. Find the location of the image of the Insect Express your answer in centimeters to three significant figures. Find the height of the image of the insect Express your answer in millimeters to three significant figures.
If the mirror is immersed in water (of refractive index 1.33), what is its focal length Express your answer in centimeters
Radius of curvature of the mirror, R = 33.6 cm Height of the ladybug, h = 745 mm = 74.5 cm Distance of the ladybug from the mirror, u = 21.4 cm Refraction index of water, μ = 1.33
(a)The formula to find the focal length of a concave mirror is: f = R/2 Where f is the focal length and R is the radius of curvature of the mirror.
Substituting the given values of R in the above formula, f = 33.6/2f = 16.8 cm
Hence, the focal length of the mirror is 16.8 cm.
(b)We know that the mirror formula is given by: 1/v + 1/u = 1/f Where v is the distance of the image from the mirror.
As the object is placed beyond the center of curvature of the mirror, u is positive.
Substituting the given values in the above formula, 1/v + 1/21.4 = 1/-16.8
Simplifying, we get, v = -9.16 cm
The negative sign indicates that the image formed is virtual and erect. The distance of the image from the mirror is 9.16 cm.
(c)Using the magnification formula, we get: m = -v/u Where m is the magnification of the image.
Substituting the given values in the above formula, we get: m = -9.16/21.4m = -0.428
The negative sign indicates that the image formed is inverted and erect.
Using the formula for magnification, we get: m = h'/h Where h' is the height of the image. Substituting the given values in the above formula, we get: -0.428 = h'/74.5
Simplifying, we get, h' = -31.8 mm The negative sign indicates that the image formed is inverted.
The height of the image is 31.8 mm.
(d)The formula to find the focal length of a lens immersed in a liquid of refractive index μ is: f' = f/(μ - 1) Where f is the focal length of the lens in air and f' is the focal length of the lens in the liquid.
Substituting the given values in the above formula, we get: f' = 16.8/(1.33 - 1) Simplifying, we get, f' = 33.6 cm
Hence, the focal length of the mirror when immersed in water is 33.6 cm.
Learn more about a curved mirror here: https://brainly.com/question/9757866
#SPJ11
Problem 8.44 A centrifuge rotor rotating at 9800 rpm shut off and is eventually brought uniformly to rest by a frictional torque of 1.91 m N. Part A If the mass of the rotor is 4.16 kg and it can be approximated as a solid cylinder of radius 0.0440 m, through how many revolutions will the rotor turn before coming to rest? Express your answer to three significant figures. VE ΑΣΦ N = 71.6 Submit Part B ! You have already submitted this answer. Enter a new answer. No credit lost. Try again. D Previous Answers Request Answer How long will it take? Express your answer to three significant figures and include the appropriate units. t = 0.885 μÅ Provide Feedback S Submit Previous Answers Request Answer ? ? X Incorrect; Try Again; 5 attempts remaining revolutions
The centrifuge rotor, with a mass of 4.16 kg and a radius of 0.0440 m, comes to rest after a frictional torque of 1.91 mN is applied.
To find the number of revolutions the rotor will turn before coming to rest, we can use the relationship between torque and angular displacement. The rotor will complete approximately 71.6 revolutions before coming to rest.
The frictional torque applied to the rotor causes it to decelerate and eventually come to rest. We can use the equation for torque:
Torque = Moment of Inertia * Angular Acceleration
The moment of inertia for a solid cylinder is given by:
Moment of Inertia = (1/2) * mass * radius^2
Given the mass of the rotor as 4.16 kg and the radius as 0.0440 m, we can calculate the moment of inertia.
Next, we can rearrange the torque equation to solve for angular acceleration:
Angular Acceleration = Torque / Moment of Inertia
Plugging in the values of torque and moment of inertia, we can find the angular acceleration.
Since the rotor starts with an initial angular velocity of 9800 rpm and comes to rest, we can use the equation:
Angular Acceleration = (Final Angular Velocity - Initial Angular Velocity) / Time
By rearranging this equation, we can solve for time.
The number of revolutions can be calculated by multiplying the time by the initial angular velocity and dividing by 2π.
Therefore, the rotor will complete approximately 71.6 revolutions before coming to rest.
Learn more about torque here: brainly.com/question/30338175
#SPJ11
An object is rotating in a circle with radius 2m centered around the origin. When the object is at location of x = 0 and y = -2, it's linear velocity is given by v = 2i and linear acceleration of q = -3i. which of the following gives the angular velocity and angular acceleration at that instant?
The angular velocity at that instant is 1 rad/s and the angular acceleration is -1.5 rad/s².
To determine the angular velocity and angular acceleration at the instant, we need to convert the linear velocity and linear acceleration into their corresponding angular counterparts.
The linear velocity (v) of an object moving in a circle is related to the angular velocity (ω) by the equation:
v = r * ω
where:
v is the linear velocity,
r is the radius of the circle,
and ω is the angular velocity.
The radius (r) is 2m and the linear velocity (v) is 2i, we can find the angular velocity (ω):
2i = 2m * ω
ω = 1 rad/s
So, the angular velocity at that instant is 1 rad/s.
Similarly, the linear acceleration (a) of an object moving in a circle is related to the angular acceleration (α) by the equation:
a = r * α
where:
a is the linear acceleration,
r is the radius of the circle,
and α is the angular acceleration.
The radius (r) is 2m and the linear acceleration (a) is -3i, we can find the angular acceleration (α):
-3i = 2m * α
α = -1.5 rad/s²
Therefore, the angular velocity at that instant is 1 rad/s and the angular acceleration is -1.5 rad/s².
Learn more about velocity from the given link
https://brainly.com/question/80295
#SPJ11
A 70-kg professional cyclist is climbing a mountain road at an average speed of 23.3 km/h. The foad has an average slope of 3.7 ^7
and is 13.1 km long. If the cyclist's power output averages 350 W over the duration of the climb, how much energy E does he expead?
The cyclist expends approximately 196,949.25 Joules of energy during the climb.
To find the energy expended by the cyclist during the climb, we can use the formula:
Energy (E) = Power (P) × Time (t)
First, we need to find the time taken to complete the climb. We can use the formula:
Time (t) = Distance (d) / Speed (v)
Distance = 13.1 km = 13,100 m
Speed = 23.3 km/h = 23.3 m/s
Plugging in the values:
Time (t) = 13,100 m / 23.3 m/s
Time (t) ≈ 562.715 seconds
Now, we can calculate the energy expended:
Energy (E) = Power (P) × Time (t)
Energy (E) = 350 W × 562.715 s
Energy (E) ≈ 196,949.25 Joules
Therefore, the cyclist expends approximately 196,949.25 Joules of energy during the climb.
To learn more about energy visit : https://brainly.com/question/13881533
#SPJ11
: An airplane whose airspeed is 620 km/h is supposed to fly in a straight path 35.0 North of East. But a steady 95 km/h wind blows from the North. In what direction should the plaire N head ?
The plane should head approximately 10.7° north of east. To find the direction, we have to break down the airspeed vector into its east and north components.
Firstly, we need to break down the airspeed vector into its east and north components.
The angle between the airplane's direction and due east is (90° - 35°) = 55°.
Therefore,
The eastward component of the airplane's airspeed is: (620 km/h) cos 55° = 620 × 0.5736
≈ 355 km/h.
The northward component of the airplane's airspeed is: (620 km/h) sin 55° = 620 × 0.8192
≈ 507 km/h.
Now consider the velocity of the airplane relative to the ground. The plane's velocity relative to the ground is the vector sum of the airplane's airspeed velocity and the velocity of the wind.
Therefore, We have, tan θ = (95 km/h) / (507 km/h)θ
= tan⁻¹ (95/507)θ
≈ 10.7°.T
This is the direction that the plane must head, which is approximately 10.7° north of east.
Therefore, the plane should head approximately 10.7° north of east.
To know more about airspeed , refer
https://brainly.com/question/30529519
#SPJ11
The gauge pressure in a certain manometer reads 50.12 psi. What is the density (in pound-mass/cubic inch) of the fluid if the height is 49.88 inches? Report your answer in 2 decimal places. From the previous question, if the atmospheric pressure is 14.7 psi. What is the absolute pressure in psi? Report your answer in 2 decimal places. Next
From the question above, Gauge pressure, Pg = 50.12 psi
Height, h = 49.88 inches
Density of the fluid, ρ = ?
We can use the relation P = ρgh,
where P is the pressure exerted by the fluid at the bottom of the container and g is the acceleration due to gravity.
By simplifying the above relation, we get:
ρ = P / gh
Substituting the given values, we get:ρ = 50.12 / (49.88 × 0.0361)ρ = 39.64 lbm/in³
If the atmospheric pressure is 14.7 psi and the gauge pressure is 50.12 psi, then the absolute pressure can be calculated as follows:
Absolute pressure = Atmospheric pressure + Gauge pressure= 14.7 psi + 50.12 psi= 64.82 psi
Learn more about the pressure at
https://brainly.com/question/32326195
#SPJ11
A compound microscope with objective NA = 0.3 is being used to image a biological specimen in visible light under normal focusing conditions. What is the minimum spatial detail which can be clearly resolved in the image? State any assumptions made.
To determine the minimum spatial detail that can be resolved by a compound microscope, we can use the formula for the minimum resolvable distance, also known as the resolving power. The minimum spatial detail that can be clearly resolved in the image is approximately 2,243 nanometers.
The resolving power of a microscope is given by:
Resolving Power (RP) = 1.22 * (λ / NA)
Where: RP is the resolving power
λ (lambda) is the wavelength of light being used
NA is the numerical aperture of the objective lens
In this case, the microscope is being used with visible light. The approximate range for visible light wavelengths is 400 to 700 nanometers (nm). To calculate the minimum spatial detail that can be resolved, we need to choose a specific wavelength.
Let's assume we're using green light, which has a wavelength of around 550 nm. Plugging in the values:
Resolving Power (RP) = 1.22 * (550 nm / 0.3)
Calculating the resolving power:
RP ≈ 2,243 nm
Therefore, under the given conditions, the minimum spatial detail that can be clearly resolved in the image is approximately 2,243 nanometers.
Assumptions made:
The microscope is operating under normal focusing conditions, implying proper alignment and adjustment.
The specimen is adequately prepared and positioned on the microscope slide.
The microscope is in optimal working condition, with no aberrations or limitations that could affect the resolution.
The numerical aperture (NA) provided refers specifically to the objective lens being used for imaging.
The calculation assumes a monochromatic light source, even though visible light consists of a range of wavelengths.
To learn more about, resolving power, click here, https://brainly.com/question/31991352
#SPJ11
(a) What is the order of magnitude of the number of protons in your body?
Let's assume your body is mostly composed of hydrogen atoms, which have an atomic number of 1. Therefore, each hydrogen atom has 1 proton.
The order of magnitude of the number of protons in your body can be estimated by considering the number of atoms in your body and the number of protons in each atom.
First, let's consider the number of atoms in your body. The average adult human body contains approximately 7 × 10^27 atoms.
Next, we need to determine the number of protons in each atom. Since each atom has a nucleus at its center, and the nucleus contains protons, we can use the atomic number of an element to determine the number of protons in its nucleus.
For simplicity, let's assume your body is mostly composed of hydrogen atoms, which have an atomic number of 1. Therefore, each hydrogen atom has 1 proton.
Considering these values, we can estimate the number of protons in your body. If we multiply the number of atoms (7 × 10^27) by the number of protons in each atom (1), we find that the order of magnitude of the number of protons in your body is around 7 × 10^27.
It's important to note that this estimation assumes a simplified scenario and the actual number of protons in your body may vary depending on the specific composition of elements.
to learn more about proton
https://brainly.com/question/12535409
#SPJ11
A 68.0 kg skater moving initially at 2.55 m/s on rough horizontal ice comes to rest uniformly in 3.05 s due to friction from the ice. Part A What force does friction exert on the skater? Express your answer with the appropriate units. μA 9224 ? F = Value Units Submit Request Answer
Force of friction exerted on skater can be calculated using equation F = m × a,In this case,acceleration can be determined using equation a = Δv / t.The force of friction exerted on the skater is approximately -56.889 N.
To calculate the force of friction, we first need to determine the acceleration. The skater comes to rest uniformly in 3.05 seconds, so we can use the equation a = Δv / t, where Δv is the change in velocity and t is the time. The initial velocity is given as 2.55 m/s, and the final velocity is 0 m/s since the skater comes to rest. Thus, the change in velocity is Δv = 0 m/s - 2.55 m/s = -2.55 m/s.
Next, we can calculate the acceleration: a = (-2.55 m/s) / (3.05 s) = -0.8361 m/s^2 (rounded to four decimal places). The negative sign indicates that the acceleration is in the opposite direction to the skater's initial motion.
Finally, we can calculate the force of friction using the equation F = m × a, where m is the mass of the skater given as 68.0 kg. Substituting the values: F = (68.0 kg) × (-0.8361 m/s^2) ≈ -56.889 N (rounded to three decimal places). The force of friction exerted on the skater is approximately -56.889 N.
To learn more about Force of friction click here : brainly.com/question/13707283
#SPJ11
Estimation and Units Imagine that you are a working engineer and/or a scientist. You are assigned the following tasks. Your report to your supervisor needs to include not only the answers, but also how you found the results; there needs to be enough of a clear step-by-step description that the reader can easily follow how you found the answer. 1. A typical mammalian cell has a mass of between 3 to 4 nano-grams (nano = 10-). Make a rough estimate of the number of cells in an adult cat. Look up numbers if you need to. Don't just write down an answer. Show work including numbers you use. Carry units in your calculation. Label your answer, i.e., number of cells = xxx. 2. You decide that you don't like inches, feet, or meters as units of length and introduce a new unit of length called a behrend which you set at 1 behrend=11 inches. You purchase 2.75 cubic yards of mulch. What is the volume of mulch you bought in cubic behrends? Show work including numbers you use. Carry units in your calculation. Label your answer. 3. You are told that the position x of a rocket as a function of time is given by the formula x(t) = A + Bt³ where the position x is in meters and the time t is in seconds. What are the units of the constants A and B? Hint: Remember t is not a number but a number with a unit, i.e., t = 2 sec. One way to do this is to substitute in 2 sec (with units) for t in your equation. What does the units of B have to be for the quantity Bx (2 sec)³ to be in meters?
1. To estimate the number of cells in an adult cat, we can make use of the average mass of a mammalian cell and the total mass of an adult cat. Let's assume the average mass of a mammalian cell is 3.5 nanograms (3.5 x 10⁻⁹ grams).
According to available data, the average weight of an adult cat ranges from 3.6 to 4.5 kilograms. Let's take the average weight, which is 4.05 kilograms (4.05 x 10³ grams).
Now, we can set up a proportion using the mass of cells and the mass of the cat:
(3.5 x 10⁻⁹ g) / 1 cell = (4.05 x 10³ g) / X cells
Cross-multiplying and solving for X, we get:
X = (4.05 x 10³ g) / (3.5 x 10⁻⁹ g) = (4.05 / 3.5) x (10³ / 10⁻⁹) = 1157.14 x 10¹²
Therefore, the estimated number of cells in an adult cat is approximately 1.157 x 10¹⁵ cells.
2. We are given that 1 behrend = 11 inches. We need to find the volume of mulch in cubic behrends when the volume is initially given in cubic yards.
The conversion factors we need are:
1 cubic yard = 36 inches (since 1 yard = 36 inches)
1 behrend = 11 inches
First, convert the volume of mulch from cubic yards to cubic inches:
2.75 cubic yards × 36 inches/cubic yard = 99 cubic inches
Next, convert the volume from cubic inches to cubic behrends:
99 cubic inches × (1 behrend / 11 inches) = 9 cubic behrends
Therefore, the volume of mulch you bought is 9 cubic behrends.
3. In the given equation x(t) = A + Bt³, the position x is measured in meters, and the time t is measured in seconds.
To determine the units of the constants A and B, we can substitute 2 seconds into the equation and analyze the resulting units.
x(2 sec) = A + B(2 sec)³
The units of x(2 sec) are meters, so the right-hand side of the equation must also have units of meters.
A is a constant term, so its units must be meters for the equation to be valid.
For B, we have B(2 sec)³. Since the units of (2 sec)³ are (seconds)³, the units of B must be such that when multiplied by (2 sec)³, the resulting units are meters.
This means the units of B must be (meters) / (seconds)³ to cancel out the seconds and give meters as the final unit.
Therefore, the units of A are meters, and the units of B are (meters) / (seconds)³.
To learn more about number of cells, Visit:
https://brainly.com/question/28560794
#SPJ11
A sprinter starts from rest and accelerates to her maximum speed of 9.5 m/s In a distance of 9.0 m. (a) What was her acceleration, if you assume it to be constant? 9.5 m/s X Dimensionally incorrect. Please check the type or dimension of your unit. (b) If this maximum speed is maintained for another 81.9 m, how long does it take her to run 90.9 m?
(a) The acceleration of the sprinter is approximately 5.014 m/s². (b) It takes approximately 17.284 seconds for the sprinter to run 90.9 m.
To find the acceleration of the sprinter, we can use the kinematic equation;
v² = u² + 2as
where;
v = final velocity = 9.5 m/s
u = initial velocity = 0 m/s (starting from the rest)
s = distance covered = 9.0 m
Rearranging the equation to solve for acceleration (a), we have;
Plugging in the values;
a = (9.5² - 0²) / (2 × 9.0)
a = 90.25 / 18
a ≈ 5.014 m/s²
Therefore, the acceleration of the sprinter is approximately 5.014 m/s².
a = (v² - u²) / (2s)
If the sprinter maintains the maximum speed of 9.5 m/s for another 81.9 m, we can use the equation:
s = ut + (1/2)at²
where;
s = total distance covered = 90.9 m
u = initial velocity = 9.5 m/s
a = acceleration = 0 m/s² (since the speed is maintained)
t = time taken
Rearranging the equation to solve for time (t), we have;
t = (2s) / u
Plugging in the values;
t = (2 × 81.9) / 9.5
t ≈ 17.284 seconds
Therefore, it takes approximately 17.284 seconds for the sprinter to run 90.9 m.
To know more about acceleration here
https://brainly.com/question/29761692
#SPJ4