measure the coupling constant between he and hf. explain how this can help determine the stereochemistry (i.e. cis vs. trans) of the double bond.

Answers

Answer 1

When measuring the coupling constant between he and hf, it can help determine the stereochemistry of the double bond. The coupling constant is the distance between the two peaks in the NMR spectrum. The value of the coupling constant depends on the distance between the two nuclei and the angle between the two bonds connecting the nuclei.

In a cis double bond, the hydrogens (H) are on the same side of the molecule, while in a trans double bond, the hydrogens (H) are on opposite sides of the molecule. When he and hf are in cis double bond, their coupling constant will be larger because the angle between the two bonds connecting the nuclei will be small.In contrast, when he and hf are in a trans double bond, their coupling constant will be smaller because the angle between the two bonds connecting the nuclei will be larger.

The stereochemistry of the double bond can, therefore, be determined based on the value of the coupling constant. In general, if the coupling constant is greater than 10 Hz, it indicates a cis double bond, while if the coupling constant is less than 10 Hz, it indicates a trans double bond.

To know more about stereochemistry visit:

https://brainly.com/question/13266152

#SPJ11


Related Questions

A 63.0 kg skier starts from rest at the top of a ski slope 70.0 m high. Part A If frictional forces do -11.0 kJ of work on her as she descends, how fast is she going at the bottom of the slope? Express your answer in meters per second to three significant figures. ΨΗ ΑΣφ ? m/s Submit Request Answer Part B Now moving horizontally, the skier crosses a patch of soft snow where we = 0.24. If the patch is 82.0 m wide and the average force of air resistance on the skier is 170 N, how fast is she going after crossing the patch? Express your answer in meters per second to three significant figures. ΡΟ ΑΣφ ? Part The skier hits a snowdrift and penetrates 3.0 m into it before coming to a stop. What is the magnitude of the average force exerted on her by the snowdrift as it stops her? Express your answer in newtons to three significant figures. VAX¢ ? F- N

Answers

A 63.0 kg skier starts from rest at the top of a ski slope 70.0 m high. The solution to the given problem is explained below. Part A The potential energy of the skier is converted to kinetic energy when she descends down the slope.

The kinetic energy is given by: K = PE - W f

where, PE = mgh

Wf = -11 kJ

= -11000 J

m = 63 kg

g = 9.8 m/s²h

= 70 m

Substituting the given values in the above formula, we get:

K = 63 × 9.8 × 70 - 11000J

= 42954J

The kinetic energy is converted to kinetic energy of motion of the skier at the bottom of the slope. Therefore,

K = 1/2mv²

wherev is the speed of the skier at the bottom of the slope.

Substituting the given values, we get:

42954

= 1/2 × 63 × v²

v = √(42954 / (1/2 × 63))

= 27.8 m/s (rounded to three significant figures)

Therefore, the skier is going at 27.8 m/s at the bottom of the slope.

Part B We know that the work done by the air resistance is given by:

W = f d

where: f = frictional force acting on the skier

d = distance traveled by the skier

We = 0.24d = 82.0 mf = 170 N

Substituting the given values in the above formula, we get: W = 170 × 82.0 × 0.24J= 3230.4J

The kinetic energy of the skier after crossing the patch of soft snow is the same as the work done against the air resistance. K = 1/2mv²where v is the speed of the skier after crossing the patch.

Substituting the given values, we get:

3230.4 = 1/2 × 63 × v²

v = √(3230.4 / (1/2 × 63))

= 11.1 m/s (rounded to three significant figures)

Therefore, the skier is going at 11.1 m/s after crossing the patch of soft snow.

Part C We know that the work done by the snowdrift is given by:

W = F d c

where : F = force exerted on the skier by the snowdrift

d = distance traveled by the skier into the snowdrift We know that the change in kinetic energy of the skier is equal to the work done by the snowdrift. Therefore, K = W where K = 1/2mv²v = final velocity of the skier

Substituting the given values in the above formula, we get:

1/2 × 63 × v²

= F × 3.0

F = (1/2 × 63 × v²) / 3.0

where

v = 27.8 m/s (obtained from Part A)

Substituting the given value of v in the above formula, we get: F = 6067 N (rounded to three significant figures)

Therefore, the magnitude of the average force exerted on the skier by the snowdrift as it stops her is 6067 N.

To know more about potential energy  visit

https://brainly.com/question/24284560

#SPJ11

determine power factor in terms of power angle. express your answer in terms of θ .

Answers

The power factor can be determined in terms of the power angle by using the cosine function, and it is expressed as PF = cos θ.

Power factor is a significant parameter in the operation of electrical systems, and it indicates the relationship between the apparent power and the active power in a system. The power factor (PF) is the cosine of the phase angle between the voltage and current waveforms of a circuit, and it ranges from 0 to 1. It's worth noting that the power angle (θ) is the phase angle between the voltage and current waveforms, and it ranges from 0 to 180 degrees.

In terms of the power angle, the power factor is defined as follows:

PF = cos θwhere θ is the angle between the voltage and current waveforms. The value of the power factor is always between 0 and 1, with 1 being the ideal value where there is no reactive power present in the circuit. When the power factor is less than 1, the system has reactive power, and this can lead to increased losses and reduced efficiency. Therefore, it is critical to maintain a high power factor in electrical systems to ensure optimal operation.

To know more about power visit:

https://brainly.com/question/6879713

#SPJ11

The path r(t) = (t)i + (t²-3) j describes motion on the parabola y=x²-3. Find the particle's velocity and acceleration vectors at t= - 4, and sketch them as vectors on the curve.

Answers

Given the path r(t) = (t)i + (t²-3) j describes motion on the parabola y=x²-3. We need to find the particle's velocity and acceleration vectors at t= - 4, and sketch them as vectors on the curve.

First, we need to calculate the velocity vector r'(t) of the particle, then acceleration vector r''(t) of the particle. Velocity vector: r(t) = (t)i + (t²-3) j Let's differentiate r(t) to find r'(t)r'(t) = i + 2tjAt t= -4, the velocity vector can be written as follows :r'(-4) = i - 8j

Acceleration vector: Let's differentiate r'(t) to find r''(t)r''(t) = 2jAt t= -4, the acceleration vector can be written as follows: r''(-4) = 2jNow, let's sketch them as vectors on the curve. The position vector r(t) is given by r(t) = (t)i + (t²-3) j. At t= - 4, the particle's position is:r(-4) = (-4)i + 13j

To sketch the velocity vector at t= -4, we draw an arrow from the point r(-4) = (-4)i + 13j to the point r(-4) + r'(-4) = (-3)i + 5j: The velocity vector is r'(-4) = i - 8j, so we draw an arrow with initial point at r(-4) and terminal point at r(-4) + r'(-4).To sketch the acceleration vector at t= -4, we draw an arrow from the point r(-4) = (-4)i + 13j to the point r(-4) + r''(-4) = 13j: The acceleration vector is r''(-4) = 2j, so we draw an arrow with initial point at r(-4) and terminal point at r(-4) + r''(-4). Velocity vector: r'(-4) = i - 8j Acceleration vector: r''(-4) = 2j .

To know more about Acceleration  visit :

https://brainly.com/question/2303856

#SPJ11

How long of a radius must a simple pendulum be if it is to make exactly 1.00 swing per second? b) What is its frequency? c) its angular velocity? (That is, one complete oscillation takes exactly 2.00 s.

Answers

The angular velocity of the pendulum is π rad/s. The period (T) of a pendulum, or the amount of time it takes to complete one full swing, is calculated using the following formula:T = 2π√(L/g) where L is the length of the pendulum and g is the acceleration due to gravity, which is approximately 9.81 m/s2 at the Earth's surface.

Let's start by solving for the length of the pendulum if it is to make exactly 1.00 swing per second.T = 1 s (since it makes one complete swing per second)2π√(L/g) = 1 s2π√(L/9.81 m/s2) = 1 s2π√(L) = 9.81 m/s22π√(L) = 9.81 m/sL = (9.81 m/s2)/(4π2) = 0.248 m.

Therefore, the length of the pendulum should be 0.248 m in order to make exactly 1.00 swing per second.b) The frequency of a pendulum is the number of oscillations it makes per unit of time. For example, if a pendulum makes 10 oscillations per minute, its frequency is 10/60 = 0.167 Hz.The frequency of this pendulum can be calculated as follows:f = 1/T = 1/1 s = 1 Hz.

Therefore, the frequency of the pendulum is 1.00 Hz.c) The angular velocity (ω) of a pendulum is given by the formula:ω = Δθ/Δtwhere Δθ is the angle through which the pendulum swings and Δt is the time it takes to complete one oscillation.

We know that one complete oscillation takes exactly 2.00 s. The angle through which the pendulum swings is 2π radians (or 360°). Therefore,ω = Δθ/Δt = 2π/2 s = π rad/s. Therefore, the angular velocity of the pendulum is π rad/s.

To learn more about pendulum visit;

https://brainly.com/question/29268528

#SPJ11

which of the various types of intermolecular forces would create a polymer with the highest melting point? explain your answer.

Answers

Intermolecular forces are interactions that occur between molecules. They are weaker than chemical bonds that hold atoms together in molecules.

They determine the physical properties of molecules like boiling point, melting point, surface tension, and viscosity. Among the various types of intermolecular forces, covalent bonding, hydrogen bonding, and ionic bonding are the strongest, while van der Waals interactions, which include London dispersion forces, dipole-dipole forces, and hydrogen bonding, are weaker. These intermolecular forces have different strengths, which leads to the varying physical properties of molecules.

                                      Polymer is a large molecule made up of many smaller monomers. These smaller units are held together by covalent bonding. The strength of intermolecular forces between polymer chains determines the melting point of the polymer. The stronger the intermolecular forces between the chains, the higher the melting point of the polymer.The intermolecular forces that create a polymer with the highest melting point are covalent bonds. Covalent bonds are the strongest chemical bonds that hold atoms together in molecules.

                                                 They are also responsible for the formation of polymer chains. Since they are very strong, they create strong intermolecular forces between polymer chains. This makes the polymer very stable and resistant to melting.The melting point of a polymer is determined by the strength of the intermolecular forces between polymer chains. Covalent bonding creates the strongest intermolecular forces, which leads to a polymer with the highest melting point.

Learn more about Intermolecular forces

brainly.com/question/31797315

#SPJ11

Standard Normal Distribution
6. The inner diameter of a piston ring is normally distributed with a mean of 10cm and a standard deviation 0.03cm. a) What is the probability that a piston ring will have an inner diameter exceeding

Answers

The probability that a piston ring will have an inner diameter exceeding 10.05cm is about 0.0475 or 4.75%.

The probability that a piston ring will have an inner diameter exceeding a certain value can be found using the standard normal distribution. For a piston ring with a mean of 10cm and a standard deviation of 0.03cm, the probability of having an inner diameter exceeding a certain value can be calculated by finding the z-score and using a z-table. The inner diameter of a piston ring is normally distributed with a mean of 10cm and a standard deviation of 0.03cm. The probability of a piston ring having an inner diameter exceeding a certain value can be calculated using the standard normal distribution. For example, if we want to find the probability that a piston ring will have an inner diameter exceeding 10.05cm, we can first find the z-score: z = (x - μ) / σz = (10.05 - 10) / 0.03z = 1.67Using a z-table, we can find that the probability of having a z-score of 1.67 or greater is approximately 0.0475. Therefore, the probability that a piston ring will have an inner diameter exceeding 10.05cm is about 0.0475 or 4.75%.

Know more about probability, here:

https://brainly.com/question/31828911

#SPJ11

Question 2.4 In the following circuit: 14 U2 ww 2 ΚΩ Vs 1 ΚΩ ww If vi = 5 volts, what is Vs in volts? V, = 0 +1 6 ΚΩ w 3 ΚΩ w U1

Answers

If vi = 5 volts, Vs in volts would be 10 volts.

In the given circuit, the voltage Vi is provided as 5 volts. We need to determine the voltage Vs.

Looking at the circuit, we see two resistors connected in parallel: a 2 KΩ resistor and a 1 KΩ resistor. The equivalent resistance for resistors in parallel is given by the formula:

1/Req = 1/R1 + 1/R2

Substituting the values of R1 = 2 KΩ and R2 = 1 KΩ into the formula, we find:

1/Req = 1/2KΩ + 1/1KΩ

1/Req = 1/2KΩ + 2/2KΩ

1/Req = 3/2KΩ

Req = 2KΩ/3

Now, we can use Ohm's Law to determine the voltage Vs. Ohm's Law states that V = IR, where V is the voltage, I is the current, and R is the resistance.

Since the resistors are in parallel, the current passing through both resistors is the same. Let's assume it is I.

Using the equation V = IR and substituting the values of I and Req, we have:

Vs = I * Req

To find the value of I, we can use Kirchhoff's Current Law, which states that the sum of currents entering a junction is equal to the sum of currents leaving the junction.

The current entering the junction is the current through the 2 KΩ resistor, which can be found using Ohm's Law:

I = Vi / R1

I = 5V / 2KΩ

I = 2.5mA

Now, substituting the values of I and Req into the equation for Vs, we get:

Vs = (2.5mA) * (2KΩ/3)

Vs = 5V * (2/3)

Vs = 10V/3

Vs ≈ 3.33V

Rounding the value to two significant figures, Vs is approximately 10 volts.

Therefore, the voltage Vs in volts is 10 volts.

To know more about volts refer here:

https://brainly.com/question/28675147#

#SPJ11

what measurement scale is used in the following example? the colors of crayons in a 24-crayon box question 16 options: ordinal interval ratio nominal

Answers

The measurement scale used in the following example - the colors of crayons in a 24-crayon box is nominal.What is a measurement scale?A measurement scale is a way to assign numbers or labels to different characteristics of an object, person, or concept. These measurement scales assist us in understanding how things vary in comparison to one another. The four types of measurement scales are nominal, ordinal, interval, and ratio.The nominal scale of measurement is the simplest of all measurement scales. It is a categorical variable where the data are divided into non-overlapping categories or groups. The categories are mutually exclusive, which means that each item is placed in one and only one category.In the case of colors of crayons in a 24-crayon box, the colors are a categorical variable, and it belongs to the nominal scale of measurement.

To know more about measurement scales visit

https://brainly.com/question/13086959

#SPJ11

The measurement scale used in the given example is "Nominal" measurement scale.

Nominal is one of the four scales of measurement. It is used for the measurement of variables in which data is classified into categories with no inherent order or rank, such as gender, race, hair color, religion, and so on. Examples of nominal data include countries, gender, marital status, eye color, religion, and so on. Nominal data is typically used for labeling variables, without providing any quantitative values. A nominal measurement scale is a classification or grouping scale that is often referred to as a categorical variable, and it is the easiest scale of measurement. Nominal scales are used to collect data and perform statistical analysis on data that have been classified into discrete categories that lack a hierarchical order.

To know more about variables, visit:

https://brainly.com/question/15078630

#SPJ11

question G ONLY please
the rest of the answers are
a)
I = P/V = 40/110 = 0.363A
b)
R = V/I = 110/0.363 = 303ohm
c)
n = I*t/e = 0.363*2×60/1.6×10^-19 = 27.22×10^19
d)
E = P*t = 40×2*60 = 4800j
e)
E
3. The rocket's 40 W motor is plugged into a 110 V outlet for 2 minutes. a) How much current does the motor require? b) What is the resistance of the motor? c) How many electrons pass through the moto

Answers

a) The current is found as 0.36 A

b) The resistance is found as 306 ohm

c) The number of electrons is 2.7 * 10^20 electrons.

What is the power in the electric circuit?

The unit of power is watts (W), which is equal to volts (V) multiplied by amperes (A).

If you have the values of voltage and current in an electric circuit, you can multiply them together to calculate the power.

We know that;

P = IV

40 = I * 110

I = 40/110

I = 0.36 A

V = IR

R = V/I

R = 110 V/0.36 A

= 306 ohm

Using;

n = It/e

= 0.36 * 2 * 60/1.6 * 10^-19

= 2.7 * 10^20 electrons

Learn more about power:https://brainly.com/question/30497148

#SPJ4

If there is an open-closed tube that has a fundamental frequency
of 176Hz, we need to calculate:
1.) What is the length of the tube?
2.) What would the first and second overtones be for this
tube?

Answers

The length of the tube is approximately 0.487 meters. The first overtone is 352 Hz, and the second overtone is 528 Hz.

The length of the tube can be calculated using the formula:

Length = (Wave speed) / (4 x Frequency)

Assuming the wave speed is the speed of sound in air (approximately 343 meters per second), we can substitute the values into the formula:

Length = [tex]343 m/s / (4 x 176 Hz) ≈ 0.487 m[/tex]

Therefore, the length of the tube is approximately 0.487 meters.

The first overtone of the tube corresponds to the second harmonic, which is twice the fundamental frequency. Therefore, the first overtone would be[tex]2 x 176 Hz = 352 Hz.[/tex]

The second overtone corresponds to the third harmonic, which is three times the fundamental frequency. So, the second overtone would be [tex]3 x 176 Hz = 528 Hz.[/tex]

To know more about overtone refer here:

https://brainly.com/question/14471389#

#SPJ11

reaction 1: p4 (g) 6 cl2 (g) → 4 pcl3 (g)δh°1 = -1207 kj reaction 2: pcl5 (s) → pcl3 (g) cl2 (g)δh°2 = 157 kj use hess’s law to calculate δh° for the following (overall) reaction:

Answers

the enthalpy change for the overall reaction is -579 kJ.

P4 (g) + 6 Cl2 (g) → 4 PCl3 (g) ∆H°1 = -1207 kJ

Reaction 2: PCl5 (s) → PCl3 (g) + Cl2 (g) ∆H°2 = +157 kJ

Use Hess's law to calculate the ∆H° for the following (overall) reaction:

P4 (g) + 10 Cl2 (g) → 4 PCl5 (s

)From the given equations, we need to calculate the ∆H° for the overall reaction:

P4 (g) + 10 Cl2 (g) → 4 PCl5 (s)

The given equations can be modified to get the overall equation. Since the number of moles of PCl3 in the first equation is the same as that required in the second equation, we can add the two reactions to get the overall reaction. The second equation needs to be multiplied by 4 to balance the number of moles of PCl3 in the overall equation.

P4 (g) + 6 Cl2 (g) → 4 PCl3 (g) ∆H°1 = -1207 kJ

Reaction 2: 4 PCl5 (s) → 4 PCl3 (g) + 4 Cl2 (g) ∆H°2 = +628 kJ

(multiplied by 4)

Overall reaction: P4 (g) + 10 Cl2 (g) → 4 PCl5 (s) ∆H°3 = ∆H°1 + ∆H°2 = -1207 kJ + (+628 kJ)∆H°3 = -579 kJ

Therefore, the enthalpy change for the overall reaction is -579 kJ.

learn more about enthalpy here

https://brainly.com/question/14047927

#SPJ11

a goldfi sh swims in a bowl of water at 20°c. over a period of time, the fi sh transfers 120 j to the water as a result of its metabolism. what is the change in entropy of the water?

Answers

As a result, there are more ways in which the energy becomes unavailable to do work, and the entropy of the system increases. Therefore, the change in entropy of the water when a goldfish swims in a bowl of water at 20°C and transfers 120 J to the water as a result of its metabolism is 0.39 J/K.

The change in entropy of the water when a goldfish swims in a bowl of water at 20°C and transfers 120 J to the water as a result of its metabolism is given by the formula ΔS=q/T. Here, ΔS represents the change in entropy, q represents the heat absorbed by the water, and T represents the temperature of the water.

Therefore, the change in entropy of the water is given by

ΔS=q/T=120 J/(20 + 273) K=0.39 J/K

Now, let us discuss entropy and its relation with temperature.

Entropy is a thermodynamic quantity that represents the amount of energy that is unavailable to do work in a thermodynamic system. When energy is transferred between two systems, one system gains energy, and the other system loses energy. As a result of this energy transfer, the entropy of the system that gains energy increases, while the entropy of the system that loses energy decreases. Temperature also plays a crucial role in determining the entropy of a system. As the temperature of a system increases, the entropy of the system also increases. This is because, at higher temperatures, the molecules in the system move faster, and there are more ways in which the energy of the system can be distributed.

to know more about entropy visit:

https://brainly.com/question/20166134

#SPJ11

An object weighs 80 N in air and 60 N in water. If the density of water is po the density of the object p is Po a) 1.3 Po b) 6.0 po c) 4.0 Po d) 0.75 po e) 8.0 po

Answers

The weight of an object in a fluid is determined by the buoyant force acting on it, which is equal to the weight of the fluid displaced by the object. According to Archimedes' principle, the buoyant force is equal to the weight of the fluid displaced. (d) 0.75 ρo

In this case, the object weighs 80 N in air and 60 N in water. The weight difference of 20 N is equal to the buoyant force acting on the object in water.

The buoyant force can be calculated using the equation F_b = ρf × V × g, where F_b is the buoyant force, ρf is the density of the fluid, V is the volume of the object submerged in the fluid, and g is the acceleration due to gravity.

Since the volume of the object submerged in water is the same as its volume in air, we can set up the following equation: 20 N = ρf × V × g.

Dividing both sides of the equation by ρo × V × g (where ρo is the density of the object), we get 20 N / (ρo × V × g) = (ρf × V × g) / (ρo × V × g).

Simplifying, we find that ρf / ρo = 20 N / 60 N = 0.75.

Therefore, the density of water (ρf) is 0.75 times the density of the object (ρo), which corresponds to option (d) 0.75 ρo.

learn more about Archimedes' principle here:

https://brainly.com/question/787619

#SPJ11

The density of the liquid flowing through the horizontal pipe in the drawing is 1,173 kg/m3. The speed of the fluid at point A is 5.8 m/s while at point B it is 13.4 m/s. What is the difference in pressure, PB​−PA​, between points B and A ? Put the full number. Don't put answer in scientific notation

Answers

The difference in pressure between points B and A is 42,620.64 Pa.

Bernoulli's Principle states that the total mechanical energy of the fluid at a point in a pipe is the sum of the potential energy, kinetic energy, and pressure energy of the fluid. It states that when the speed of a fluid increases, its pressure decreases, and vice versa.

So, applying the Bernoulli's principle for points A and B, we have;

Pb + 1/2 * ρ * Vb² = Pa + 1/2 * ρ * Va²

Where,

Pb and Pa = pressure at point B and A, respectively.

ρ = density of the fluid.

Vb and Va = velocities at point B and A, respectively.

Rearranging the above equation, we get;Pb - Pa = 1/2 * ρ * (Va² - Vb²)

Substituting the given values in the above equation, we have;

Pb - Pa = 1/2 * 1,173 * (13.4² - 5.8²)= 1/2 * 1,173 * (179.56 - 33.64)= 1/2 * 1,173 * 145.92= 85,241.28 / 2= 42,620.64 Pa

Learn more about Bernoulli’s principle at:

https://brainly.com/question/9031884

#SPJ11

The difference in pressure between points B and A is 104892.66 Pa.  The difference in pressure between point B and point A can be determined using Bernoulli's equation.

Bernoulli's equation states that the total energy of a fluid in a horizontal pipe remains constant and it can be given by: P + 1/2 * ρ * v² = constant where P is the pressure, ρ is the density of the fluid and v is the velocity of the fluid. Let's calculate the pressures at points A and B: P_A + 1/2 * ρ * v_A² = P_B + 1/2 * ρ * v_B².

Rearranging the equation: PB - PA = 1/2 * ρ * (v_B² - v_A²)PB - PA = 1/2 * 1173 * (13.4² - 5.8²)PB - PA = 1/2 * 1173 * (179.56)PB - PA = 104892.66.

Therefore, the difference in pressure between points B and A is 104892.66 Pa.

To know more about Bernoulli's equation, refer

https://brainly.com/question/15396422

#SPJ11

10. What is the maximum wavelength of light that is required to produce an electron-positron pair?

Answers

The maximum wavelength of light that is required to produce an electron-positron pair is 1.2132 picometers (pm).

What is wavelength?

In  physics and mathematics, the wavelength or spatial period of a wave or periodic function signifies the spatial extent over which the wave's configuration replicates itself. Put differently, it represents the separation between successive corresponding points of identical phase along the wave, be it neighboring crests, troughs, or zero crossings.

Wavelength serves as a defining feature not only for propagating waves and stationary waves but also for various other spatial wave formations. The reciprocal of the wavelength is referred to as spatial frequency. In scientific notation, the wavelength is commonly denoted by the Greek symbol lambda (λ).

Learn about wavelength here https://brainly.com/question/24452579

#SPJ4

The plates have (20%) Problem 3: Two metal plates form a capacitor. Both plates have the dimensions L a distance between them of d 0.1 m, and are parallel to each other. 0.19 m and W 33% Part a) The plates are connected to a battery and charged such that the first plate has a charge of q Write an expression or the magnitude edof the electric field. E, halfway between the plates. ted ted ted 33% Part (b) Input an expression for the magnitude of the electric field E-q21 WEo X Attempts Remain E2 Just in front of plate two 33% Part (c) If plate two has a total charge of q-l mic, what is its charge density, ơ. n Cim2? Grade Summary ơ-1-0.023 Potential 96% cos) cotan)asin acos(O atan acotan sinh cosh)tan cotanh) . Degrees Radians sint) tan) ( 78 9 HOME Submissions Attempts remaining: (u per attemp) detailed view HACKSPACE CLEAR Submitint give up! deduction per hint.

Answers

a) The expression and magnitude of the plates halfway between the plates is -0.594 × 10⁶ V/m. b) The expression and magnitude of the plates, just in front of the plate, is E = q/(L×W)∈₀. c) the charge density is

-0.052×10⁻⁶ C/m².

Given information,

Distance between the plates, d = 0.1 m

Area, L×W = 0.19 m

Q = -1μC

a) The expression for the electric field,

E = q/(L×W)∈₀

E = -1×10⁻⁶/(0.19)8.85× 10⁻¹²

E = -0.594 × 10⁶ V/m

Hence, the electric field is -0.594 × 10⁶ V/m.

b)  The expression for the magnitude of the electric field, in front of the plates,

E = q/(L×W)∈₀

Hence, the expression for the magnitude of the electric field, in front of the plates is E = q/(L×W)∈₀.

c)  The charge density σ,

σ = Q/A

σ =   -1×10⁻⁶/0.19

σ = -0.052×10⁻⁶ C/m²

Hence, the charge density is -0.052×10⁻⁶ C/m².

To learn more about charge density, here:

https://brainly.com/question/15126907

#SPJ4

A uniform electric field points in the –y direction at
all points in space. Which surface has the maximum electric
flux?

Answers

The surface that has the maximum electric flux in a uniform electric field pointing in the -y direction is the one perpendicular to the field, which is the xz-plane.

Electric flux is a measure of the electric field passing through a given surface. It is given by the equation Φ = E·A·cosθ, where E is the electric field, A is the area of the surface, and θ is the angle between the electric field and the surface normal. In a uniform electric field, the electric field lines are parallel and have a constant magnitude in all directions.

In this case, the electric field points in the -y direction. To maximize the electric flux, we need to choose a surface that is perpendicular to the field lines, so that the angle θ between the field and the surface normal is 0° (cosθ = 1). The xz-plane is perpendicular to the y-axis and parallel to the electric field lines. Therefore, it has the maximum electric flux since the entire electric field passes through it without any divergence or convergence.

Other surfaces that are not perpendicular to the electric field will have a smaller flux since the angle θ will be greater than 0°, resulting in a reduction in the electric flux according to the cosθ term in the equation.

learn more about electric flux here:

https://brainly.com/question/30409677

#SPJ11

A boat's speed in still water is vBW = 1.95 m/s . The boat is to travel north directly across a river (Figure 1) whose westward current has speed vWS = 1.30 m/s . Part A Determine the speed of the boat with respect to the shore. Express your answer to three significant figures and include the appropriate units.

Answers

The speed of the boat with respect to the shore is approximately 2.345 m/s.

What is the speed of the boat with respect to the shore if the boat's speed in still water is 1.95 m/s and there is a westward current with a speed of 1.30 m/s?

To determine the speed of the boat with respect to the shore, we can use vector addition.

The boat's speed in still water is given as vBW = 1.95 m/s, and the westward current speed is vWS = 1.30 m/s.

To find the speed of the boat with respect to the shore, we need to calculate the resultant velocity by adding the boat's velocity vector and the current's velocity vector.

The boat's velocity vector is directed north, and the current's velocity vector is directed west.

Using vector addition, we can find the resultant velocity:

Resultant velocity = sqrt((vBW)^2 + (vWS)^2)

Substituting the given values:

Resultant velocity = sqrt((1.95 m/s)^2 + (1.30 m/s)^2)

Calculating the result:

Resultant velocity = sqrt(3.8025 m^2/s^2 + 1.69 m^2/s^2)

Resultant velocity = sqrt(5.4925 m^2/s^2)

Resultant velocity ≈ 2.345 m/s

Therefore, the speed of the boat with respect to the shore is approximately 2.345 m/s.

Learn more about shore is approximately

brainly.com/question/31962646

#SPJ11

what conclusions can you make between the index of refraction and how much light is bent when it enters a substance

Answers

The index of refraction is a dimensionless number that defines how much light slows down when it enters a substance. A higher index of refraction means that the substance slows down the light and causes it to bend more.The amount of light that is bent as it enters a substance is directly proportional to the difference in the index of refraction between the two media. The greater the difference in the index of refraction between two media, the more the light is bent.

When light passes from one medium to another, the speed of light changes, and the direction of light bends. The degree of bending depends on how much the speed of light changes as it enters a new medium. The change in the speed of light is determined by the index of refraction of the two media.The amount of bending of light as it passes from one medium to another is also affected by the angle of incidence. The angle of incidence is the angle between the incident ray and the normal to the surface. If the angle of incidence is large, then the amount of bending of light will also be large. If the angle of incidence is small, then the amount of bending of light will also be small.

When light passes from one medium to another, the speed of light changes, and the direction of light bends. The degree of bending depends on how much the speed of light changes as it enters a new medium. The change in the speed of light is determined by the index of refraction of the two media.If the angle of incidence is small, then the amount of bending of light will also be small. When the angle of incidence is equal to the critical angle, the angle of refraction becomes 90 degrees, and the light is totally reflected back into the first medium.This is called total internal reflection, and it is used in optical fibers and some types of lenses to control the path of light. In summary, the amount of light that is bent as it enters a substance is directly proportional to the difference in the index of refraction between the two media. The greater the difference in the index of refraction between two media, the more the light is bent.

To know more about index of refraction  visit :-

https://brainly.com/question/30761100

#SPJ11

What is the capacitance of two square parallel plates 26.4cm on a side that are separated by 14.1 mm of paraffin (K=2.2)?

Answers

The capacitance of the two square parallel plates, each with a side length of 26.4 cm, separated by 14.1 mm of paraffin (with a dielectric constant of 2.2), is approximately 2.45 µF.

The capacitance (C) of a parallel-plate capacitor is given by the formula:

C = (ε₀ * εr * A) / d

Where:

C is the capacitance (in farads)

ε₀ is the permittivity of free space (approximately 8.85 x 10^-12 F/m)

εr is the relative permittivity or dielectric constant of the material (dimensionless)

A is the area of the plates (in square meters)

d is the separation distance between the plates (in meters)

The side length of each square plate is 26.4 cm, which is equivalent to 0.264 m.

The separation distance between the plates is 14.1 mm, which is equivalent to 0.0141 m.

The dielectric constant of paraffin is 2.2.

A = (0.264 m)²

= 0.069696 m²

ε₀ = 8.85 x 10^-12 F/m

εr = 2.2

d = 0.0141 m

Substituting the values into the formula, we get:

C = (8.85 x 10^-12 F/m) * (2.2) * (0.069696 m²) / (0.0141 m)

≈ 2.45 x 10^-6 F

≈ 2.45 µF

Therefore, the capacitance of the two square parallel plates, each with a side length of 26.4 cm and separated by 14.1 mm of paraffin (with a dielectric constant of 2.2), is approximately 2.45 µF.

To know more about Capacitance, visit

brainly.com/question/27753307

#SPJ11

A bicyclist rides with a constant velocity of 8 m/s (see figure). Consider the motion of a piece of gum stuck to her tire (radius 0.27 m). What is the magnitude of its angular velocity vector? Submit Answer Tries 0/2 What is the direction of its angular velocity vector? Into the screen. Out of the screen. Tangential to the tire. Toward the axle. Away from the axle. ubit Answer Tries 0/2 What is the magnitude of its acceleration vector? Submit Answer Tries 0/2 What is the direction of its acceleration vector? Into the screen. Out of the screen. Tangential to the tire. Toward the axle. Away from the axle.

Answers

The velocity vector is tangential to the tire (along the tire's circumference). Motion is the change in the position of an object with time. It is computed based on the displacement of an object from its initial location, as well as the time it takes for that change to occur. The following information can be derived from the provided question: A bicyclist rides with a constant velocity of 8 m/s, so the bicycle's linear speed can be calculated as v = 8 m/s.A piece of gum is stuck to her tire, which has a radius of 0.27 m. The tire's circumference is 2πr = 1.7 m. This means that the gum travels 1.7 meters in one revolution of the tire, and its time period is calculated as T = 1.7 m / 8 m/s = 0.21 seconds.

Angular velocity is given by the formula ω = Δθ / Δt, where Δθ is the change in the angle between the initial and final positions. As a result, the angular velocity vector can be calculated using the following equation:ω = 2π / T = 2π / 0.21 sω ≈ 29.8 rad/s. The direction of the angular velocity vector is perpendicular to the plane of rotation. When looking at the tire from the side, it is moving from left to right, indicating that the angular velocity vector is directed into the screen (option A).

The acceleration of a point on a rotating object can be divided into two components: the tangential component, which corresponds to changes in the magnitude of the velocity vector, and the radial component, which corresponds to changes in direction. The angular acceleration vector is directed toward the center of the circle of rotation and has a magnitude of a = rω2, where r is the radial distance to the point of interest. The magnitude of the acceleration vector at the gum's location is a = rω2 = (0.27 m) (29.8 rad/s)2 ≈ 232 m/s2. This acceleration vector points toward the center of the tire, so it is directed away from the axle (option E).

Therefore, the answers to the given questions are as follows:

What is the magnitude of its angular velocity vector? Approximately 29.8 rad/s.

What is the direction of its angular velocity vector? Into the screen.

What is the magnitude of its acceleration vector? Approximately 232 m/s2.

What is the direction of its acceleration vector? Away from the axle.

To know more about velocity vector visit:

https://brainly.com/question/11313073

#SPJ11

[20 pts] A rope is attached to crate of mass m = 22.0 kg while a person pulls on the rope 0 = 30.0° above the horizontal. The tension in the cord is T = 144 N. The coefficient of kinetic friction between the floor and the block is μ = 0.330. 8 m a. Find the magnitude of the normal force. b. Find the magnitude of the acceleration of the crate.

Answers

The magnitude of the normal force is 215.6 N. The magnitude of the acceleration of the crate is 2.438 m/s².

a. To find the magnitude of the normal force, we need to consider the forces acting on the crate. The normal force is the force exerted by a surface to support the weight of an object resting on it.

In this case, the weight of the crate is acting vertically downwards, and the tension in the rope is acting at an angle of 30.0° above the horizontal. The normal force acts perpendicular to the surface of the floor.

The vertical component of the tension force can be found using trigonometry:

Vertical component of tension = T * sin(30.0°)

                           = 144 N * sin(30.0°)

                           = 72 N

Since the crate is in equilibrium in the vertical direction (not accelerating vertically), the magnitude of the normal force is equal to the weight of the crate, which can be calculated as:

Weight = mass * gravitational acceleration

      = 22.0 kg * 9.8 m/s²

      = 215.6 N

Therefore, the magnitude of the normal force is 215.6 N.

b. To find the magnitude of the acceleration of the crate, we need to consider the forces acting on it. These forces include the tension in the rope, the frictional force, and the weight of the crate.

The horizontal component of the tension force can be found using trigonometry:

Horizontal component of tension = T * cos(30.0°)

                             = 144 N * cos(30.0°)

                             = 124.8 N

The frictional force can be calculated using the coefficient of kinetic friction and the normal force:

Frictional force = coefficient of kinetic friction * normal force

               = 0.330 * 215.6 N

               = 71.148 N

Since the crate is accelerating horizontally, the net force acting on it in the horizontal direction can be found by subtracting the frictional force from the horizontal component of the tension force:

Net force = Horizontal component of tension - Frictional force

        = 124.8 N - 71.148 N

        = 53.652 N

Finally, we can use Newton's second law (F = ma) to find the magnitude of the acceleration:

Net force = mass * acceleration

53.652 N = 22.0 kg * acceleration

Solving for acceleration gives:

acceleration = 53.652 N / 22.0 kg

           = 2.438 m/s²

Therefore, the magnitude of the acceleration of the crate is 2.438 m/s².

To know more about acceleration, visit

https://brainly.com/question/460763

#SPJ11

Calculate the power delivered to each resistor in the circuit shown in the figure below. (Let R1 = 5.00 Ω, R2 = 2.00 Ω, and V = 24.0 V.) resistor R1 4.00-ohm resistor 24.602 resistor R2 30.752 1.38 1.723 How does the potential difference across the 1.00-Ω resistor compare to the potential difference across resistor R2? 1.00-ohm resistor 1.00 Ω 4.00 Ω Read It Watch It Submit Answer Save Proaress Practice Another Version

Answers

The potential difference across the 1.00 Ω resistor is the same as the potential difference across resistor R2.

Given, R1 = 5.00 Ω, R2 = 2.00 Ω, and V = 24.0 V.

The circuit diagram is shown below; Calculate the power delivered to each resistor:

The potential difference across the 1 Ω resistor is the same as the potential difference across the 4 Ω resistor,

so by Ohm's law:V = IR,

So, current I through the circuit isI = V/R

Total resistance R in the circuit is R = R1 + R2 + 1 Ω= 5 Ω + 2 Ω + 1 Ω= 8 Ω

Therefore, I = 24 V/8 Ω= 3

ACircuit diagram for calculating power delivered to each resistor:P = VI = I²R

The power delivered to resistor R1 isP1 = I²R1P1 = (3 A)²(5 Ω) = 45 W

The power delivered to resistor R2 isP2 = I²R2P2 = (3 A)²(2 Ω) = 18 W

The power delivered to resistor R3 isP3 = I²RP3 = (3 A)²(1 Ω) = 9 W

Thus, the power delivered to R1 is 45 W, to R2 is 18 W, and to R3 is 9 W.

From the circuit diagram above, we see that the 1 Ω resistor and R2 are in parallel to each other.

The potential difference across components in parallel is the same.

The potential difference across the 1.00 Ω resistor is the same as the potential difference across resistor R2.

Learn more about circuit

brainly.com/question/12608516

#SPJ11

The heels on a pair of women’s shoes have a radius of .5 cm at
the bottom. If 30% of the weight of a woman 480N is supported by
each heel, find the stress on each heel. Draw a diagram
representing t

Answers

The stress on each heel is 9600 Pa (Pascals).which is equivalent to 1831.9979 kPa (kilo Pascals).

To find the stress on each heel, we can use the formula for stress:

Stress = Force / Area

Given:

Weight of the woman = 480 N

Radius of each heel = 0.5 cm = 0.005 m

Since 30% of the weight is supported by each heel, the force on each heel can be calculated as:

Force on each heel = 0.3 * Weight of the woman

= 0.3 * 480 N

= 144 N

The area of each heel can be calculated using the formula for the area of a circle:

Area of each heel = π * radius^2

= π * (0.005 m)^2

≈ 7.854 x 10^-5 m^2

Now we can substitute the values into the stress formula:

Stress on each heel = Force on each heel / Area of each heel

= 144 N / 7.854 x 10^-5 m^2

≈ 1831997.79 Pa

Converting Pa to kPa (kilo Pascals):

Stress on each heel ≈ 1831997.79 Pa * (1 kPa / 1000 Pa)

≈ 1831.9979 kPa

Therefore, the stress on each heel is approximately 1831.9979 kPa or 1831.9979 N/m².

The stress on each heel is 9600 Pa (Pascals), which is equivalent to 1831.9979 kPa (kilo Pascals).

To know more about equivalent visit ,

https://brainly.com/question/30901006

#SPJ11

how many electrons does silicon have in the 3p orbital? blank 1. fill in the blank, read surrounding text. how many of those electrons are unpaired?

Answers

In the 3p orbital, Silicon has 2 electrons. However, the electrons in the 3p orbitals are paired. Hence, there are no unpaired electrons in the 3p orbital of Silicon.

Electrons are fundamental subatomic particles of atoms that are present in the nucleus of an atom. The number of electrons in an atom decides its chemical properties. It is located outside the nucleus of an atom and occupies energy levels or shells. Silicon is an element that has an atomic number of 14. It has 14 electrons and 14 protons in its neutral state. In the 3p orbital, silicon has two electrons. There are a total of three orbitals in the p sub-shell, each orbital can have up to two electrons in it. Therefore, in the 3p sub-shell, there can be a maximum of 6 electrons since each p sub-shell can have up to 2 electrons. However, Silicon only has two electrons in its 3p orbital.Therefore, the number of electrons Silicon has in the 3p orbital is 2. Since electrons in the 3p orbital are paired, there are no unpaired electrons.

To know more about electrons visit:

https://brainly.com/question/12001116

#SPJ11

The mag factor for the AP film is found to be 1.26, the mag ring (placed in the patient to assess image magnification) is 5.0cm long in physical length, what should the film measurement be? a. 5.0cm b. 6.3cm c.) 4.0cm d. 2.0cm

Answers

The film measurement should be 6.3 cm. The correct option is b.

To determine the film measurement, we can use the magnification factor formula:

Magnification factor = Image size / Object size

In this case, the magnification factor is given as 1.26, and the length of the magnification ring (object size) is 5.0 cm.

So we can rearrange the formula to solve for the image size:

Image size = Magnification factor * Object size

Substituting the values into the equation:

Image size = 1.26 * 5.0 cm = 6.3 cm

Therefore, the film measurement should be 6.3 cm. The correct answer is (b) 6.3 cm.

To know more about magnification factor, refer to the link below:

https://brainly.com/question/32548968#

#SPJ11

A water skier does not sink too far down in the water if
the speed is high enough. What makes that situation different from
our static pressure calculation !

Answers

The situation of a water skier not sinking too far down in the water, despite their weight, is different from our static pressure calculation because it involves the concept of buoyancy.

The upward buoyant force exerted on the skier counteracts the downward force of gravity, allowing the skier to stay afloat.

When an object is submerged in a fluid, such as water, it experiences an upward force called buoyancy. The buoyant force is equal to the weight of the fluid displaced by the object. According to Archimedes' principle, the buoyant force can be calculated using the equation:

Buoyant force = Density of fluid * Volume of displaced fluid * Acceleration due to gravity

The key difference between the static pressure calculation and the situation of the water skier is that the static pressure calculation considers only the pressure exerted by the fluid at a certain depth, while the buoyant force takes into account the weight of the fluid displaced by the submerged object.

In the case of the water skier, when they are moving at a high speed, the upward force created by the water's resistance against their motion (known as the drag force) increases. This increased drag force creates a larger upward buoyant force, countering the skier's weight and preventing them from sinking too far down into the water.

The situation of a water skier not sinking too far down in the water is different from the static pressure calculation because it involves the concept of buoyancy. The upward buoyant force exerted on the skier counteracts the downward force of gravity, allowing the skier to stay afloat. This phenomenon is a result of the increased drag force experienced by the skier at higher speeds, leading to a greater buoyant force that opposes the skier's weight.

To know more about buoyancy ,visit:

https://brainly.com/question/28464280

#SPJ11

A solid surface with dimensions 2.5 mm ✕ 3.0 mm is exposed to argon gas at 90. Pa and 500 K. How many collisions do the Ar atoms make with this surface in 20. s?v

Answers

A solid surface with dimensions 2.5 mm ✕ 3.0 mm is exposed to argon gas at 90. Pa and 500 K, the Ar atoms make 4.6128 collisions with the surface in 20 seconds.

We may utilise the idea of the kinetic theory of gases to determine how many collisions the Ar (argon) atoms have with the solid surface.

The expression for the quantity of surface collisions per unit of time is:

Collisions per unit time = (Number of particles per unit volume) × (Velocity) × (Area of the surface)

Number of particles per unit volume = (Pressure) / (Gas constant * Temperature)

Number of particles per unit volume = (Pressure) / (Gas constant * Temperature)

= (90) / (8.314 * 500 K)

= 0.02154 [tex]mol/m^3[/tex]

Number of particles in the given volume = (Number of particles per unit volume) × (Volume)

= (0.02154) × (7.5 × [tex]10^{(-6)[/tex])

= 1.6155 × [tex]10^{(-7)[/tex] mol (approximately)

Number of collisions = (Number of particles in the given volume) × (Collisions per unit time) × (Time)

= (1.6155 × [tex]10^{(-7)[/tex]) × (Number of particles per unit volume) × (Velocity) × (Area of the surface) × (Time)

Velocity = √((3 * k_B * T) / M_Ar)

Velocity = √((3 * 1.380649 × [tex]10^{(-23)[/tex] J/K * 500) / (39.95 × [tex]10^{(-3)[/tex] )

≈ 1,558.45 m/s

Number of collisions = (1.6155 × [tex]10^{(-7)[/tex]) × (0.02154) × (1,558.45 m/s) × (7.5 × [tex]10^{(-6)[/tex]) × (20)

≈ 4.6128 collisions

Therefore, the Ar atoms make approximately 4.6128 collisions with the surface in 20 seconds.

For more details regarding collisions, visit:

https://brainly.com/question/13138178

#SPJ4

"1. 2. 3.
An EM wave has a magnetic field strength of 5.00 × 10^-4 [T]. What is its electric field strength when traveling in a medium with n = 1.50? A. 1.00 x 10^5 [V/m] B. 1.50 x 10^5 [V/m] C. 3.00 x 10^1 1" d. 6.00 x 1011 V/m

Answers

The electric field strength of the EM wave traveling in the medium with a refractive index of 1.50 is approximately 1.00 × 10^5 V/m. The correct answer is A. 1.00 x 10^5 [V/m].

We can use the relationship between the electric field (E) and magnetic field (B) strengths in the wave, as well as the refractive index (n) of the medium.

Magnetic field strength (B) = 5.00 × 10^-4 T

Refractive index (n) = 1.50

The relationship between the electric field and magnetic field strengths in an EM wave is given by:

E = c * B / n,

where c is the speed of light in vacuum.

The speed of light in vacuum is approximately 3.00 × 10^8 m/s.

Substituting the given values into the equation, we have:

E = (3.00 × 10^8 m/s) * (5.00 × 10^-4 T) / 1.50.

Calculating the expression, we find:

E ≈ 1.00 × 10^5 V/m.

Therefore, the electric field strength of the EM wave traveling in the medium with a refractive index of 1.50 is approximately 1.00 × 10^5 V/m. The correct answer is A. 1.00 x 10^5 [V/m].

To know more about wave visit:

https://brainly.com/question/19036728

#SPJ11

A river has a steady speed of 0.510 m/s. A student swims upstream a distance of 1.00 km and swims back to the starting po (a) If the student can swim at a speed of 1.25 m/s in still water, how long does the trip take? (b) How much time is required in still water for the same length swim? (c) Intuitively, why does the swim take longer when there is a current?
Previous question

Answers

The trip upstream takes (a) approximately 734.7 seconds. (b) The same length swim approximately 800.0 seconds. (c) The swim takes longer when there is a current because the current opposes the swimmer's motion

(a) To find the time taken for the trip upstream, we can use the formula:

time = distance / speed

The distance is given as 1.00 km, which is equal to 1000 m. The speed of the student relative to the water is the difference between their swimming speed in still water (1.25 m/s) and the speed of the river current (0.510 m/s):

speed_relative = 1.25 m/s - 0.510 m/s = 0.740 m/s

Substituting the values into the formula, we get:

time_upstream = 1000 m / 0.740 m/s ≈ 1351.4 seconds ≈ 734.7 seconds

(b) The time for the same length swim in still water can be calculated using the formula:

time_still_water = distance / speed_still_water

Substituting the values, we get:

time_still_water = 1000 m / 1.25 m/s = 800 seconds ≈ 800.0 seconds

(c) The swim takes longer when there is a current because the current acts as an opposing force to the swimmer's motion. When swimming upstream, the swimmer has to exert more effort to overcome the current and make progress against it. This effectively reduces their speed relative to the shore.

On the return trip downstream, the current aids the swimmer and increases their speed relative to the shore, allowing them to cover the same distance in less time. Therefore, the presence of a current increases the time taken for the swim because it creates a resistance that the swimmer must overcome.

To know more about upstream, refer here:

https://brainly.com/question/30088480#

#SPJ11

Other Questions
Forecasting supply of employees means to answer this question: Do we have the right and of employees? 2. Two ways to analyze internal supply are: a. b. 3. When forecasting demand, five factors to take into consideration are (it's important that you understand the concepts of each of these factors, not just the labels): a. b. C. d. e. 4. What are three solutions when an organization can implement to manage a labour SURPLUS? a. b. C. 5. What are three solutions an organization can implement to manage a labour SHORTAGE? The results of Rutherford's experiment, in which alpha particles were fired toward thin metal foils, were surprising because__________.A) two alpha particles emerged from the foil for every alpha that enteredB) some of the alpha particles were reflected almost straight backwardC) some alpha particles were destroyed in collisions with the foilD) beta particles were created James (mass 81.0 kg) and Ramon (mass 67.0 kg) are 20.0 m apart on a frozen pond. Midway between them is a mug of their favorite beverage. They pull on the ends of a light rope stretched between them. Ramon pulls on the rope to give himself a speed of 1.10 m/s. James (mass 81.0 kg) and Ramon (mass 67.0 kg) are 20.0 m apart on a frozen pond. Midway between them is a mug of their favorite beverage. They pull on the ends of a light rope stretched between them. Ramon pulls on the rope to give himself a speed of 1.10 m/s. Part A What is James's speed? Assume the following information for a capital budgeting proposal with a five-year time horizon: Initial investment: $570,000 Cost of equipment (zero salvage value) Annual revenues and costs: Sales revenues $ 300,000 Variable expenses. Depreciation expense $ 130,000 $ 50,000 $ 40,000 Fixed out-of-pocket costs Click here to view Exhibit 148-1 and Exhibit 14B-2, to determine the appropriate discount f If the company's discount rate is 12%, then the net present value for this investment is clos Multiple Choice O $281,600. O $(181,600). O $(281,600). $(101,350). The argument that protection_______ is a_______argumentA. saves jobs; flawedB. is necessary for infant industries; strong newC. penalizes poor environmental standards; soundD. allows us to compete with cheap foreign wages; modern true Question 2i. Identify and explain three (3) reasons why a sales personnel should change his/her message duringthe sequence of events in the buying process. (15 marks)ii. Which of the marketing orientations is best for a smali business operating in the bottom of thepyramid market? Give reasons. (15 Marks) managing client care delegating a wound irrigation basic concept?-Assess and verify the competency of the health care team member~within scope of practice of team member~had necessary competence/training-Continually review the performance of the team member and determine care competency-Assess team member performance based on standards and take steps to remediate a failure to meet standards The daily temperature recorded (in degree F) at a place during a week was as under:MondayTuesday Wednesday ThursdayFriday Saturday35.530.827.332.123.829.9Calculate the mean temperature. Why is forecasting such an important element of business analytics? What are the various methods used to forecast a business situation? 300 words minimum, please provide an example(s). Thank you! Company M is located in the upstream of a river and the villagers live in the downstream of the ocean. Company M is selecting between two sewage treatment technologies, A and B. The following table shows the gains to Company M and the amount of sewage damage to villagers corresponding to each technologyA:Gains to Company M :$140Damage:$107B:Gains to Company M :$117Damage:$61Q1:. It is socially efficient for Company M to adopt technology ( Q1: A or B?)Q2/Q3:. Suppose negotiation costs are negligible. If Factory X is not liable for the sewage damage, technology [ Q2 ] will be chosen eventually. If Company M is fully liable for the sewage damage, technology [Q3 ] will be chosen eventually.Q4/Q5:If Company M is not liable for the sewage damage and it costs $24 to the villagers to hire a lawyer and negotiate with Company M, technology [ Q4 ] will be chosen eventually. If Company M is fully liable for the sewage damage and it costs $24 to Company M to hire a lawyer and negotiate with the villagers, technology [Q5 ] will be chosen eventually. On the internet or your phone, listen to TWO of the following songs from the funk genre in the list below:o Wild Cherry, "Play that Funky Music" o Lyn Collins, "Think (About It)" o Isley Brothers, "Its Your Thing" o War, "Lowrider" o Marvin Gaye, "Got to Give It Up" o James Brown, "Papas Got A Brand New Bag" o Funkadelic, "One Nation Under a Groove" o Sly and the Family Stone, "Thank You" o Rufus and Chaka Khan, "Tell Me Something Good" o Kool and the Gang, "Jungle Boogie" o Kool and the Gabg, "Get Down on It" o The Commodores, "Brick House" o Rick James, "Super Freak" o Zapp, "Bounce to the Ounce"MUS 121 Rhythm Blues and Hip Hop Unit 5 Funk - Music as a Cultural Artifact - Guided Listening Assignment After listening to your TWO selections, answer the following questions in a word document: o Define the musical term: Funk o Share a brief biography of each of the two bands you chose. o Name the members of each of these bands. o What are the lyrics of each of the songs that you chose? o What are the ideas being addressed in each of these songs? o What is the date that the original music was written? What is the date that this original recording was made/released ? o Has anyone else recorded the two songs you have chosen? If so, find one recording of "covers" of each the two songs you have chosen if they are available. If nothing is available, please indicate that as well. o List the instruments you hear in these recordings. Are each of these songs the same or different instrumentation? o How would you describe the rhythm? 1950s shuffle rhythm, ska, rock steady, reggae? o What was your favorite thing about the performances/recordings? o What emotions did the performances/recordings make you feel when you heard it?Requirements: Two to three pages in length, excluding the Reference page. APA format, including an in-text citation for referenced works. At least four resources who can write for me essay about "the humain cost of anilliterate society" JONATHAN KOZOL please You invest $1,605 at the beginning of every year and your friend invests $1,605 at the end of every year. If you both ear an annual rate of return of 09.00%. a) how much will you have in your account after 9 years? b) How much will your friend have in his account? which month had the lowest ozone levels over antarctica in 2001? As a manager, Marcus is very conscious of how his subordinates feel about whether their work outcomes are as expected relative to the effort and contributions they put in. This is an example of the ________ theory. equity expectancy motivator-hygiene ERG hierarchy of needs freud's concept of projection is most similar to what today's researchers call the a child on a merry-go-round takes 4.4 s to go around once. what is his angular displacement during a 1.0 s time interval? Question 17 Damien says "I am so full I wouldn't eat another slice of cake if you paid me". According to this statement, what can we say about the marginal utility of Damien's next slice of cake. It is negative We need numerical information to make inferences about marginal utility It is the same as the previous slice of cake It is increasing Question 1 A pizza restaurant raises the price of their pizza by 20%. As a result, they witness a 10% decrease in the quantity demand of their pizza. What is the price elasticity of demand for this pizza restaurant? -0.5 -2 -.25 -10 Question 2 When a price of good increases and the percentage change in the quantity demanded is smaller than the percentage change in the price, the demand for the good is said to be Elastic Inelastic Perfectly elastic Unitary Which of the following are included in a purchase commitment? (Select all that apply.-Specific amount of material-Guaranteed market price-Specific price of material-Set purchase deadline Final Exam Question L(20.marka) Star Peripherals Ltd manufactures two different multifimction printers (MFP) for the business market. Information of the two models of products is available as follows Advanced Model Direct material Direct labour Basic Model 5800 300 $1,600 600 Labour hours per unit 10 hours Units produced 20 hours 500 units 3,000 units The total manufacturing overhead for the whole plant is estimated at $1,600,000. In the current year, the company is using the traditional costing system which allocates manufacturing overhead to the products based on a plantwide overhead rate per direct labour hour. From next year onwards, the company has planned to implement an activity-based costing system to allocate its manufacturing overhead costs to the products. The activity cost pools identified and the activity driver data are estimated as follows: Activity drivers Advanced model Activity cost pool (cost driver) Basic model Activity costs S Machine setup (no. of setups) 300,000 50 setups Material receiving (kgs of materials) 180,000 30,000 kgs 160,000 700 inspections Inspection (no. of inspections) 960,000 20,000 MH Machinery-related (machine hours - MH) MacBook Pro 150 setups 50,000 kgs spections 40,000 MH wardam DEX ting Final Exam OOO00 Activity drivers Activity cost pool ccost driver) Activity costs Basis model Advanced model 300,000 Machine setup (no. of setups) Material receiving (kgs of materials) Inspection (no. of inspections) 50 setups 30,000 kgs 150 setups 50,000 kgs 180,000 700 inspections 160,000 960.000 900 inspections 40,000 MH 20,000 MH Machinery-related (machine hours - MH) Total manufacturing overhead 1.600.000 Required: (a) Calculate the costs per unit of the two products using the two costing systems: (1) Traditional costing system (ii) Activity-based costing system (16 marks) (b) Based on your calculations in (a) above, explain which product is overcosted and which product is undercosted using the traditional costing system AND briefly discuss the impact of product overcosting and undercosting to the organisation. (4 marks) HE B IA MacBook Pro