mmer
Question 1 of 15
This test: 50 point(s)
possible
This question: 3
point(s) possible
Submit test
Guiseppe's buys supplies to make pizzas at a cost of $4.02. Operating expenses of the business are 161% of the cost
and the profit he makes is 176% of cost. What is the regular selling price of each pizza?
The regular selling price of each pizza is $.
(Round the final answer to the nearest cent as needed. Round all intermediate values to six decimal places as needed.)

Answers

Answer 1

Guiseppe's buys supplies to make pizzas at a cost of $4.02. Operating expenses of the business are 161% of the cost and the profit he makes is 176% of cost. The regular selling price of each pizza is $7.33.

Let's denote the cost of supplies as C.

Operating expenses:

The operating expenses of the business are 161% of the cost. Therefore, the operating expenses can be calculated as:

Operating Expenses = 1.61 * C

Profit:

The profit made by Guiseppe is 176% of the cost. Therefore, the profit can be calculated as:

Profit = 1.76 * C

Total cost:

The total cost includes the cost of supplies and the operating expenses:

Total Cost = C + Operating Expenses = C + 1.61 * C = 2.61 * C

Regular selling price:

The regular selling price is the sum of the total cost and the profit:

Regular Selling Price = Total Cost + Profit = 2.61 * C + 1.76 * C = 4.37 * C

Given that the cost of supplies is $4.02, we can substitute this value into the equation:

Regular Selling Price = 4.37 * 4.02 = $17.5674

Rounding the final answer to the nearest cent, the regular selling price of each pizza is approximately $7.33.

For more such questions on selling price, click on:

https://brainly.com/question/28420607

#SPJ8


Related Questions

A woman stands at the edge of a cliff and throws a pebble horizontally over the edge with a speed of v0 = 20.5 m/s. The pebble leaves her hand at a height of h = 55.0 m
above level ground at the bottom of the cliff, as shown in the figure. Note the coordinate system in the figure, where the origin is at the bottom of the cliff, directly below where the pebble leaves the hand. Answer parts a-f.

Answers

(a)The time taken for the pebble to reach the ground is approximately 2.01 seconds, and

(b) the horizontal distance traveled by the pebble is approximately 41.02 meters.

(c) The vertical distance traveled by the pebble is 55 meters.

(d) The initial vertical velocity of the pebble is 0 m/s because it is thrown horizontally.

(e) The vertical acceleration of the pebble is due to gravity and is approximately -9.8 m/s^2.

(f) The negative sign indicates that the pebble is moving downward.

a) To find the time taken for the pebble to reach the ground, we can use the equation for vertical motion:

h = (1/2)gt^2, where h is the vertical distance and g is the acceleration due to gravity.

Rearranging the equation, we have:

t = √((2h) / g), where t is the time taken.

Substituting the given values, we get:

t = √((2 * 55) / 9.8) ≈ 2.01 seconds.

b) The horizontal speed of the pebble remains constant throughout its motion. Therefore, the horizontal distance traveled by the pebble can be found by multiplying the horizontal speed by the time taken:

d = v0 * t, where d is the horizontal distance and v0 is the initial horizontal speed.

Substituting the given values, we have:

d = 20.5 * 2.01 ≈ 41.02 meters.

c) The vertical distance traveled by the pebble is given as 55 meters.

d) The initial vertical velocity of the pebble is 0 m/s because it is thrown horizontally.

e) The vertical acceleration of the pebble is due to gravity and is approximately -9.8 m/s^2.

f) The final vertical velocity of the pebble when it reaches the ground can be found using the equation:

v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time taken.

Since the initial vertical velocity is 0 m/s and the acceleration due to gravity is -9.8 m/s^2, we have:

v = 0 + (-9.8) * 2.01 ≈ -19.8 m/s.

The negative sign indicates that the pebble is moving downward.

For more such questions on velocity, click on:

https://brainly.com/question/80295

#SPJ8

The obliquity of the rotation of Uranus is over 90 degrees. Compared to the plane of the solar system, it rotates on its "side", unlike any other planet. It is surmised that this angle of rotation was caused by:

Answers

The impact of a large body early in the history of the solar system.

What are the six digit grid coordinates for the windtee?

Answers

The six digit grid coordinates for the windtee  should be 3.

How do we we calculate?

The United States military and NATO both utilize the military grid reference system (mgrs) as their geographic reference point.

When utilizing the geographic grid system, one must indicate whether coordinates are east (e) or west (w) of the prime meridian and either north (n) or south (s) of the equator.

If hill 192 is located midway between grid lines 47 and 48 and the grid line is 47, the coordinate would be 750.

Learn more about grid system at:

https://brainly.com/question/30159056

#SPJ1

The six digit grid coordinates for the windtee is determined as 100049.

What is a coordinate point?

A coordinate point, also known as a point in coordinate geometry, is a typically represented by an ordered pair of numbers (x, y), where 'x' represents the horizontal position and 'y' represents the vertical position.

To locate the six digit grid coordinates for the windtee, we must first locate Windtee, and then find the grind coordinate.

From the map, Windtee is located on the horizontal axis, of 1000 and the corresponding Beacon is at 49.

So the six digit grid coordinates = 100049.

Thus, the  six digit grid coordinates for the windtee is determined as 100049.

Learn more about coordinate points here: https://brainly.com/question/17206319

#SPJ1

Suppose that the mirror is moved so that the tree is between the focus point F and the mirror. What happens to the image of the tree?

A. The image moves behind the curved mirror.

B. The image appears shorter and on the same side of the mirror.

C. The image appears taller and on the same side of the mirror.

D. The image stays the same.

Answers

Answer:

C

Explanation:

If the tree is placed between the focus point F and the mirror in a concave mirror, the image of the tree will appear taller and on the same side of the mirror. Therefore, the correct answer is C. The image appears taller and on the same side of the mirror.

A bullet of mass m is fired horizontally into a wooden block of mass M lying on a table. The bullet remains in the block after the collision. The coefficient of friction between the block and table is u, and the block slides a distance d before stopping. Find the initial speed v0 of the bullet in terms of M, m, u, g, and d

Answers

Answer:

[tex]\displaystyle \frac{M + m}{m}\, \sqrt{2\, x\, u\,g}[/tex].

Explanation:

This question can be solved in the following steps:

Using SUVAT equations, find the velocity of the block right after the collision, and thenUsing the conservation of momentum, find the velocity of the bullet before the collision.

Assume that the table is level. The normal force on the block would be equal to the weight of the block in magnitude [tex](M + m)\, g[/tex], but opposite in direction. As the block slows down, the only unbalanced force on the block would be friction [tex](-u\, (M + m)\, g)[/tex] (negative since this force is opposite to the direction of motion.)

The acceleration of the block would be:

[tex]\begin{aligned} a &= \frac{(\text{net force})}{(\text{mass})} \\&= \frac{-u\, (M + m)\, g}{M + m} \\ &= (-u\, g)\end{aligned}[/tex].

Apply the following SUVAT equation to find the velocity [tex]v_{i}[/tex] of the block right after the collision:

[tex]\displaystyle {v_{2}}^{2} - {v_{1}}^{2} = 2\, a\, x[/tex],

Where:

[tex]v_{2} = 0[/tex] is the velocity after the acceleration,[tex]v_{1}[/tex] is the velocity at the beginning of the acceleration, which is right after the collision, [tex]a = (-u\, g)[/tex] is the acceleration, and[tex]x = d[/tex] is the displacement during the acceleration.

Rearrange and solve for [tex]v_{1}[/tex], the velocity right after collision:

[tex]\begin{aligned}v_{1} &= \sqrt{{v_{2}}^{2} - 2\, a\, x} \\ &= \sqrt{0^{2} - 2\, (-u\, g)\, x} \\ &= \sqrt{2\, x\, u\, g}\end{aligned}[/tex].

Apply the conservation of momentum to find the velocity of the bullet before the collision. Right after the collision, sum of momentum would be:

[tex](M + m)\, \sqrt{2\, x\, u\, g}[/tex].

Right before the collision, sum of momentum would be:

[tex]m\, v_{0}[/tex].

By the conservation of momentum:

[tex]m\, v_{0} = (M + m)\, \sqrt{2\, x\, u\, g}[/tex].

Rearrange and solve for [tex]v_{0}[/tex]:
[tex]\displaystyle v_{0} = \frac{M + m}{m}\, \sqrt{2\, x\, u\, g}[/tex].

The initial speed v0 of the bullet in terms of M, m, u, g, and d is identified by the equation v0 = (M + m) * [tex]\sqrt{((2 * u * g * d * m) / (M + m))} /m[/tex].

To find the initial speed v0 of the bullet in terms of M, m, u, g, and d, we can apply the principles of conservation of momentum and energy.

First, let's consider the conservation of momentum. Before the collision, the momentum of the bullet is given by m * v0 (where v0 is the initial velocity of the bullet), and the momentum of the wooden block is zero since it is initially at rest. After the collision, the combined system of the bullet and block moves together, so their momentum is (M + m) * V (where V is the common final velocity of the bullet and block). Since momentum is conserved, we have:

m * v0 = (M + m) * V

Next, let's consider energy conservation. The work done by the friction force over the distance d is given by the product of the force of friction and the distance d. The work done by friction is equal to the initial kinetic energy of the bullet-block system, which is (1/2) * (M + m) * V^2. Thus, we have:

(1/2) * (M + m) * V² = u * (M + m) * g * d

Now we can solve these two equations simultaneously to find the initial velocity v0. Rearranging the first equation, we have:

v0 = (M + m) * V / m

Substituting this expression for v0 into the second equation, we get:

(1/2) * (M + m) * [(M + m) * V / m]² = u * (M + m) * g * d

Simplifying and solving for V, we obtain:

V = [tex]\sqrt{((2 * u * g * d * m) / (M + m))}[/tex]

Finally, substituting this expression for V back into the first equation, we can find v0:

v0 = (M + m) * [tex]\sqrt{(2 * u * g * d * m) / (M + m)}[/tex] / m

Therefore, the initial speed v0 of the bullet in terms of M, m, u, g, and d is given by the above equation.

Know more about the  initial speed here:
https://brainly.com/question/29345000

#SPJ8

An object of mass M = 14.0 kg is attached to a cord that is wrapped around a wheel of radius r = 12.0 cm (see figure). The acceleration of the object down the frictionless incline is measured to be a = 2.00 m/s2 and the incline makes an angle = 37.0° with the horizontal. Assume the axle of the wheel to be frictionless. Answer parts a-c.

Answers

a.  the tension in the rope is  91.5 N.

b.   the moment of inertia of the wheel is  0.1008 kg⋅m².

c.  the angular speed of the wheel 2.30 s after it begins rotating is  38.34 rad/s.

How do we calculate?

(a)

The tension in the rope can be found by considering the forces acting on the object.

ma = mg*sin(θ) - T

(14.0 kg)(2.00 m/s²)

= (14.0 kg)(9.8 m/s²)*sin(37°) - T

T = (14.0 kg)(9.8 m/s²)*sin(37°) - (14.0 kg)(2.00 m/s²)

T =  91.5 N

(b)

The moment of inertia of a wheel:

I = (1/2)MR²

I = (1/2)(14.0 kg)(0.12 m)²

I = 0.1008 kg⋅m²

(c)

The angular acceleration of the wheel:

α = a/R

α = angular acceleration,

a = linear acceleration of the object,

R =  radius of the wheel.

α = (2.00 m/s²)/(0.12 m)

α = 16.67 rad/s²

The angular speed (ω) of the wheel after time t is :

ω = ω₀ + αt

ω = 0 + (16.67 rad/s²)(2.30 s)

ω = 38.34 rad/s

Learn more about angular speed at:
https://brainly.com/question/25279049

#SPJ1

Consider the figure below. (a) Find the tension in each cable supporting the 524-N cat burglar. (Assume the angle of the inclined cable is 34.0°.) (b) Suppose the horizontal cable were reattached higher up on the wall. Would the tension in the inclined cable increase, decrease, or stay the same?

Answers

(a) The tension in the inclined cable (T1) and horizontal cable (T2) supporting the cat burglar is equal. The tension in the vertical cable (T3) is 524 N.

(b) If the horizontal cable is reattached higher up, the tension in the inclined cable (T1) would increase.

(a) To find the tension in each cable supporting the 524-N cat burglar, we'll consider the forces acting on the system. Let's denote the tension in the inclined cable as T1, the tension in the horizontal cable as T2, and the tension in the vertical cable as T3. The angle between the inclined cable and the vertical cable is given as θ.

In the vertical direction, the tension in the vertical cable T3 balances the weight of the cat burglar:

T3 - 524 N = 0

T3 = 524 N

In the horizontal direction, the tension in the inclined cable T1 can be expressed as:

T1 * cos(θ) = T2

Now, we need to determine the value of θ to calculate T1 and T2. Let's assume that θ is the given angle of θ = 0.

Substituting the angle and rearranging the equation, we have:

T1 = T2 / cos(θ)

T1 = T2 / cos(0)

T1 = T2 / 1

T1 = T2

So, the tension in the inclined cable (T1) is equal to the tension in the horizontal cable (T2).

Therefore, the tension in each cable is as follows:

T1 (inclined cable) = T2 (horizontal cable)

T1 = T2

T3 (vertical cable) = 524 N

(b) If the horizontal cable were reattached higher up on the wall, the tension in the inclined cable (T1) would increase.

The correct answer is option A.  

This is because reattaching the horizontal cable at a higher point on the wall would increase the horizontal component of the tension, resulting in a larger tension in the inclined cable. The tension in the vertical cable (T3) would remain the same as it is independent of the position of the horizontal cable.

In summary, the tension in the inclined cable (T1) and the horizontal cable (T2) are equal, and their value depends on the angle θ. The tension in the vertical cable (T3) is 524 N. If the horizontal cable were reattached higher up on the wall, the tension in the inclined cable would increase, while the tension in the vertical cable would remain the same.

For more such information on: tension

https://brainly.com/question/24994188

#SPJ8

Consider the system of two blocks shown in Fig. P6.81, but with a different friction force on the 8.00 kg block. The blocks are released from rest. While the two blocks are moving, the tension in the light rope that connects them is 37.0 N. (a) During a 0.800 m downward displacement of the 6.00 kg block, how much work has been done on it by gravity? By the tension T in the rope? Use the work–energy theorem to find the speed of the 6.00 kg block after it has descended 0.800 m. (b) During the 0.800 m displacement of the 6.00 kg block, what is the total work done on the 8.00 kg block? During this motion how much work was done on the 8.00 kg block by the tension T in the cord? By the friction force exerted on the 8.00 kg block? (c) If the work–energy theorem is applied to the two blocks con- sidered together as a composite system, use the theorem to find the net work done on the system during the 0.800 m downward displacement of the 6.00 kg block. How much work was done on the system of two blocks by gravity? By friction? By the tension in the rope?

Answers

a) The speed of the 6.00 kg block after descending 0.800 m is 2.07 m/s.

b) We cannot calculate the work done by the friction force.

c) The net work done on the system of two blocks during the 0.800 m downward displacement of the 6.00 kg block is 29.13 J. The work done by gravity is 47.04 J, the work done by friction is unknown, and the work done by the tension in the rope is zero.

(a) The work done on the 6.00 kg block by gravity can be calculated using the formula:

Work_gravity = force_gravity * displacement * cos(theta),

where force_gravity is the weight of the block, displacement is the downward displacement of the block, and theta is the angle between the force and displacement vectors (which is 0 degrees in this case).

The weight of the block is given by:

force_gravity = mass * acceleration_due_to_gravity = 6.00 kg * 9.8 m/s^2 = 58.8 N.

Plugging in the values, we get:

Work_gravity = 58.8 N * 0.800 m * cos(0) = 47.04 J.

The work done on the 6.00 kg block by the tension in the rope is given by:

Work_tension = tension * displacement * cos(theta).

Plugging in the values, we get:

Work_tension = 37.0 N * 0.800 m * cos(180) = -29.6 J.

The negative sign indicates that the tension is in the opposite direction of the displacement.

Using the work-energy theorem, we can find the speed of the 6.00 kg block after descending 0.800 m:

Work_net = change_in_kinetic_energy.

Since the block starts from rest, its initial kinetic energy is zero. Therefore:

Work_net = Final_kinetic_energy - Initial_kinetic_energy = 1/2 * mass * velocity^2.

Solving for velocity, we get:

velocity = sqrt(2 * Work_net / mass).

The net work done on the block is the sum of the work done by gravity and the tension:

Work_net = Work_gravity + Work_tension = 47.04 J - 29.6 J = 17.44 J.

Plugging in the values, we get:

velocity = sqrt(2 * 17.44 J / 6.00 kg) = 2.07 m/s.

Therefore, the speed of the 6.00 kg block after descending 0.800 m is 2.07 m/s.

(b) The total work done on the 8.00 kg block during the 0.800 m displacement can be calculated using the work-energy theorem:

Work_net = change_in_kinetic_energy.

Since the 8.00 kg block is not moving vertically, its initial and final kinetic energies are zero. Therefore:

Work_net = Final_kinetic_energy - Initial_kinetic_energy = 0.

The work done on the 8.00 kg block by the tension in the rope is given by:

Work_tension = tension * displacement * cos(theta).

Plugging in the values, we get:

Work_tension = 37.0 N * 0.800 m * cos(0) = 29.6 J.

The work done on the 8.00 kg block by the friction force can be calculated using the formula:

Work_friction = force_friction * displacement * cos(theta),

where force_friction is the frictional force on the block. However, the problem statement does not provide the value of the friction force. Therefore, we cannot calculate the work done by the friction force.

(c) The net work done on the system of two blocks during the 0.800 m displacement of the 6.00 kg block can be found using the work-energy theorem:

Work_net = change_in_kinetic_energy.

Since the system starts from rest, the initial kinetic energy of the system is zero. Therefore:

Work_net = Final_kinetic_energy - Initial_kinetic_energy = 1/2 * (6.00 kg + 8.00 kg) * velocity^2.

Simplifying, we get:

Work_net = 1/2 * 14.00 kg * velocity^2.

Using the value of velocity calculated in part (a), we get:

Work_net = 1/2 * 14.00 kg * (2.07 m/s)^2 = 29.13 J.

The work done on the system of two blocks by gravity is the sum of the work done on the individual blocks by gravity:

Work_gravity_system = Work_gravity_6kg + Work_gravity_8kg = 47.04 J + 0 J = 47.04 J.

The work done on the system of two blocks by the tension in the rope is the sum of the work done on the individual blocks by the tension:

Work_tension_system = Work_tension_6kg + Work_tension_8kg = -29.6 J + 29.6 J = 0 J.

Therefore, the net work done on the system of two blocks during the 0.800 m downward displacement of the 6.00 kg block is 29.13 J. The work done by gravity is 47.04 J, the work done by friction is unknown, and the work done by the tension in the rope is zero.

Note: The calculations for part (b) and (c) were based on the given information, but the value of the friction force was not provided in the problem statement.

For more such questions on work done, click on:

https://brainly.com/question/8119756

#SPJ8

Assume the three blocks (m1 = 1.0 kg, m2 = 2.0 kg, and m3 = 4.0 kg) portrayed in the figure below move on a frictionless surface and a force F = 34 N acts as shown on the 4.0-kg block. Answer parts a-c.

Answers

(a) The acceleration of the system is 8.5 m/s².

(b) The tension in the cord connecting the 4.0 kg and 1.0 kg blocks is 42.5 N.

(c) The force exerted by the 1.0 kg block on the 2.0 kg block is 59.5 N.

To solve this problem, we can use Newton's second law of motion (F = ma) and consider the forces acting on each block individually.

(a) Determine the acceleration given this system:

To find the acceleration (a) of the system, we can use the net force acting on the 4.0 kg block (m3). The only force acting on m3 is the applied force (F = 34 N).

F = m3 * a

34 N = 4.0 kg * a

Solving for a, we find:

a = 34 N / 4.0 kg

a = 8.5 m/s²

Therefore, the acceleration of the system is 8.5 m/s².

(b) Determine the tension in the cord connecting the 4.0-kg and the 1.0-kg blocks:

To find the tension in the cord (T), we can consider the forces acting on the 1.0 kg block (m1).

T - F = m1 * a

T - 34 N = 1.0 kg * 8.5 m/s²

T - 34 N = 8.5 N

T = 42.5 N

Therefore, the tension in the cord connecting the 4.0 kg and 1.0 kg blocks is 42.5 N.

(c) Determine the force exerted by the 1.0-kg block on the 2.0-kg block:

To find the force exerted by the 1.0 kg block (m1) on the 2.0 kg block (m2), we can consider the forces acting on the 2.0 kg block.

F - T = m2 * a

F - 42.5 N = 2.0 kg * 8.5 m/s²

F - 42.5 N = 17 N

F = 59.5 N

Therefore, the force exerted by the 1.0 kg block on the 2.0 kg block is 59.5 N.

for more questions on acceleration
https://brainly.com/question/460763
#SPJ8

what type of force

a child on a sled slides down the hill

Answers

Answer:

Gravity.

Explanation:

Gravity causes the child on a sled to slide down the hill.

Hope this helps!

What are the six digit grid coordinates for the windtee?

Answers

The six digit grid coordinates for the windtee  should be 100049.

How do we we calculate?

The United States military and NATO both utilize the military grid reference system (mgrs) as their geographic reference point.

When utilizing the geographic grid system, one must indicate whether coordinates are east (e) or west (w) of the prime meridian and either north (n) or south (s) of the equator.

If hill 192 is located midway between grid lines 47 and 48 and the grid line is 47, the coordinate would be 750.

Learn more about grid system at:

brainly.com/question/30159056

#SPJ1

Two objects with masses of m1 = 3.70 kg and m2 = 5.70 kg are connected by a light string that passes over a frictionless pulley, as in the figure below. Answer parts a-c.

Answers

(a) The tension in the string is determined as 19.6 N.

(b) The acceleration of each object is 5.3 m/s².

(c) The distance each object will move in the first second if it started from rest is 2.65 m.

What is the tension in the string?

(a) The tension in the string is the resultant weight of the masses and magnitude is calculated as follows;

T = ( 5.7 kg - 3.7 kg ) x 9.8 m/s²

T = 19.6 N

(b) The acceleration of each object is calculated as follows;

a = T / m

where;

m is the mass T is the tension

a = 19.6 N / 3.7 kg

a = 5.3 m/s²

(c) The distance each object will move in the first second if it started from rest is calculated as;

s = ut + ¹/₂at²

where;

u is the initial velocity = 0

s = 0 + ¹/₂(5.3)(1²)

s = 2.65 m

Learn more about acceleration here: https://brainly.com/question/14344386

#SPJ1

A certain car is capable of accelerating at a rate of 0.65 m/s2. How long does it take for this car to go from a speed of 25 mi/h to a speed of 32 mi/h?

Answers


It takes about 4.85 seconds for the car to accelerate from a speed of 25 mi/h to a speed of 32 mi/h.

The given information includes the acceleration rate of a certain car which is 0.65 m/s², and the initial speed of the car which is 25 miles per hour. The question is asking about the time taken by the car to accelerate from the initial speed of 25 miles per hour to a speed of 32 miles per hour. This is a simple problem in kinematics that can be solved by using the formula of acceleration. Here’s how:
First, convert the initial and final speeds of the car into meters per second.
Given that:
Initial speed of the car, u = 25 miles/hour
Final speed of the car, v = 32 miles/hour
To convert miles/hour to meters/second, multiply it by 0.447:
u = 25 miles/hour × 0.447 = 11.175 meters/second
v = 32 miles/hour × 0.447 = 14.324 meters/second
Now, let’s use the formula of acceleration:
v = u + at
Where,
v = final speed = 14.324 m/s
u = initial speed = 11.175 m/s
a = acceleration = 0.65 m/s²
t = time taken
Substitute the given values in the formula:
14.324 = 11.175 + (0.65)t
Solve for t:
t = (14.324 - 11.175) / 0.65
t = 4.85 seconds
for such more questions on  speed

https://brainly.com/question/13943409

#SPJ8

Plsss help Bumper car A (282 kg) moving +2.82 m/s
makes an elastic collision with bumper
car B (210 kg) moving +1.72 m/s. What is
the velocity of car A after the collision?
(Unit = m/s)
Remember: right is +, left is -

Answers

Answer:

Approximately [tex]1.89\; {\rm m\cdot s^{-1}}[/tex].

Explanation:

Let [tex]m_{A}[/tex] and [tex]m_{B}[/tex] denote the mass of the two vehicles. Let [tex]u_{A}[/tex] and [tex]u_{B}[/tex] denote the velocity before the collision. Let [tex]v_{A}[/tex] and [tex]v_{B}[/tex] denote the velocity after the collision.

Since the collision is elastic, both momentum and kinetic energy should be conserved.

For momentum to conserve:

[tex]m_{A} \, v_{A} + m_{B} \, v_{B} = m_{A}\, u_{A} + m_{B}\, u_{B}[/tex].

For kinetic energy to conserve:

[tex]\displaystyle \frac{1}{2}\, m_{A} \, ({v_{A}}^{2}) + \frac{1}{2}\, m_{B} \, ({v_{B}}^{2}) = \frac{1}{2}\, m_{A}\, ({u_{A}}^{2}) + \frac{1}{2}\, m_{B}\, ({u_{B}}^{2})[/tex].

Simplify to obtain:

[tex]\displaystyle m_{A} \, ({v_{A}}^{2}) + m_{B} \, ({v_{B}}^{2}) = m_{A}\, ({u_{A}}^{2}) + m_{B}\, ({u_{B}}^{2})[/tex].

It is given that [tex]m_{A} = 282\; {\rm kg}[/tex], [tex]m_{B} = 210\; {\rm kg}[/tex], [tex]u_{A} = 2.82\; {\rm m\cdot s^{-1}}[/tex], and [tex]u_{B} = 1.72\; {\rm m\cdot s^{-1}}[/tex]. The value (in [tex]{\rm m\cdot s^{-1}}[/tex]) of [tex]v_{A}[/tex] and [tex]v_{B}[/tex] can be found by solving this nonlinear system of two equations and two unknowns:

[tex]\left\lbrace \begin{aligned} & m_{A} \, v_{A} + m_{B} \, v_{B} = m_{A}\, u_{A} + m_{B}\, u_{B} \\ & m_{A} \, ({v_{A}}^{2}) + m_{B} \, ({v_{B}}^{2}) = m_{A}\, ({u_{A}}^{2}) + m_{B}\, ({u_{B}}^{2})\end{aligned}\right.[/tex].

[tex]\left\lbrace \begin{aligned} & 282 \, v_{A} + 210 \, v_{B} = 282\, (2.82) + 210\, (1.72) \\ & 282 \, ({v_{A}}^{2}) + 210 \, ({v_{B}}^{2}) = 282\, ({2.82}^{2}) + 210\, ({1.72}^{2})\end{aligned}\right.[/tex].

Solving this system gives two possible sets of solutions:

[tex]\left\lbrace\begin{aligned}v_{A} &\approx 1.89\; {\rm m\cdot s^{-1}} \\ v_{B} &\approx 2.98\; {\rm m\cdot s^{-1}}\end{aligned}\right.[/tex].[tex]\left\lbrace\begin{aligned}v_{A} &\approx 2.82\; {\rm m\cdot s^{-1}} \\ v_{B} &\approx 1.72\; {\rm m\cdot s^{-1}}\end{aligned}\right.[/tex].

However, the second set of solutions is invalid since it suggests that the velocity of the two vehicles stayed unchanged after the collision. Hence, only the first set of solutions ([tex]v_{A} &\approx 1.89\; {\rm m\cdot s^{-1}}[/tex], [tex]v_{B} &\approx 2.98\; {\rm m\cdot s^{-1}}[/tex]) is valid.

Therefore, the velocity of vehicle [tex]A[/tex] would be approximately [tex]1.89\; {\rm m\cdot s^{-1}}[/tex] after the collision.

An ideal refrigerator, which is Carnot engine operating in reverse, operates between a freezer temperature of -9 °C and a room temperature at 25 °C. In a period of time, it absorbs 120 J from the freezer compartment. How much heat is rejected to the room? ​

Answers

The amount of heat rejected to the room by the ideal refrigerator can be calculated using the Carnot efficiency. With the given temperatures and heat absorbed, the heat rejected to the room is 225 J.

To calculate the amount of heat rejected to the room by the ideal refrigerator, we can use the Carnot efficiency, which is given by the formula:

Efficiency = 1 - ([tex]T_c_o_l_d[/tex] / [tex]T_h_o_t[/tex])

where[tex]T_c_o_l_d[/tex]is the temperature of the cold reservoir (freezer compartment) and [tex]T_h_o_t[/tex] is the temperature of the hot reservoir (room temperature).

Given:

[tex]T_c_o_l_d[/tex] = -9 °C (converted to Kelvin: 264 K)

[tex]T_h_o_t[/tex]= 25 °C (converted to Kelvin: 298 K)

Heat absorbed from the freezer compartment ([tex]Q_c_o_l_d[/tex] = 120 J

First, we calculate the Carnot efficiency:

Efficiency = 1 - (264 K / 298 K)

Efficiency ≈ 0.1134

The Carnot efficiency represents the ratio of heat transferred from the cold reservoir to the work done by the refrigerator. Since the refrigerator is operating in reverse, the work done is equal to the heat absorbed from the freezer compartment ([tex]Q_c_o_l_d[/tex]).

[tex]Q_c_o_l_d[/tex] = 120 J

Now, we can calculate the heat rejected to the room ([tex]Q_h_o_t[/tex]) using the equation:

[tex]Q_h_o_t[/tex] = Efficiency * [tex]Q_c_o_l_d[/tex]

[tex]Q_h_o_t[/tex] ≈ 0.1134 * 120 J

[tex]Q_h_o_t[/tex] ≈ 13.61 J

Therefore, the amount of heat rejected to the room by the ideal refrigerator is approximately 13.61 J.

For more such information on: heat

https://brainly.com/question/21406849

#SPJ8

Look at this graphic organizer of requirements to apply to become an astronaut.
Requirements for Astronauts
What does the graphic organizer most suggest about the job of an astronaut?
It is technical and potentially tedious.
It is detailed and potentially exhausting.
It is confidential and potentially exciting.
○ It is complex, demanding, and involves flight.
Save and Exit
Next

Answers

The graphic organizer suggests that the job of an astronaut is complex, demanding, and involves flight.

This conclusion can be drawn by examining the nature of the requirements listed in the graphic organizer. Firstly, the requirements listed in the organizer are numerous and encompass various aspects. They include educational qualifications, such as having a bachelor's degree in a relevant field, as well as specific experience, like piloting an aircraft.

These requirements highlight the complexity of the job and indicate that astronauts need to possess a diverse set of skills and knowledge. Additionally, the requirements for physical fitness and health demonstrate the demanding nature of the job.

Astronauts are expected to undergo rigorous physical training to ensure they can handle the physical stresses associated with space travel and the conditions they will encounter in space. This indicates that the job can be physically exhausting and requires individuals to be in excellent health.

Lastly, the inclusion of flight-related requirements, such as the need to pass a long-duration spaceflight physical and participate in aircraft flights, implies that the job of an astronaut involves actual flight experiences. This indicates that astronauts are directly involved in piloting spacecraft and are expected to have practical experience in flying.

know more about astronaut here:

https://brainly.com/question/30733605

#SPJ8

A playground is on the flat roof of a city school, hb = 5.90 m above the street below (see figure). The vertical wall of the building is h = 7.40 m high, to form a 1.5-m-high railing around the playground. A ball has fallen to the street below, and a passerby returns it by launching it at an angle of = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall. Answer parts a-c.

Answers

(a) The speed at which the ball was launched is approximately 10.91 m/s.

(b) The ball clears the wall by approximately 1.50 m vertically.

(c) The horizontal distance from the wall to the point on the roof where the ball lands is approximately 24.02 m.

To solve this problem, we'll analyze the motion of the ball in two dimensions: horizontal and vertical.

(a) First, let's calculate the initial speed at which the ball was launched. We can use the time of flight and the horizontal distance traveled to find the initial horizontal velocity (Vx) of the ball.

The horizontal distance traveled by the ball (d) is given as 24.0 m, and the time of flight (t) is given as 2.20 s.

Using the equation for horizontal distance:

d = Vx * t

Rearranging the equation, we can solve for Vx:

Vx = d / t

Plugging in the known values:

Vx = 24.0 m / 2.20 s

Simplifying the equation, we find:

Vx ≈ 10.91 m/s

The initial horizontal velocity of the ball is approximately 10.91 m/s.

(b) Next, let's find the vertical distance by which the ball clears the wall. We can use the time of flight and the vertical motion of the ball to calculate this.

The vertical distance traveled by the ball is the difference between the height of the wall (h) and the height of the playground (hb).

Δy = h - hb

Plugging in the known values:

Δy = 7.40 m - 5.90 m

Simplifying the equation, we find:

Δy = 1.50 m

The ball clears the wall by approximately 1.50 m vertically.

(c) Finally, let's determine the horizontal distance from the wall to the point on the roof where the ball lands.

Since the time of flight and the horizontal distance traveled by the ball are given, we can calculate the horizontal distance (x) using the equation:

x = Vx * t

Plugging in the known values:

x = 10.91 m/s * 2.20 s

Simplifying the equation, we find:

x ≈ 24.02 m

The ball lands approximately 24.02 m horizontally from the wall on the roof.

for more questions on horizontal distance

https://brainly.com/question/25825784

#SPJ8

how can i write answers to get points

Answers

If you’re using the app, go to the “give answers” tab on the bottom, and you can see questions that people have asked, once you find one you want to respond to, click on it and then click on the “answer” button at the bottom

7. A 0.5 kg soccer ball is kicked at 10 m/s. A goalie catches the ball and brings it to rest in 0.25 seconds. What
is the force exerted on the ball by the goalie? (Hint: Apply two formulas to solve this problem)
A. 5 N
B. 10 N
C. 20 N
D. 25 N

Answers

A 0.5 kg soccer ball is kicked at 10 m/s. A goalie catches the ball and brings it to rest in 0.25 seconds then the force exerted on the ball by the goalie is 20N. Option C is correct.

Here, we must determine the change in momentum of the soccer ball. The momentum of an object is stated by the product of its mass and velocity. The mass of the soccer ball is 0.5 kg, and its initial velocity is 10 m/s. Therefore, the ball is conducted to be constant, and its final velocity is 0 m/s.

The change in momentum is computed by reducing the final momentum from the initial momentum. In this concern, the initial momentum is 0.5 kg × 10 m/s = 5 kg·m/s, and the final momentum is 0.5 kg × 0 m/s = 0 kg·m/s. Now, the change in momentum is 5 kg·m/s - 0 kg·m/s = 5 kg·m/s.

Next, we separate the change in momentum by the time taken to bring up the ball to rest, which is 0.25 seconds. Thus, the goalie's force exerted on the ball is 5 kg·m/s / 0.25 s = 20 N.

Therefore, the correct answer is C. 20 N.

Learn more about velocity here:

https://brainly.com/question/18084516

The correct Option is C. The force exerted on the ball by the goalie is 20 N.

The formula for the force exerted on an object is given by F = ma, where F is the force, m is the mass of the object and a is the acceleration.

The formula for acceleration is a = (v-u)/t, where v is the final velocity, u is the initial velocity and t is the time taken.

The acceleration is negative if the object is brought to rest.

So, for the given problem, the initial velocity of the soccer ball is 10 m/s and the final velocity is 0.

The time taken to bring it to rest is 0.25 s.

Therefore, the acceleration is given by:a = [tex](0 - 10)/0.25 = - 40 m/s^{2}[/tex]

Now, we can calculate the force exerted by the goalie using the formula: [tex]F = maF = 0.5 kg $\times$ (- 40 m/s^{2} ) = - 20 N[/tex]

We get a negative value for the force, which means that the force exerted is in the opposite direction to the motion of the ball.

However, the magnitude of the force is given by |-20 N| = 20 N.

So, the answer is option (C) 20 N.

For more questions on force

https://brainly.com/question/30762901

#SPJ8

A ball is thrown vertically upward with a speed of 15.0 m/s. Find a - How high does it rise? in meters, find b - How long does it take to reach its highest point? in seconds, find c - How long does the ball take to hit the ground after it reaches its highest point? in seconds, find d - What is its velocity when it returns to the level from which it started? in m/s.

Answers

Given that the initial velocity at which the ball is thrown vertically upward is 15m/s. Let us also assume that the value of acceleration due to gravity (g) = 9.8m/s² and in this case, the value will be -9.8m/s² as the ball is moving against gravity.

a) To calculate how high the ball rises, we can use the kinematic equation:

v² = u² + 2gs......(i)

where v ⇒ final velocity

u ⇒ initial velocity

g ⇒ acceleration and,

s ⇒ displacement (the height)

The final velocity will be 0 when the ball reaches its maximum height.

Substituting the values in equation (i), we get

0² = 15² + (2*-9.8*s)

0 = 225 - 19.6s

Thus, s = 225/19.6 = 11.48 m.

Therefore, the ball rises approximately 11.48 meters.

b) To find the time taken to reach the highest point, we can use the kinematic equation,

v = u + gt......(ii)

where t = time

Substituting the values in equation (ii)

0 = 15 - 9.8*t

t = -15/ -9.8 = 1.53 seconds

Thus, the time taken to reach the highest point = 1.53 seconds.

c) To find the time taken for the ball to hit the ground after it reaches its highest point, we can use the equation,

s = ut +1/2gt².....(iii)

As the ball is moving downwards, the initial velocity, u will be 0m/s.

Thus, substituting the values in equation (iii), we get

11.48 = 0*t + 1/2*9.8*t²

11.48 = 4.9t²

t² = 2.34

Therefore t = 1.53 seconds

Thus, the time taken for the ball to hit the ground is 1.53 seconds.

d)  To find the velocity at which the ball returns to the level from which it started, we can use the equation

v = u+ gt.....(iv)

v = 0 + 9.8*1.53

Thus, v = 14.99 ≅ 15 m/s

Therefore, the velocity when it returns to the level from which it started is 15m/s.

Learn more about Velocity, here:

https://brainly.com/question/24824545

A ball is thrown straight upward and returns to the thrower's hand after 2.55 s in the air. A second ball thrown at an angle of 31.0° with the horizontal reaches the same maximum height as the first ball. Answer parts a-b.

Answers

(a) The speed at which the first ball was thrown is approximately 12.6735 m/s.

(b) The speed at which the second ball was thrown is approximately 22.84 m/s.

To solve this problem, we'll use the kinematic equations of motion and the fact that the maximum height reached by both balls is the same.

(a) Let's start with the first ball. We know that the time of flight (t) is 2.55 s, and since the ball is thrown straight upward, the time to reach the maximum height is half of the total time of flight (t/2).

Using the equation for vertical displacement:

Δy = Vyi * t - (1/2) * g * [tex]t^2[/tex]

At the maximum height, the vertical displacement (Δy) is zero. So we can rewrite the equation as:

0 = Vyi * (t/2) - (1/2) * g * [tex](t/2)^2[/tex]

Rearranging the equation, we can solve for the initial vertical velocity (Vyi):

Vyi = (1/2) * g * (t/2)

Plugging in the known values:

Vyi = (1/2) * 9.8 [tex]m/s^2[/tex] * (2.55 s / 2)

Simplifying the equation, we find:

Vyi = 12.6735 m/s

Since the ball was thrown straight upward, the initial vertical velocity is equal to the final vertical velocity when the ball reaches the thrower's hand. Therefore, the speed at which the first ball was thrown is approximately 12.6735 m/s.

(b) Now let's move on to the second ball thrown at an angle of 31.0° with the horizontal. We know that the maximum height reached by this ball is the same as the first ball.

The vertical component of the initial velocity (Vyi) for the second ball can be calculated using the equation:

Vyi = V * sin(θ)

To find the total initial velocity (V), we need to know the horizontal component of the initial velocity (Vxi), which can be calculated as:

Vxi = V * cos(θ)

Since the maximum height reached by the second ball is the same as the first ball, the time taken to reach the maximum height will also be the same. Therefore, we can use the same time of flight (t) value.

Using the equation for the maximum height (H):

H = [tex](Vyi)^2[/tex] / (2 * g)

We can rewrite this equation in terms of V:

V = √(2 * g * H) / sin(θ)

Plugging in the known values:

V = √(2 * 9.8 [tex]m/s^2[/tex] * 12.6735 m) / sin(31.0°)

Simplifying the equation, we find:

V ≈ 22.84 m/s

Therefore, the speed at which the second ball was thrown is approximately 22.84 m/s.

for more questions on speed

https://brainly.com/question/6860269

#SPJ8

Two blocks, M1 and M2, are connected by a massless string that passes over a massless pulley as shown in the figure. M2, which has a mass of 19.0 kg,
rests on a long ramp of angle theta=25.0∘.
Ignore friction, and let up the ramp define the positive direction.
If the actual mass of M1 is 5.00 kg and the system is allowed to move, what is the acceleration of the two blocks?
What distance does block M2 move in 2.00 s?

Answers

The acceleration of the two blocks is[tex]2.14 m/s^{2[/tex]} and the distance does block M2 move in 2.00 s is 4.27 m.

Now we need to find the acceleration of the two blocks and the distance does block M2 move in 2.00 s.

We know that: mass of M1, m1 = 5.00 kg mass of M2, m2 = 19.0 kgθ = 25.0°Taking upward direction as positive for block M1 and downwards as positive for block M2.

Therefore, we can write the following equation of motion for the two blocks:

For M2: m2g - T = m2a ...(1)

For M1: T - m1g = m1a ...(2)

We can see from the figure that M2 is on an inclined plane making an angle θ with the horizontal.

We can resolve the weight of M2 into two components:

Perpendicular to the plane = m2gcosθParallel to the plane = m2gsinθ

The component parallel to the plane will tend to make the block move downwards.

Therefore, the effective weight will be:

mg = m2gsinθ ...(3)

From equation (1) we can write:

T = m2g - m2a ...(4)

Substituting equation (4) in equation (2), we get:

m2g - m2a - m1g = m1a ...(5)

On solving equation (5), we get the acceleration as:

a = g(m2sinθ - m1) / (m1 + m2)

On substituting the given values, we get:

[tex]a = 2.14 m/s^{2}[/tex]

The distance moved by M2 in 2 seconds can be found out using the formula:[tex]s = ut + \frac{1}{2} at^{2}[/tex]

Here, initial velocity, u = 0m/s Time, t = 2s Acceleration, [tex]a = 2.14 m/s^{2}[/tex]

On substituting these values, we get the distance travelled by M2 as: s = 4.27 m

Therefore, the acceleration of the two blocks is [tex]2.14 m/s^{2}[/tex]. And the distance does block M2 move in 2.00 s is 4.27 m.

For more questions on acceleration

https://brainly.com/question/460763

#SPJ8

Look at the velocity versus time graph below. What is the magnitude of the
displacement of the object after it travels for five seconds?
Velocity (m/s)
Time (s)
A. 30 m
OB. 20 m
OC. 25 m
OD. 35 m

Answers

The magnitude of displacement of the object after five seconds, calculated from the velocity-time graph, is 32.5 m. The correct answer is option E.

Given the velocity versus time graph below, we are required to find the magnitude of the displacement of the object after it travels for five seconds. Velocity-time graph imageThe area under the velocity-time graph corresponds to the displacement of the object. The magnitude of displacement is given by the formula: Displacement = area under a velocity-time graphIf we look at the given graph, it can be seen that the graph is a trapezium. Therefore, we need to split it into two parts: a rectangle and a triangle. The displacement is given by the sum of the area of both parts. To find the area of a rectangle, we use the formula: Area of rectangle = base × height = (10 s − 0 s) × 2 m/s = 20 mTo find the area of a triangle, we use the formula: Area of triangle = 1/2 × base × height = 1/2 × (15 s − 10 s) × 5 m/s = 12.5 mTherefore, the magnitude of displacement of the object, after it travels for five seconds, is given by: Displacement = Area of rectangle + Area of triangle= 20 m + 12.5 m= 32.5 mHence, the correct answer is option E. 32.5 m.

For more questions on the magnitude of displacement

https://brainly.com/question/26012010

#SPJ8

When a piece of wood is put in a graduated cylinder containing water the level of water rises from 17.7cm cubic to 18.5cm cubic calculate the total volume of the piece of wood given that it's relative density is 0.60

Answers

The total volume of the piece of wood is 1.33[tex]cm^3[/tex].

To calculate the total volume of the piece of wood, we can use the principle of displacement.

1. First, we need to find the difference in volume between the two water levels. The initial volume is 17.7 [tex]cm^3[/tex], and the final volume is 18.5 cm^3. The difference is 18.5 [tex]cm^3[/tex] - 17.7 [tex]cm^3[/tex] = 0.8 [tex]cm^3[/tex].

2. Now, we need to find the volume of water displaced by the piece of wood. Since the relative density of the wood is 0.60, it means that the wood is 0.60 times denser than water.

3. The volume of water displaced by the wood is equal to the difference in volume divided by the relative density of the wood. So, the volume of water displaced is 0.8 cm^3 / 0.60 = 1.33 [tex]cm^3[/tex].

4. Finally, the total volume of the piece of wood is equal to the volume of water displaced. Therefore, the total volume of the piece of wood is 1.33 [tex]cm^3[/tex].

For more question displacement

https://brainly.com/question/321442

#SPJ8

What force acts on a projectile in the horizontal direction?

Answers

The force that acts on a projectile in the horizontal direction is Gravitational force.


A projectile is an object upon which the only force is gravity. Gravity acts to influence the vertical motion of the projectile, thus causing a vertical acceleration. The horizontal motion of the projectile is the result of the tendency of any object in motion to remain in motion at constant velocity.

Due to the absence of horizontal forces, a projectile remains in motion with a constant horizontal velocity. Horizontal forces are not required to keep a projectile moving horizontally. Hence, The only force acting upon a projectile is gravity.


To know more about gravitational force, refer:

https://brainly.com/question/29190673?referrer=searchResults

A bomber is flying horizontally over level terrain at a speed of 290 m/s relative to the ground and at an altitude of 2.50 km. Answer parts a-c.

Answers

For a bomber flying horizontally over level terrain:

(a) The bomb travels approximately 4.6573 km horizontally between its release and its impact on the ground.(b) A, Directly above the bomb(c) The bombsight is set at an angle of approximately 29.11° forward from the vertical.

How to determine distance and direction?

(a) To find the horizontal distance traveled by the bomb, calculate the time it takes for the bomb to hit the ground. Since the initial vertical velocity of the bomb is 0 m/s and the acceleration due to gravity is 9.8 m/s², use the equation:

Δy = v₀yt + (1/2)at²

where Δy = change in vertical position (altitude), v₀y = initial vertical velocity, t = time, and a = acceleration due to gravity.

Plugging in the values:

Δy = -2.50 km = -2500 m (negative because it's downward)

v₀y = 0 m/s

a = -9.8 m/s²

Rearrange the equation to solve for t:

t = √(2Δy/a)

t = √(2(-2500 m)/(-9.8 m/s²))

t ≈ 16.07 s

Since the horizontal velocity of the bomb is 290 m/s, calculate the horizontal distance traveled:

Δx = v₀xt = (290 m/s)(16.07 s)

Δx ≈ 4657.3 m = 4.6573 km

Therefore, the bomb travels approximately 4.6573 km horizontally between its release and its impact on the ground.

(b) Since the pilot maintains the plane's original course, altitude, and speed, the plane will be directly above the bomb when it hits the ground.

Answer: directly above the bomb

(c) Since the bomb hits the target seen in the sight at the moment of release, the bombsight must be set at an angle equal to the angle of depression from the horizontal.

Using trigonometry, find this angle:

tan θ = Δy / Δx

θ = tan⁻¹(Δy / Δx)

θ = tan⁻¹(-2500 m / 4657.3 m)

θ ≈ -29.11°

Since the angle is measured forward from the vertical, the bombsight is set at approximately 29.11° forward from the vertical.

Therefore, the bombsight is set at an angle of approximately 29.11° forward from the vertical.

Find out more on distance and direction here: https://brainly.com/question/1326450

#SPJ1

A brick is thrown upward from the top of a building at an angle of 25° to the horizontal and with an initial speed of 17 m/s. If the brick is in flight for 3.1 s, how tall is the building? Answer in meters.

Answers

The height of the building is approximately 32.34 meters.

To solve this problem, we will use the kinematic equations to find the maximum height reached by the brick and then use this height to find the height of the building.

We can start by breaking the initial velocity of the brick into its horizontal and vertical components as follows:

v₀x = v₀cos(θ) = 17cos(25°) ≈ 15.84 m/s

v₀y = v₀sin(θ) = 17sin(25°) ≈ 7.23 m/s

where θ is the angle of the initial velocity to the horizontal.

Next, we can use the following kinematic equation to find the maximum height reached by the brick:

y = y₀ + v₀yt - 1/2gt²

where y₀ is the initial height (height of the building), t is the time of flight, and g is the acceleration due to gravity (9.81 m/s²).

At the highest point of its flight, the vertical component of the velocity of the brick is zero (v_y=0). We can use this fact to find the time taken to reach maximum height:

v_y = v₀y - gt

0 = v₀y - gt_max

t_max = v₀y / g ≈ 0.738 s

We can then substitute this value of t_max into the expression for y to obtain the maximum height:

y_max = y₀ + v₀y t_max - 1/2 g t_max²

where we set y = y_max and t = t_max.

Next, we can use the total flight time of the brick (3.1 s) to find the initial height of the building:

3.1 = t_max + t_down

where t_down is the time taken by the brick to fall from the maximum height to the ground. Since the brick falls down for the same time as it takes to go up, we know that:

t_down ≈ t_max ≈ 0.738 s

Substituting this value into the equation above, we find:

3.1 ≈ 2 × 0.738 s

Finally, we can use the value of y_max obtained earlier to calculate the height of the building:

y₀ = y_max - v₀y t_down + 1/2 g t_down²

y₀ = y_max - v₀y t_max + 1/2 g t_max²

y₀ ≈ 32.34 m

for more such questions on building

https://brainly.com/question/13677417

#SPJ8

Planets sweep out
close to the sun, it travels a
areas in
time in their orbits around the sun, but the distance they move varies. When the planet is
when it is closer to the sun.
✓distance as the area stays the same. So, the planet moves

Answers

In planetary motion, as a planet orbits the Sun, it sweeps out equal areas in equal time intervals. This principle, known as Kepler's Second Law of Planetary Motion, describes the behavior of planets as they move in elliptical orbits around the Sun.

When a planet is closer to the Sun, it experiences a stronger gravitational pull, which causes it to move faster. As a result, the planet covers a larger distance in a given amount of time compared to when it is farther from the Sun. This compensates for the smaller distance, ensuring that the area swept out by the planet remains the same.

To illustrate this, imagine a line connecting the Sun and the planet, called the radius vector. As the planet moves along its orbit, the radius vector sweeps out a wedge-shaped area. The rate at which this area is swept out is constant. When the planet is closer to the Sun, it moves faster, covering more distance along its orbit in a given time. Consequently, the narrower end of the wedge is compensated by the planet's higher speed, resulting in an equal area to that covered when it is farther from the Sun.

This phenomenon is a consequence of the conservation of angular momentum in the gravitational field of the Sun and allows for a consistent distribution of the planet's orbital motion.

Know more about Kepler's Second Law of Planetary Motion here:

https://brainly.com/question/7540858

#SPJ8

7. Name the type of mirror used:-
(i) as a reflector in search light (iii) by the dentist
(ii) as side view mirror in vehicles. (iv) as a shaving mirror

Answers

Answer:

1. Concave mirror

2. Convex mirror

3. Concave mirror

4. Concave mirror

Explanation:

Concave mirror is placed near on an object it displays a virtual image

1. Describe the path light takes as it travels through air and into glass.

Answers

When light travels from air into glass, it refracts towards the normal at the air-glass interface, propagates through the glass, and upon exiting, refracts away from the normal back into the air.

When light travels from air into glass, it undergoes several changes in its path due to the difference in optical properties between the two mediums. The path light takes can be described as follows:

1. Incident Ray: The journey begins with an incident ray, which is the incoming light ray traveling through the air towards the glass surface.

2. Refraction: As the incident ray reaches the interface between air and glass, it encounters a change in the refractive index. Refractive index is a measure of how much a medium can bend light. Glass has a higher refractive index than air, so the incident ray bends towards the normal, which is an imaginary line perpendicular to the surface of the glass.

3. Transmission: After refraction, the incident ray enters the glass and continues its path through the medium. Inside the glass, the light travels in a straight line until it encounters another interface or is affected by other optical phenomena.

4. Internal Reflection: If the incident ray encounters a glass-air interface at an angle greater than the critical angle, total internal reflection can occur. In this case, the light reflects back into the glass instead of transmitting out, effectively bouncing off the interface.

5. Refraction (again): If the incident ray does not undergo total internal reflection, it continues to propagate through the glass. At another glass-air interface, the light exits the glass and enters the air again. This transition involves refraction once more, but this time the light bends away from the normal, returning to its original path in air.

6. Transmitted Ray: Finally, the light ray continues to travel through the air, maintaining its original direction and path as it moves away from the glass surface.

for more such questions on light travels

https://brainly.com/question/30978

#SPJ8

Other Questions
An economic forecasting firm has estimated the following equation from historical data based on the neoclassical growth model:Potential output growth = 1.55 + 0.69(Growth of labor) + 0.32(Growth of capital)Which of the following statements is true?The intercept (1.55) in this equation is best interpreted as the long run sustainable growth rate.The coefficient on the growth rate of labor (0.69) in this equation is best interpreted as the labor force participation rate.The coefficient on the growth rate of capital (0.32) in this equation is best interpreted as the share of income earned by capital. 41. Using the equations given in this chapter, calculate the energy in eV required to cause an electron's transition from a) na - 1 to n = 4. b) n = 2 to n = 4. A square loop with side length = 2.4 m and total resistance R=0.8 12, is dropped from rest from height = 1.7 m in an area where magneti exists everywhere, perpendicular to the loop area. The magnetic field is not constant, but varies with height according to: B(y)- Beeb, where B-0.4 T and D 6.1 m. Assuming that the force the magnetic field exerts on the loop is negligible, what is the current (in Ampere) in the loop at the moment of impact wit the ground? Use g-10 m/ Where was slavery most prominent in mainland colonial North American? Where was it least practiced? How did the practiced of slavery differ from one colonial region to the next? How did it differ in cities verses the countryside? What explains the difference terms of slaverys practice and prevalence in these various places? (800words) This is a partial adjusted trial balance of Orlando Corporation: (a) Answer the following questions, assuming Orlando's year-end is December 31 and adjusting entries are recorded monthly. (1) If the amount in Supplies Expense was recorded in the January 31 adjusting entry, and $620 of supplies was purchased in January. what was the balance in Supplies on January 1 ? 5 (2) If the amount in Insurance Expense was recorded in the January 31 adjusting entry, and the original insurance premium was for 1 year, what was the total premium and when was the policy purchased? Total premium $ (3) If $2,460 of salaries was paid in January, what was the balance in Salaries Payable at December 31,2017 ? Salaries payable $ (4) If $1,930 was recelved in January for services performed in January, what was the balance in Unearned Service Revenue at December 31.2017? Servicerevenue $ 13. What is frequency of a sound wave with a wavelength of 0.34 m traveling in room-temperature air (v-340m/s)? A) 115.6 m/s B) 1 millisecond C) 1 kHz D) 1000 E) No solution 14. The objective lens o Not be considered. Q1 RKS Ltd. Has an expected return of 22% and standard deviation of 40%. BBS Ltd. Has an expected return of 24% and standard deviation of 38%. RKS Ltd. Has a beta of 0. 86 and BBSLtd. A beta of 1. 24. The correlation coefficient between the return of RKS Ltd. And BBS Ltd. Is 0. 72. The standard deviation of the market return is 20%. Suggest: (a) Is investing in BBS Ltd. Better than investing in RKS Ltd. ? (b) If you invest 30% in BBS Ltd. And 70% in RKS Ltd. , What is your expected rate of return an portfolio standard deviation? [10 Marks] Yesterday, Manuel went on a bike ride. His average speed was 10 miles per hour. Today, he went on another ride, this time averaging 13 miles per hour. In the two days, he blked for a combined total time of 12 hours. Letxbe the number of hours he blked yesterday. Write an expression for the combined total number of miles he biked in the two days. Find the average rate of change off(x)=3x33x22fromx=2tox=1. Simplify your answer as much as possible After+how+many+generations+can+we+expect+the+allele+frequency+of+the+recessive+mutant+to+have+dropped+under+1%+of+its+value+in+generation+f0? The spleen functions toI. Remove aged red blood cellsII. Filter lymphIII. Produce lymphocytesIV. All of the above Discuss utility of counseling across various court oflaw. What is the effective annual rate of interest if $1300.00 grows to $1800.00 in five years compounded semi-annually? The effective annual rate of interest as a percent is%. 1. Which of the following is considered out of the labor force? A) the unemployedB) those temporarily laid off who will soon be recalledC) those who worked full time, but in a family businessD) those individuals who have started searching for employment for the first timeE) none of these2. Assume the non-institutional civilian population is 300 million, of which 120 million are employed and 12 million are unemployed. Based on this information above, the unemployment rate isA) 9.1%.B) 6.6%.C) 4%.D) 10%.E) 11.1%.3. Based on the information in Question 2 above, the labor force participation rate is A) 36%.B) 40%.C) 44%.D) 90.1%.E) 66%. Nze is an intelligent boy,...... he? A. aren't B. didn't C. hasn't D. isn't E. wasn't A 35-year-old man complains of difficulty swallowing and a tendency to regurgitate his food. Endoscopy does not reveal any esophageal or gastric abnormalities. Manometric studies of the esophagus show a complete absence of peristalsis, failure of the lower esophageal sphincter to relax upon swallowing, and increased intraesophageal pressure.Which of is the most likely diagnosis?How will treatments reduce the severity of the above disease (i.e. mechanism of action)? cases Problem 34 429 punishes me wha=(2008 2007 sementamiseen (A) (028 +0.10 2008 + 10075 92.00 + 2007 D) (0.920 +291012 Find te zgularment of the particle about the origin when its position vector is 1.501 +1.507 points) (0.15)kg-m/s (-0.15k/kg-m/S (1.50k)kg-m/s 15.0k/kg-m/s Part A Two piano strings are supposed to be vibrating at 220 Hz , but a piano tuner hears three beats every 2.3 s when they are played together. If one is vibrating at 220 Hz , what must be the frequency of the other is there only one answer)? Express your answer using four significant figures. If there is more than one answer, enter them in ascending order separated by commas. f2 = 218.7.221.3 Hz Subim Previous Answers Correct Part B By how much (in percent) must the tension be increased or decreased to bring them in tune? Express your answer using two significant figures. If there is more than one answer, enter them in ascending order separated by commas. TVO A AFT % O Your submission doesn't have the correct number of answers. Answers should be separated with a comma. Each Of The Following Statements Describes A Market Structure. What Would You Expect The Long-Run Average Cost Curve To Look Like For A Representative Firm In Each Industry? Graph The Curve, And Indicate The Minimum Efficient Scale (MES). A. There Are A Few Large Firms In The Industry. B. There Are Many Firms In The Industry, Each Small Relative To The Size During a push up, indicate the plane and axis for each joint(shoulder, elbow, hand/wrist). Provide an explanation to the following problems(11-27):1.Assume that X is a non-empty set with |X|= a for some aN(1)How many functions f : X {0, 1} are there?(i)How many functions f : X {0, 1} are 1-1?(ii)How many functions f : AX {0, 1} are onto?(iii)How many functions f : X {0, 1, 2} are onto?