N 13. An electric field of 702 exists between parallel plates that are 30.0 cm apart. The potential difference between the plates is V. (Record your three-digit answer in the numerical-response section below.) Your answer: D000

Answers

Answer 1

The potential difference between the parallel plates is 210 V.

Given that,

An electric field of 702 exists between parallel plates that are 30.0 cm apart.

The potential difference between the plates is V.

The electric field is given by the formula E = V/d,

where

E = Electric field in N/C

V = Potential difference in V

d = Distance between the plates in m

Putting the values in the above equation we get,702 = V/0.3V = 210 V

Therefore, the potential difference between the plates is 210 V.

Hence, the potential difference between the parallel plates is 210 V.

Learn more about Electric field

brainly.com/question/11482745

#SPJ11


Related Questions

5) Carnot engine What is the efficiency of a Carnot engine which operates between 450 K and 310 K? A) 59 % B) 41% C) 31% D) 69 % 6) Entropy An ideal gas undergoes an isothermal expansion. The temperature of the gas is 350 K. The heat added to the gas is 700 Joules. What is the change in entropy of the gas? A) 10 / B) 150 / C)2)/K D) 7J/K

Answers

The Carnot engine is a theoretical engine that operates on the Carnot cycle, an idealized thermodynamic cycle. It serves as a benchmark for determining the maximum efficiency that any heat engine can achieve when operating between two temperature reservoirs.

5) Efficiency of a Carnot engine which operates between 450 K and 310 K is given by Efficiency = (1 - T2/T1) × 100 where T1 = 450 K and T2 = 310 K. Now, we can calculate the efficiency as follows: Efficiency = (1 - 310/450) × 100= (1 - 0.688) × 100= 31.2%. Therefore, the correct option is C) 31%.

6) Change in entropy of an ideal gas undergoing isothermal expansion is given byΔS = Q/T where Q is the heat added to the gas and T is the temperature of the gas. Now, we can calculate the change in entropy of the gas as follows:ΔS = Q/T= 700 J/350 K= 2 J/K. Therefore, the correct option is C) 2 J/K.

For similar problems on heat engine visit:

https://brainly.com/question/31752075

#SPJ11

An electronic tablet 15 cm high is placed 100 cm from a
converging lens whose focal length is 20 cm. The formed image will
be located at ___ cm.
a) 40cm
b) 25cm
c) 0.04cm
d) 5cm

Answers

Hence, the image of the converging lens will be found at 25 cm from the merging focal point.

Converging lens calculation.

To decide the area of the image shaped by a converging lens, we are able utilize the focal point condition:

1/f = 1/dₒ + 1/dᵢ

where f is the central length of the lens, dₒ is the question separate (separate of the tablet from the focal point), and dᵢ is the image remove (remove of the picture from the focal point).

In this case, the central length of the focal point is 20 cm (given), and the protest remove is 100 cm (given).

Let's calculate the image  remove:

1/20 = 1/100 + 1/dᵢ

Streamlining the equation :

1/dᵢ = 1/20 - 1/100

= (5 - 1)/100

= 4/100

= 1/25

Taking the complementary:

dᵢ = 25 cm

Hence, the image of the converging lens will be found at 25 cm from the merging focal point.

The right reply is:

b) 25 cm

Learn more about converging lens below.

https://brainly.com/question/15123066

#SPJ4

The image of the converging lens will be found at 25 cm from the merging focal point.

Converging lens calculation.

To decide the area of the image shaped by a converging lens, we are able utilize the focal point condition:

1/f = 1/dₒ + 1/dᵢ

where f is the central length of the lens, dₒ is the question separate (separate of the tablet from the focal point), and dᵢ is the image remove (remove of the picture from the focal point).

In this case, the central length of the focal point is 20 cm (given), and the protest remove is 100 cm (given).

Let's calculate the image  remove:

1/20 = 1/100 + 1/dᵢ

Streamlining the equation :

1/dᵢ = 1/20 - 1/100

= (5 - 1)/100

= 4/100

= 1/25

Taking the complementary:

dᵢ = 25 cm

Hence, the image of the converging lens will be found at 25 cm from the merging focal point.

The right reply is:

b) 25 cm

Learn more about converging lens below.

brainly.com/question/15123066

#SPJ11

A hollow square steel tube has a height and width dimension of 5 in and a wall thickness of 0.4 in. and an original length of 8 in. The tube is loaded with 44000 lb. in compression and is shortened by 0.0017 in. as a result of the load. Determine the Modulus of Elasticity of the steel with 1-decimal place accuracy.E= _______ x10^6
(to 1 decimal place)

Answers

The Modulus of Elasticity of the steel with 1-decimal place accuracy is 0.0017 in / 8 in

To determine the modulus of elasticity (E) of the steel, we can use Hooke's law, which states that the stress (σ) is directly proportional to the strain (ε) within the elastic limit.

The stress (σ) can be calculated using the formula:

σ = F / A

Where:

F is the force applied (44000 lb in this case)

A is the cross-sectional area of the steel tube.

The strain (ε) can be calculated using the formula:

ε = ΔL / L0

Where:

ΔL is the change in length (0.0017 in)

L0 is the original length (8 in)

The modulus of elasticity (E) can be calculated using the formula:

E = σ / ε

Now, let's calculate the cross-sectional area (A) of the steel tube:

The outer dimensions of the tube can be calculated by adding twice the wall thickness to each side of the inner dimensions:

Outer height = 5 in + 2 × 0.4 in = 5.8 in

Outer width = 5 in + 2 × 0.4 in = 5.8 in

The cross-sectional area (A) is the product of the outer height and outer width:

A = Outer height × Outer width

Substituting the values:

A = 5.8 in × 5.8 in

A = 33.64 in²

Now, we can calculate the stress (σ):

σ = 44000 lb / 33.64 in²

Next, let's calculate the strain (ε):

ε = 0.0017 in / 8 in

Finally, we can calculate the modulus of elasticity (E):

E = σ / ε

To know more about elasticity click on below link :

https://brainly.com/question/17250844#

#SPJ11

All three bulbs are identical and so are the two batteries.
Compare the brightness of the bulbs.
A.
A greater than B greater than C
b.
A greater than C greater than B
c.
A greater than B equals C
d
A

Answers

All three bulbs are identical and so are the two batteries. Comparing the brightness of the bulbs willkll be D. A less than B equals C

How to explain the information

If all three bulbs are identical and so are the two batteries, then all three bulbs will be equally bright. The brightness of a light bulb is determined by the amount of current flowing through it, and the current flowing through each bulb will be the same since they are all connected in parallel. Therefore, all three bulbs will be equally bright.

The statement "A less than B equals C" is not relevant to the question of the brightness of the bulbs. It is possible that A, B, and C are all equally bright, in which case A would be less than B and equal to C. However, it is also possible that A, B, and C are not all equally bright, in which case A might be less than B but brighter than C.

Learn more about bulb on

https://brainly.com/question/30874550

#SPJ4

A standing wave is set up on a string of length L, fixed at both ends. If 4-loops are observed when the wavelength is a = 1.5 m, then the length of the string is:

Answers

A standing wave is set up on a string of length L, fixed at both ends. If 4-loops are observed when the wavelength is a = 1.5 m, the length of the string is 3 meters.

In a standing wave on a string fixed at both ends, the number of loops or antinodes (points of maximum amplitude) is related to the wavelength and the length of the string.

The relationship between the number of loops (n), the wavelength (λ), and the length of the string (L) is given by the equation:

n = 2L/λ

In this case, you mentioned that 4 loops are observed when the wavelength is 1.5 m. We can substitute these values into the equation and solve for the length of the string (L):

4 = 2L/1.5

To find L, we can rearrange the equation:

2L = 4 × 1.5

2L = 6

L = 6/2

L = 3 meters

Therefore, the length of the string is 3 meters.

To learn more about standing wave visit: https://brainly.com/question/2292466

#SPJ11

The three finalists in a contest are brought to the centre of a large, flat field. Each is given a metre stick, a compass, a calculator, a shovel and the following three displacements: 72.4 m, 32.0° east of north;

Answers

The contestant calculates the resultant displacement by adding the three given displacements vectorially.

To determine the location of the buried keys, the contestant needs to calculate the resultant displacement by adding the three given displacements together. Here's how she can calculate it:

1. Start by converting the given displacements into their respective vector form. Each vector can be represented as a combination of horizontal (x) and vertical (y) components.

For the first displacement:

Magnitude: 72.4 m

Direction: 32.0° east of north

To find the horizontal and vertical components, we can use trigonometric functions. The eastward component can be found using cosine, and the northward component can be found using sine.

Horizontal component: 72.4 m * cos(32.0°)

Vertical component: 72.4 m * sin(32.0°)

For the second displacement:

Magnitude: 57.3 m

Direction: 36.0° south of west

To find the horizontal and vertical components, we use the same approach:

Horizontal component: 57.3 m * cos(180° - 36.0°)  [180° - 36.0° is used because it's south of west]

Vertical component: 57.3 m * sin(180° - 36.0°)

For the third displacement:

Magnitude: 17.8 m

Direction: Straight south

The horizontal component for this displacement is 0 since it's purely vertical, and the vertical component is simply -17.8 m (negative because it's south).

2. Add up the horizontal and vertical components separately for all three displacements:

Total horizontal component = Horizontal component of displacement 1 + Horizontal component of displacement 2 + Horizontal component of displacement 3

Total vertical component = Vertical component of displacement 1 + Vertical component of displacement 2 + Vertical component of displacement 3

3. Calculate the magnitude and direction of the resultant displacement using the total horizontal and vertical components:

Resultant magnitude = √(Total horizontal component^2 + Total vertical component^2)

Resultant direction = arctan(Total vertical component / Total horizontal component)

The contestant needs to calculate these values to determine the location where the keys to the new Porsche are buried.

The complete question should be:

The three finalists in a contest are brought to the center of a large, flat field. Each is given a meter stick, a compass, a calculator, a shovel, and (in a different order for each contestant) the following three displacements:

72.4 m, 32.0° east of north; 57.3 m, 36.0° south of west;17.8 m straight south.

The three displacements lead to the point where the keys to a new Porsche are buried. Two contestants start measuring immediately, but the winner first calculates where to go. What does she calculate?

To learn more about resultant displacement, Visit:

https://brainly.com/question/28882093

#SPJ11

A parallel-plate capacitor is made from two aluminum-foil sheets, each 7.7 cm wide and 5.3 m long. Between the sheets is a Teflon strip of the same width and length that is 4.4×10−2 mm thick.What is the capacitance of this capacitor? (The dielectric constant of Teflon is 2.1.)

Answers

The capacitance of this capacitor is approximately 3.092 x 10^(-11) F.

The capacitance of a parallel-plate capacitor can be calculated using the formula:

C = (ε₀ * εᵣ * A) / d

Where:

C is the capacitance,

ε₀ is the permittivity of free space (8.85 x 10^(-12) F/m),

εᵣ is the relative permittivity (dielectric constant) of the material,

A is the area of overlap between the plates,

d is the distance between the plates.

this case, the area of overlap between the plates (A) can be calculated as the product of the width (w) and length (l) of the aluminum-foil sheets:

A= w * l = 0.077 m * 5.3 m = 0.4071 m²

The distance between the plates (d) is given as 4.4 x 10^(-5) m.

Now, we can substitute the values into the formula to calculate the capacitance:

C = (8.85 x 10^(-12) F/m * 2.1 * 0.4071 m²) / (4.4 x 10^(-5) m)

C ≈ 3.092 x 10^(-11) F

Therefore, the capacitance of this capacitor is approximately 3.092 x 10^(-11) F.

To learn more about capacitance, click here: https://brainly.com/question/31871398

#SPJ11

The energles of the first three levels of a hydrogen atom are E = -2.2 x 10-18 J. Ex = -5.4 x 10-'9Jand Ex = -2.4 x 10-18 J. What is the energy of a photon emitted when an electron transitions from the third to the first energy level? (1 point) 1.7 x 10-18 ] 2.0 x 10-18 J 2.4 x 10-18 3.0 x 10-19 J Radio waves can broadcast signals using two methods. In amplitude modulation (AM), the frequencies of the carrier wave are measured in hundreds of thousands of hertz. For frequency modulation (FM), the frequencies are in hundreds of millions of hertz. Which of these methods uses waves with higher energy? (1 point) FM because the frequency is higher. AM because the frequency is lower. FM because the frequency is lower. AM because the frequency is higher.

Answers

The energy of a photon emitted when an electron transitions from the third to the first energy level in a hydrogen atom can be calculated using the energy differences between the levels. In this case, the energy difference is given as -2.4 x 10^-18 J. The method that uses waves with higher energy between amplitude modulation (AM) and frequency modulation (FM) is FM because the frequency is higher, measured in hundreds of millions of hertz.

To calculate the energy of a photon emitted during an electron transition, we need to find the energy difference between the initial and final energy levels. In this case, the energy difference is given as -2.4 x 10^-18 J. Therefore, the energy of the emitted photon is 2.4 x 10^-18 J.

When comparing amplitude modulation (AM) and frequency modulation (FM), the method that uses waves with higher energy is FM. This is because FM has a higher frequency, measured in hundreds of millions of hertz, compared to AM, which has a lower frequency measured in hundreds of thousands of hertz. Since energy is directly proportional to frequency, FM waves have higher energy. Therefore, FM broadcasts signals using waves with higher energy compared to AM.

To learn more about Amplitude modulation - brainly.com/question/10060928?

#SPJ11

A particle of mass m is moving along the smooth horizontal floor of a tank which is filled with viscous liquid. At time t the particle has a speed v. As the particle moves it experiences a resistive force of magnitude (kmv – ma) N, where k and a are constants. - (a) Show that dv/dt = (a - kv)

Answers

The constant a and the product of the constant k and the velocity v. The acceleration is also in the opposite direction of the velocity.

Here is the solution to your problem:

The resistive force is given by:

F = kmv - ma

where k and a are constants.

The acceleration is given by:

a = dv/dt

Substituting the expression for F into the equation for a, we get:

dv/dt = (kmv - ma) / m

= kv - a

Therefore, dv/dt = (a - kv)

This shows that the acceleration of the particle is proportional to the difference between the constant a and the product of the constant k and the velocity v. The acceleration is also in the opposite direction of the velocity.

The particle will eventually reach a terminal velocity, where the acceleration is zero. This occurs when the resistive force is equal to the force of gravity.

Lern more about constant from the given link,

https://brainly.com/question/27983400

#SPJ11

(a) Consider the time-complexity of an algorithm with respect to the problem size n being T(n) = 2T ([n/2])+ n. Formally demonstrate that T(n) € (n·lgn). Full marks for using basic definitions and concepts, such as those found in lecture materials. (i) Prove via induction that T(n) has a function form of T (2k) = 2k (T(1) + k). Hint: start with an appropriate variable substitution n = 2k, k € N₁, and iterate through k = 1,2,3,... to discover the inductive structure of T(n). Full marks for precise mathematical statements and proofs for both the basis and induction step. (ii) Prove that T(n) = O(n·lgn). You can use the multiplication rule with drop smaller terms directly without its formal construction, as well as apply other results as claimed in lecture materials. For the rest of your answer, justify any assumption you have to make. (iii) If this algorithm involves a partitioning process, what does T(1) = 0(1) mean or suggest?

Answers

To analyze the time complexity of the given algorithm with the recurrence relation T(n) = 2T([n/2]) + n, we can prove its function form T(n) = Θ(n·lg(n)). Using induction, we establish that T(n) has the form T(2^k) = 2^k(T(1) + k).

By applying the Big O notation and using the multiplication rule and results from lecture materials, we can prove that T(n) = O(n·lg(n)). T(1) = O(1) suggests that the time complexity for a problem of size 1 is constant, regardless of the partitioning process involved.

(i) To prove the function form T(n) = T(2^k) = 2^k(T(1) + k) via induction:

Basis step (k = 1): When k = 1, n = 2^1 = 2, and T(n) = T(2) = 2T([2/2]) + 2 = 2T(1) + 2. Thus, the basis step holds.

Inductive hypothesis: Assume that for some k = m, the function form holds: T(2^m) = 2^m(T(1) + m).

Inductive step (k = m+1):We need to show that if the hypothesis holds for k = m, then it also holds for k = m+1.

When k = m+1, n = 2^(m+1) = 2*2^m = 2n', where n' = 2^m.

Using the given recurrence relation, we have:

T(n) = 2T([n/2]) + n

     = 2T([2n'/2]) + 2n'

     = 2T(n') + 2n'

     = 2(2^m(T(1) + m)) + 2n'   (by the inductive hypothesis)

     = 2^(m+1)(T(1) + m) + 2n'

     = 2^(m+1)(T(1) + (m+1))

Thus, the inductive step holds.

(ii) To prove that T(n) = O(n·lg(n)):

Using the function form T(n) = T(2^k) = 2^k(T(1) + k), we can substitute n = 2^k and T(1) = c (a constant) into the equation.

T(n) = 2^k(T(1) + k)

    = 2^k(c + k)

To analyze the time complexity, we can drop the smaller terms and consider the dominant term, which is 2^k*k.

Since n = 2^k, we have k = lg(n), so we can rewrite the equation as:

T(n) = 2^k*k

    = n*lg(n)

Therefore, T(n) = O(n·lg(n)).

(iii) If the algorithm involves a partitioning process and T(1) = O(1), it means that the time complexity for processing a problem of size 1 is constant. This suggests that the partitioning process has a relatively efficient and consistent time complexity, regardless of the problem size. In other words, the algorithm's performance does not significantly vary when dealing with small inputs, indicating a potentially well-designed partitioning scheme that efficiently handles the base case.

Learn more about Algorithm here : brainly.com/question/28724722

#SPJ11

A mass is placed on a frictionless, horizontal table. A spring (k=110 N/m), which can be stretched or compressed, is placed on the table. A 3-kg mass is anchored to the wall. The equilibrium position is marked at zero. A student moves the mass out to x=7.0 cm and releases it from rest. The mass oscillates in simple harmonic motion. Find the position, velocity, and acceleration of the mass at time t=3.00 s.

Answers

Position of the mass after t=3.00 s = 0.0638 m ; Velocity of the mass after t=3.00 s= -0.436 m/s ; Acceleration of the mass after t=3.00 s = -2.98 m/s².

Step 1: Calculate the angular frequencyω = √(k/m), where k is the spring constant and m is the mass.ω = √(110/3)

= 6.83 rad/s

Step 2: Determine the amplitude of oscillation

the displacement equation x(t) = A cos(ωt + φ), where A is the amplitude of oscillation, and φ is the phase constant. x(0) = A cos(φ)

At equilibrium position, x(0) = 0, so A cos(φ) = 0, implying that A = 0 as cos(φ) cannot be zero.

Therefore, the mass does not oscillate at the equilibrium position.

Step 3: Calculate the phase constant φ = cos⁻¹(x(0) / A)

At time t = 0, the mass is at x = 7.0 cm,

sox(0) = 7.0 cm

= 0.07 m

Using x(t) = A cos(ωt + φ),0.07 m

= A cos(φ)cos(φ)

= 0.07/Aφ

= cos⁻¹(0.07/A)

For simplicity, assume that the mass is released from x = 7.0 cm at t = 0 and moves towards the equilibrium position x = 0. Since the phase constant is zero at the equilibrium position, the value of the phase constant is 0 for all subsequent instants.

Step 4: Calculate the position of the mass x(t) = A cos(ωt)

The position of the mass at t = 3.00 s is,

x(3.00 s) = A cos(ωt)

= 0.0638 m.

Step 5: Calculate the velocity of the mass v(t) = -Aω sin(ωt)

The velocity of the mass at t = 3.00 s is,

v(3.00 s) = -0.436 m/s.

Step 6: Calculate the acceleration of the mass

a(t) = -Aω2 cos(ωt)

The acceleration of the mass at t = 3.00 s is,

a(3.00 s) = -2.98 m/s²

Position of the mass after t=3.00 s: x(3.00 s)

= 0.0638 m

Velocity of the mass after t=3.00 s: v(3.00 s)

= -0.436 m/s

Acceleration of the mass after t=3.00 s: a(3.00 s)

= -2.98 m/s².

To know more about acceleration, refer

https://brainly.com/question/460763

#SPJ11

When throwing a ball, your hand releases it at a height of 1.0 m above the ground with velocity 6.8 m/s in direction 61° above the horizontal.
A.) How high above the ground (not your hand) does the ball go?
B.) At the highest point, how far is the ball horizontally from the point of release?

Answers

The ball reaches a maximum height of approximately 1.122 meters above the ground.

At the highest point, the ball is approximately 2.496 meters horizontally away from the point of release.

We'll use the vertical component of the initial velocity to determine the maximum height reached by the ball.

Initial vertical velocity (Vy) = 6.8 m/s * sin(61°)

Acceleration due to gravity (g) = 9.8 m/s²

Using the kinematic equation:

Vy^2 = Uy^2 + 2 * g * Δy

Where:

Vy = final vertical velocity (0 m/s at the highest point)

Uy = initial vertical velocity

g = acceleration due to gravity

Δy = change in vertical position (height)

Rearranging the equation, we get:

0 = (6.8 m/s * sin(61°))^2 + 2 * 9.8 m/s² * Δy

Simplifying and solving for Δy:

Δy = (6.8 m/s * sin(61°))^2 / (2 * 9.8 m/s²)

Δy ≈ 1.122 m

Therefore, the ball reaches a maximum height of approximately 1.122 meters above the ground.

b) We'll use the horizontal component of the initial velocity to determine the horizontal distance traveled by the ball.

Initial horizontal velocity (Vx) = 6.8 m/s * cos(61°)

Time taken to reach the highest point (t) = ? (to be calculated)

Using the kinematic equation:

Δx = Vx * t

Where:

Δx = horizontal distance traveled

Vx = initial horizontal velocity

t = time taken to reach the highest point

The time taken to reach the highest point is determined solely by the vertical motion and can be calculated using the equation:

Vy = Uy - g * t

Where:

Vy = final vertical velocity (0 m/s at the highest point)

Uy = initial vertical velocity

g = acceleration due to gravity

Rearranging the equation, we get:

t = Uy / g

Substituting the given values:

t = (6.8 m/s * sin(61°)) / 9.8 m/s²

t ≈ 0.689 s

Now we can calculate the horizontal distance traveled using Δx = Vx * t:

Δx = (6.8 m/s * cos(61°)) * 0.689 s

Δx ≈ 2.496 m

Therefore, at the highest point, the ball is approximately 2.496 meters horizontally away from the point of release.

Learn more about velocity:

https://brainly.com/question/25749514

#SPJ11

A part of a Gaussian Surface is a square of side length s. A corner of the square is placed the distance s from the origin on the y axis. A point charge Q is located at the origin. The edges of the square are either parallel to the x direction or z direction. The image above shows this information. If Q=25 microCoulomb and s = 15 cm, what is the electric field flux through the square?

Answers

The electric field flux through the square is determined as 2.25 x 10⁵ Nm²/C.

What is the flux through square?

The electric field flux through the square is calculated by applying the following formula as follows;

Ф = EA

where;

E is the electric fieldA is the area of the surface

The magnitude of the electric field is calculated as;

E = (kQ) / s²

E = ( 9 x 10⁹ x 25 x 10⁻⁶ ) / ( 0.15 m)²

E = 1 x 10⁷ N/C

The electric field flux through the square is calculated as;

Ф = EA

Ф = (1 x 10⁷ N/C) x (0.15 m)²

Ф = 2.25 x 10⁵ Nm²/C

Learn more about electric field flux here: https://brainly.com/question/28062884

#SPJ4

The work done by an external force to move a -7.50 μC charge from point A to point B is 1.90x10 ^-3 J. If the charge was started from rest and had 4.68x10-4 Jof kinetic energy when it reached point B, what must be the potential difference between A and B? Express your answer with the appropriate units.

Answers

If the charge was started from rest and had 4.68x10-4 Jof kinetic energy when it reached point B. The potential difference between A and B is 0.253 V.

The work done by an external force is equal to the difference in the potential energy of the object. Thus, work done by the external force on the -7.50 μC charge when moving it from point A to B is given by:W = U(B) - U(A)Where W = 1.90x10^-3 J, U(B) is the potential energy at point B, and U(A) is the potential energy at point A. The charge starts from rest, and hence has zero kinetic energy at point A. So, the total energy at point A is given by the potential energy alone as U(A) = qV(A), where q is the charge on the object, and V(A) is the potential difference at point A.

Thus, the total energy at point B is given by the kinetic energy plus potential energy, i.e.,4.68x10^-4 J = 1/2mv^2 + qV(B)

The velocity of the particle at point B, v, is calculated as follows: v = sqrt(2K/m) = sqrt(2*4.68x10^-4 / (m))

Thus, the total energy at point B is given by,4.68x10^-4 J = 1/2mv^2 + qV(B) = 1/2m(2K/m) + qV(B) = KV(B) + qV(B) = (K + q)V(B)

Where K = 4.68x10^-4 / 2m

Substituting in the values, W = U(B) - U(A) = qV(B) - qV(A)1.90x10^-3 = qV(B) - qV(A) = q(V(B) - V(A))V(B) - V(A) = (1/q)1.90x10^-3 = (1/(-7.50x10^-6))1.90x10^-3 = -0.253 V

Thus, the potential difference between points A and B is 0.253 V.

Learn more about kinetic energy at:

https://brainly.com/question/22174271

#SPJ11

Two long parallel wires, each carrying a current of 2 A, lie a distance 17 cm from each other. (a) What is the magnetic force per unit length exerted by one wire on the other?

Answers

Magnetic force per unit length exerted by one wire on the other when two long parallel wires, each carrying a current of 2A and lie a distance 17cm from each other is given as follows:

The formula for the magnetic force is given by;

F = (μ₀ * I₁ * I₂ * L)/2πd

Where,μ₀ = Permeability of free space = 4π * 10⁻⁷ N/A²,

I₁ = Current in wire 1 = 2A

I₂ = Current in wire 2 = 2A

L = Length of each wire = 1md = Distance between the wires = 17cm = 0.17m

Substituting all the values in the formula, we get;

F = (4π * 10⁻⁷ * 2 * 2 * 1)/2π * 0.17

= 4.71 * 10⁻⁶ N/m.

Hence, the magnetic force per unit length exerted by one wire on the other is 4.71 * 10⁻⁶ N/m.

#SPJ11

Learn more about current  and magnetic force https://brainly.com/question/26257705

Two lead wires are 2.0 meters long and are separated by a distance of 3.0mm. A current of 8.0 A dc passes through them. Calculate the force between the two cables.

Answers

The force between the two cables is 8.53 x 10⁻⁴ Newtons (N).

The formula for the magnetic field produced by a current-carrying wire is:

B = (μ₀ × I) / (2π × r)

where:

B is the magnetic field,

μ₀ is the permeability of free space (approximately 4π x 10^-7 T·m/A),

I is the current,

r is the distance between the wires.

I = 8.0 A

r = 3.0 mm = 3.0 x 10⁻³ m

Substituting the values into the formula:

B = (4π x 10⁻⁷ T·m/A × 8.0 A) / (2π × 3.0 x 10⁻³ m)

B = (4π x 10⁻⁷ × 8.0) / (2π × 3.0 x 10⁻³) T

B = 6.67 x 10⁻⁵ T

Now, using the formula for the force between two parallel wires carrying current, which is given by:

F = μ₀  ×I₁ × I₂ × L / (2π × d)

where:

F is the force between the wires,

μ₀ is the permeability of free space,

I₁ and I₂ are the currents in the two wires,

L is the length of the wires,

d is the distance between the wires.

I₁ = I₂ = 8.0 A (same current passing through both wires)

L = 2.0 m

d = 3.0 mm = 3.0 x 10⁻³ m

Substituting the values into the formula:

F = (4π x 10⁻⁷ T·m/A) × (8.0 A)  × (8.0 A) * (2.0 m) / (2π × 3.0 x 10⁻³ m)

F = (4π x 10⁻⁷ × 8.0 × 8.0 × 2.0) / (2π ×3.0 x 10⁻³) N

F = 8.53 x 10⁻⁴ N

Learn more about force -

brainly.com/question/12785175

#SPJ11

a sound wave to measure the water depth moves at a speed of 1500 km/s. it takes the sound wave 8 seconds until the sound has been re-recorded at the vessel from which is was released. how deep is the ocean at this location?

Answers

The ocean is 6km deep at this location. The speed of the sound wave is 1500 km/s and it takes the sound wave 8 seconds until it's re-recorded at the vessel from which it was released.

The formula for the depth of an ocean or sea is given by the equation: Depth = Speed x Time / 2

where Speed is the velocity of the wave in the water and Time is the time the wave takes to travel to the sea floor and back to the surface. From the problem statement, the speed of the sound wave to measure the water depth is 1500 km/s and the time taken for the wave to return to the vessel from which it was released is 8 seconds.

Hence, the depth of the ocean is given by: Depth = (1500 x 8) / 2= 6000m = 6km

to know more about sound waves here:

brainly.com/question/31851162

#SPJ11

when an apple of 0.2kg is placed on a scale in a store, the scale
starts to oscillate at 4.8Hz. what is the force constant of the
scale

Answers

To determine the force constant, we need additional information such as the displacement or the restoring force exerted by the scale. The force constant of the scale is approximately 9.56 N/m.

The force constant of the scale can be determined using Hooke's law, which states that the force exerted by a spring is proportional to the displacement from its equilibrium position. The equation for Hooke's law is: F = -k * x

Where F is the force applied, k is the force constant (also known as the spring constant), and x is the displacement from the equilibrium position.

In this case, when the apple is placed on the scale, it causes the scale to oscillate. The oscillation frequency (f) is given as 4.8 Hz.

The relationship between the force constant (k) and the oscillation frequency (f) of a simple harmonic oscillator is:

k = (2 * pi * f)^2 * m

Where m is the mass attached to the spring (in this case, the mass of the apple, which is 0.2 kg).

Substituting the values, we have:

k = (2 * pi * 4.8 Hz)^2 * 0.2 kg

k ≈ 9.56 N/m

Therefore, the force constant of the scale is approximately 9.56 N/m.

To learn more about, force constant, , click here, https://brainly.com/question/29597873

#SPJ11

The components of vector A are Ax = +4.4 and Ay= 1.2, and the components of vector B are given are Bx = +8.8 and By = -3.7. What is the magnitude of the vector A+B? 0 7.4 Ob.11.1 Oc 10.3 O d.9.3 e. 12.8

Answers

The magnitude of the vector A+B is approximately 13.25. Thus, the option e. 12.8 is the closest answer.

The magnitude of vector A and B is given below:

A= Ax+ Ay= 4.4+ 1.2= 5.6

B= Bx+ By= 8.8+ (-3.7)= 5.1

To find the magnitude of vector A + B, we need to perform the following steps:

Add the two vectors A and B together to obtain a new vector C with components Cx and Cy as follows:

Cx = Ax + Bx = 4.4 + 8.8 = 13.2

Cy = Ay + By = 1.2 - 3.7 = -2.5

Then, we calculate the magnitude of vector C using the formula as follows:

Magnitude of vector C = √(Cx² + Cy²)

Magnitude of vector C = √(13.2² + (-2.5)²)

Magnitude of vector C ≈ 13.25

Therefore, the magnitude of the vector A+B is approximately 13.25.

Thus, the option e. 12.8 is the closest answer.

Learn more about vectors https://brainly.com/question/25705666

#SPJ11

Professor Rapp has decided to hold a racing competition between all of his CDs. A 1.5 m long slope is set at an angle 25 ° above the horizontal. A CD can be modeled like a solid disk with a radius of 6.0 cm and a mass of 12g. If a CD is placed at the top of the slope and rolls down to the bottom without slipping or any rolling friction, what would the speed at the bottom be?

Answers

The speed at the bottom of the slope is 3.10m/s when a CD is placed at the top of the slope and rolls down to the bottom without slipping or any rolling friction.

Given that a CD can be modeled like a solid disk with a radius of 6.0 cm and a mass of 12 g. A 1.5 m long slope is set at an angle 25° above the horizontal. If a CD is placed at the top of the slope and rolls down to the bottom without slipping or any rolling friction, the speed at the bottom is calculated as follows:

Firstly, find the potential energy of the CD:

PE = mgh where m = 12g, h = 1.5 sin 25 = 0.6167m (height of the slope), and g = 9.8m/s²

PE = (12/1000) x 9.8 x 0.6167

PE = 0.0762J

The potential energy gets converted into kinetic energy at the bottom of the slope.

KE = 1/2 mv² where m = 12g and v = speed at the bottom

v = sqrt((2KE)/m)

The total energy is conserved, so

KE = PE

v = sqrt((2PE)/m)

Now, the speed at the bottom of the slope is:

v = sqrt((2 x 0.0762)/0.012)

v = 3.10m/s

Therefore, the speed at the bottom of the slope is 3.10m/s when a CD is placed at the top of the slope and rolls down to the bottom without slipping or any rolling friction.

Learn more about friction https://brainly.com/question/24338873

#SPJ11

4. The angular frequency of an electromagnetic wave traveling in vacuum is 3.00 x 108rad/s. What is the wavelength of the wave (in m)?

Answers

the wavelength of the electromagnetic wave is equal to 2π meters, or approximately 6.28 meters.

The wavelength of an electromagnetic wave can be calculated using the formula:

wavelength = speed of light / frequency

Given:

Angular frequency (ω) = 3.00 x 10^8 rad/s

Speed of light (c) = 3.00 x 10^8 m/s

The relationship between angular frequency and frequency is ω = 2πf, where f is the frequency.

Since the angular frequency is given, we can convert it to frequency using the formula:

ω = 2πf

f = ω / (2π)

Substituting the values:

f = ([tex]3.00 x 10^8[/tex] rad/s) / (2π)

Now we can calculate the wavelength using the formula:

wavelength = c / f

Substituting the values:

wavelength =[tex](3.00 x 10^8 m/s) / [(3.00 x 10^8[/tex] rad/s) / (2π)]

Simplifying the expression:

wavelength = (2π) / 1

To know more about frequency visit:

brainly.com/question/29739263

#SPJ11

How much energy is needed to remove a neutron from the nucleus of the isotope C" ? What is the isotope that is produced after this removal?

Answers

The energy needed to remove a neutron from the nucleus of the isotope C is about 13.93 MeV (Mega electron volts).When a neutron is removed from the nucleus of the isotope carbon-14, the resulting isotope is nitrogen-14. Carbon-14 has six protons and eight neutrons, while nitrogen-14 has seven protons and seven neutrons.

So, the nuclear equation for the neutron removal from C14 is given by the following:14/6C + 1/0n → 14/7N + 1/1H. This reaction is known as a beta decay because the neutron is converted into a proton and a beta particle (electron) is ejected.

Learn more about neutron:

brainly.com/question/26952570

#SPJ11

Required Information An ideal monatomic gas is taken through the cycle in the PV diagram P, srot- P, YL SL where -100, V2 -200, A-98.0 kPa and P2 - 230 kPa How much work is done on this gas per cycle?

Answers

The work done on this gas per cycle is approximately 169.9 kJ.

Work Done by a Gas per Cycle:

Given:

Isobaric pressure (P1) = -100 kPa

Change in volume (V2 - V1) = -200 kPa

Ratio of specific heats (γ) = 5/3

Adiabatic pressure (P2) = -230 kPa

Isobaric Process:

Work done (W1) = P1 * (V2 - V1)

Adiabatic Process:

V1 = V2 * (P2/P1)^(1/γ)

Work done (W2) = (P2 * V2 - P1 * V1) / (γ - 1)

Total Work:

Total work done (W) = W1 + W2 = P1 * (V2 - V1) + (P2 * V2 - P1 * V1) / (γ - 1)

Substituting the given values and solving the equation:

W = (-100 kPa) * (-200 kPa) + (-230 kPa) * (-200 kPa) * (0.75975^(2/5) - 1) / (5/3 - 1) ≈ 169.9 kJ

Therefore, the work done by the gas per cycle is approximately 169.9 kJ

Learn more about Work gas per cycle:

brainly.com/question/15186380

#SPJ11

Example: The intensity of a 3 MHz ultrasound beam entering
tissue is 10 mW/cm2 . Calculate the intensity at a depth of 4 cm in
soft tissues?

Answers

It can be calculated using the formula, Intensity = Initial Intensity * e^(-2αx) where α is the attenuation coefficient of the tissue and x is the depth of penetration..The intensity of a 3 MHz ultrasound beam is 10 mW/cm2

To calculate the intensity at a depth of 4 cm in soft tissues, we need to know the attenuation coefficient of the tissue at that frequency. The attenuation coefficient depends on various factors such as tissue composition and ultrasound frequency.Once the attenuation coefficient is known, we can substitute the values into the formula and solve for the intensity at the given depth. The result will provide the intensity at a depth of 4 cm in soft tissues based on the initial intensity of 10 mW/cm2.

To learn more about intensity , click here : https://brainly.com/question/31037615

#SPJ11

A diffraction grating has 2100 lines per centimeter. At what angle will the first-order maximum be for 560-nm-wavelength green light?

Answers

The first-order maximum for 560-nm-wavelength green light will occur at an angle of approximately 15.05 degrees.

The angle at which the first-order maximum occurs for green light with a wavelength of 560 nm and a diffraction grating with 2100 lines per centimeter can be calculated using the formula for diffraction. The first-order maximum is given by the equation sin(θ) = λ / (d * m), where θ is the angle, λ is the wavelength, d is the grating spacing, and m is the order of the maximum.

We can use the formula sin(θ) = λ / (d * m), where θ is the angle, λ is the wavelength, d is the grating spacing, and m is the order of the maximum. In this case, we have a diffraction grating with 2100 lines per centimeter, which means that the grating spacing is given by d = 1 / (2100 lines/cm) = 0.000476 cm. The wavelength of green light is 560 nm, or 0.00056 cm.

Plugging these values into the formula and setting m = 1 for the first-order maximum, we can solve for θ: sin(θ) = 0.00056 cm / (0.000476 cm * 1). Taking the inverse sine of both sides, we find that θ ≈ 15.05 degrees. Therefore, the first-order maximum for 560-nm-wavelength green light will occur at an angle of approximately 15.05 degrees.

Learn more about diffraction click here:

brainly.com/question/12290582

#SPJ11

(6) (a) A freshly prepared sample of a certain radioactive isotope has an initial activity (R) of 10.0 milliCuries (mCi). After 4 hours, its activity is 8.0 mCi. How many atoms of this isotope were contained in the freshly prepared sample? (b) Mixed nuclear waste straight out of a commercial utility nuclear fission reactor has a half-life of 600 years. One ton of nuclear waste has an activity of 1016 Bq. How many years will it take for this waste to decay to the activity that a ton of ordinary granite has, which is 10 Bq? (c) Calculate the activity (in Bq) of this ton of nuclear waste 100 years in the future. (d) Suppose that 10 kg of this waste is plutonium-239, which has a half-life of 24,100 years, and an activity of 6.29 x 1014 B9. How many years will it take for this plutonium to decay to the activity that 10 kg of ordinary granite has, which is 10 Bq? (e) Living things absorb carbon-14 (C-14) throughout their lives, and then stop absorbing C-14 when they die. After a living thing dies, the C-14 in it decays into C-12. C-12 is a stable isotope, but C-14 is radioactive, with a half-life of 5730 years. Suppose an archaeologist finds an ancient firepit containing some partially consumed firewood. This wood contains only 2.00 percent of the concentration of C-14 of a carbon sample from a present-day tree. How many years old is this firewood?

Answers

(a) There were 6.022 x 10^23 atoms of the isotope in the freshly prepared sample.

(b) It will take 12,000 years for the nuclear waste to decay to the activity of a ton of ordinary granite.

(c) The activity of the ton of nuclear waste 100 years in the future will be 9.99 x 10^15 Bq.

(d) It will take 85,060 years for the plutonium to decay to the activity of 10 Bq.

(e) The firewood is 11,460 years old.

(a) The activity of a radioactive sample is proportional to the number of radioactive atoms in the sample. The activity of the sample decreases by a factor of 2 in 4 hours, which means that the half-life of the isotope is 2 hours.

The number of atoms in the sample is equal to the activity divided by the decay constant,

which is 10.0 mCi / (0.693 / 2 hours) = 6.022 x 10^23 atoms.

(b) The activity of the nuclear waste decreases by a factor of 2 every 600 years. To reach the activity of a ton of ordinary granite,

the waste must decay by a factor of 10^16. This will take 12,000 years.

(c) The activity of the nuclear waste will decrease by a factor of 1 - (1/10^2) = 99.9% in 100 years. The new activity will be 10^16 Bq * 0.001 = 9.99 x 10^15 Bq.

(d) The activity of the plutonium decreases by a factor of 2 every 24,100 years. To reach the activity of 10 Bq,

the plutonium must decay by a factor of 6.29 x 10^14. This will take 85,060 years.

(e) The firewood contains 2% of the concentration of C-14 of a carbon sample from a present-day tree.

This means that the firewood is 5 half-lives old, or 5 * 5730 years = 28,650 years old.

To learn more about decay here brainly.com/question/32086007

#SPJ11

A levitating train is three cars long (150 m) and has a mass of 100 metric tons (1 metric ton = 1000 kg). The current in the superconducting wires is about 500 kA, and even though the traditional design calls for many small coils of wire, assume for this problem that there is a 150-m-long, straight wire carrying the current beneath the train. A perpendicular magnetic field on the track levitates the train. Find the magnitude of the magnetic field B needed to levitate the train.

Answers

The magnitude of the magnetic field needed to levitate the train is approximately 0.0131 N/(A·m). To find the magnitude of the magnetic field B needed to levitate the train, we can use the equation for the magnetic force on a current-carrying wire. which is given by F = BIL.

The force of attraction between a magnetic field and a current-carrying wire is given by the equation F = BIL, where F is the force, B is the magnetic field, I is the current, and L is the length of the wire. For the train to be levitated, this magnetic force must balance the force of gravity on the train.

The force of gravity on the train can be calculated using the equation F = mg, where m is the mass of the train and g is the acceleration due to gravity. Given that the mass of the train is 100 metric tons, which is equivalent to 100,000 kg, and the acceleration due to gravity is approximately 9.8 m/s², we can determine the force of gravity.

By setting the force of attraction equal to the force of gravity and rearranging the equation, we have BIL = mg. Plugging in the values for the train's length L (150 m), current I (500 kA = 500,000 A), and mass m (100,000 kg), we can solve for the magnetic field B. The magnitude of the magnetic field needed to levitate the train is approximately 0.0131 N/(A·m).

Learn more about acceleration here: brainly.com/question/2303856

#SPJ11

A thin rod has a length of 0.268 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.913rad/s and a moment of inertia of 1.26×10^−3 kg⋅m 2 . A bug standing on the axis decides to crawl out to the other end of the rod. When the bug (whose mass is 5×10^ −3 kg ) gets where it's going. what is the change in the angular velocity of the rod?

Answers

Given, the angular velocity of a thin rod with length 0.268 m and moment of inertia of 1.26 × 10⁻³  kg m² is 0.913 rad/s, the change in angular velocity of the rod is 174.79 rad/s.

Explanation;

The angular velocity of a thin rod with length 0.268 m and moment of inertia of 1.26 × 10⁻³  kg m² is 0.913 rad/s.

A bug with mass 5 × 10⁻³  kg crawls from the axis to the opposite end of the rod, causing the angular velocity to change.

We are to determine the change in angular velocity of the rod.

Let's begin by using the principle of conservation of angular momentum, which states that the total angular momentum of a system remains constant if no external torque acts on it. We have:

                 L1 = L2

where L1 = initial angular momentum of the rod with bug on the axis

           L2 = final angular momentum of the rod with the bug at the opposite end of the rod.

The initial angular momentum of the rod is:

           L1 = Iω1

where I = moment of inertia of the rod

         ω1 = initial angular velocity of the rod

Therefore,

            L1 = 1.26 × 10⁻³ kg m² × 0.913 rad/s

           L1 = 1.149 × 10⁻³  Nms.

Since the bug is on the axis, its moment of inertia is zero. Hence, it has zero initial angular momentum.

The final angular momentum of the system is:

          L2 = (I + m) ω2

   where m = mass of the bug

             ω2 = final angular velocity of the rod with the bug at the opposite end of the rod

Therefore,

           L2 = (1.26 × 10⁻³  kg m² + 5 × 10⁻³  kg) × ω2

           L2 = 6.5 × 10⁻⁶  ω2

The change in angular momentum of the rod is:

           ΔL = L2 - L1ΔL

                = 6.5 × 10⁻⁶  ω2 - 1.149 × 10⁻³  Nms

          ΔL = -1.149 × 10⁻³ Nms + 6.5 × 10⁻⁶  ω2

          ΔL = -1.1425 × 10⁻³  Nms + 6.5 × 10⁻⁶ ω2

Finally, we apply the principle of conservation of angular momentum as follows:

              ΔL = L2 - L1

                    = 0

Since there is no external torque acting on the system, the change in angular momentum is zero.

Thus,

           -1.1425 × 10⁻³  Nms + 6.5 × 10−6 ω2 = 0

                               ω2 = 175.7 rad/s

The change in angular velocity of the rod is:

               Δω = ω2 - ω1

               Δω = 175.7 rad/s - 0.913 rad/s

                Δω = 174.79 rad/s

Answer: The change in angular velocity of the rod is 174.79 rad/s.

To know more about conservation of angular momentum, visit:

https://brainly.com/question/29490733

#SPJ11

The velocity of a typical projectile can be represented by horizontal and vertical components. Assuming negligible air resistance, the horizontal component along the path of the projectile A) increases, B) decreases, C) remains the same, D) Not enough information. Explain:
When no air resistance acts on a fast-moving baseball, its acceleration is A) downward, g. B) a combination of constant horizontal motion and accelerated downward motion. C) opposite to the force of gravity, D) centripetal. Explain:
Neglecting air drag, a ball tossed at an angle of 30°with the horizontal will go as far downrange as one that is tossed at the same speed at an angle of A) 45° B) 60 ° C) 75 ° D) None of the above. Explain:
A baseball is batted at an angle into the air. Once airborne, and ignoring air drag, what is the ball’s acceleration vertically? horizontally?
At what part of its tragectory does the baseball have a minimum speed?

Answers

1. Assuming negligible air resistance, the horizontal component along the path of the projectile remains the same. The correct answer is option C.

2. When no air resistance acts on a fast-moving baseball, its acceleration is a combination of constant horizontal motion and accelerated downward motion. The correct answer is option B.

3. Neglecting air drag, a ball tossed at an angle of 30° with the horizontal will go as far downrange as one that is tossed at the same speed at an angle of 60 °. The correct answer is option B.

4. Once airborne, and ignoring air drag, the ball's acceleration vertically is downward and horizontally is zero

5. The baseball has a minimum speed at the highest point in its trajectory.

1) The horizontal component of the velocity of a projectile remains the same throughout its motion, assuming negligible air resistance.

This is because there is no horizontal force acting on the projectile to change its velocity. The only force acting in the horizontal direction is the initial velocity, which remains constant in the absence of external forces.

Therefore, the answer is C) remains the same.

2) In the absence of air resistance, the horizontal component of the velocity remains constant since there is no horizontal force acting on the projectile. This is known as the principle of inertia.

However, in the vertical direction, the force of gravity acts on the baseball, causing it to accelerate downward. The acceleration due to gravity is constant and equal to g (approximately 9.8 m/s² near the surface of the Earth).

As a result, baseball experiences a combination of constant horizontal motion (due to inertia) and accelerated downward motion (due to gravity). This is often referred to as projectile motion.

Therefore, the correct answer is B) a combination of constant horizontal motion and accelerated downward motion.

3) The range of a projectile depends on its initial velocity and launch angle. When neglecting air resistance, the maximum range is achieved when the projectile is launched at an angle of 45°.

However, for a given initial speed, the range is symmetric for launch angles of complementary angles. In other words, a launch angle of 30° and a launch angle of 60° will result in the same downrange distance.

Therefore, the correct answer is B) 60°.

4)Once airborne and neglecting air drag, the ball's acceleration is solely due to gravity in the vertical direction.

The acceleration vertically is equal to the acceleration due to gravity (approximately 9.8 m/s²) and is directed downward.

The ball experiences no horizontal acceleration as there is no horizontal force acting on it. Therefore, the vertical acceleration is g downward, and the horizontal acceleration is zero.

5) The baseball has its minimum speed at the highest point of its trajectory. At the highest point, the vertical component of the velocity becomes zero momentarily before changing direction and accelerating downward.

This is because the acceleration due to gravity continuously acts to decrease the vertical velocity until it reaches zero. Therefore, the minimum speed occurs at the highest point of the trajectory.

Learn more about projectile here:

https://brainly.com/question/24216590

#SPJ11

An electron has a total energy of 2.38 times its rest energy. What is the momentum of this electron? (in) Question 5 A proton has a speed of 48 km. What is the wavelength of this proton (in units of pm)? 8

Answers

(a) The momentum of the electron is 2.16 times its rest momentum.(b) The wavelength of the proton is 8246 picometers.

(a) The momentum of an electron with a total energy of 2.38 times its rest energy:

E² = (pc)² + (mc²)²

Given that the total energy is 2.38 times the rest energy, we have:

E = 2.38mc²

(2.38mc²)² = (pc)² + (mc²)²

5.6644m²c⁴ = p²c² + m²⁴

4.6644m²c⁴ = p²c²

4.6644m²c² = p²

Taking the square root of both sides:

pc = √(4.6644m²c²)

p = √(4.6644m²c²) / c

p = √4.6644m²

p = 2.16m

The momentum of the electron is 2.16 times its rest momentum.

(b)

To calculate the wavelength of a proton with a speed of 48 km/s:

λ = h / p

The momentum of the proton can be calculated using the formula:

p = mv

p = (1.6726219 × 10⁻²⁷) × (48,000)

p = 8.0333752 × 10⁻²³ kg·m/s

The wavelength using the de Broglie wavelength formula:

λ = h / p

λ = (6.62607015 × 10⁻³⁴) / (8.0333752 × 10⁻²³ )

λ ≈ 8.2462 × 10⁻¹²

λ ≈ 8246 pm

The wavelength of the proton is 8246 picometers.

To know more about the wavelength:

https://brainly.com/question/32900586

#SPJ4

Other Questions
Please read the following case study and answer the questions that follow. A 60-year-old woman with a past medical history with dyspepsia (heartburn) had recently noticed worsening of her symptoms. She characterized her discomfort as a pressure in the upper abdominal area that radiated to her chest and neck. She underwent an upper gastrointestinal series which showed radiologic findings compatible with a thickened fold within the stomach. An outpatient esophagogastroduodenoscopy (EGD) was performed. A biopsy of the antral portion of the stomach was consistent with moderate gastritis. No tumor was seen. In addition, the biopsy demonstrates 3+ to 4+ of a bacterial organism. (12 points total) a. What bacterium has been associated with chronic gastritis? b. What clinical syndromes, other than chronic gastritis, have been linked to this organism? c. What special property of this organism allow it to live in the rather inhospitable (low pH) environment of the human stomach? d. What special structure of this organism allows it to resist peristalsis? e. As an alternative to a biopsy, patients with these symptoms are often given a breath test because it is less invasive. What would this breath test be looking for? f. What is the epidemiology of infection with this organism? Who is most at risk? QUESTION 5 A 267 kg satellite currently orbits the Earth in a circle at an orbital radius of 7.1110 7 m. The satellite must be moved to a new circular orbit of radius 8.9710 7 m. Calculate the additional mechanical energy needed. Assume a perfect conservation of mechanical energy. A free electron has a kinetic energy 19.4eV and is incident on a potential energy barrier of U = 34.5eV and width w=0.068mm. What is the probability for the electron to penetrate this barrier (in %)? globally, corruption has been-decreasing-neither increasing or decreasing-staying the same-increasing How many milliliters of 1.42 M copper nitrate would be produced when copper metal reacts with 300 mL of 0.7 M silver nitrate according to the following unbalanced reaction? 22. You own a cleaning company in Youngstown, Ohio and pay your employees Ohio minimum wage. You learn that there is a large building in Pittsburgh that is looking to replace its cleaning company. Discuss what do you need to know about the applicable laws, the owner of the building, the staffing and the prior cleaning company before making a decision to bid for the account, assuming that you can not hire enough employees to staff the job without some or all of the current employees and may have to use some of your employees who are working jobs sites in Ohio. Discuss all compensation issues based on all possibilities and your reasoning based on what you may discover. Explain what rights women fought for in the mid-1800s. In the poem song of the open road what does whitmans road look like? Correlation and effectWhich is the strongest correlation1r=-.77 or r=.022 r=.37 or r=.123 r=.19 or r=.034= r=.80 or r=-.41 The student council is proposing a school-wide volunteer effort to help rebuild old houses to help people in need. By spending all their time on home construction, they clearly believe that the annual canned food drive is no longer important. That food drive fed nearly 200 families last year. But if everyone is building houses, who will collect the canned food and deliver it? This project will take up too many resources and leave families hungry.Read the excerpt. How does the authors use of false dilemma impact the overall argument?a. It strengthens the argument by using extreme examples to emphasize the importance of the canned food drive.b. It strengthens the argument by using specific examples of the previous years canned drive to prove the authors credibility.c. It weakens the argument by omitting evidence that shows the benefits of rebuilding old houses.d. It weakens the argument by failing to recognize that students can participate in both projects. The term for takt time translated into a container quantity.HeijunkaBatchPitchFlow If x2+4x+c is a perfect square trinomial, which of the following options has a valid input for c ? Select one: a. x2+4x+1 b. x24x+4 C. x2+4x+4 d. x2+2x+1 Each of the matrices in Problems 49-54 is the final matrix form for a system of two linear equations in the variables x and x2. Write the solution of the system. 1 -2 | 15 53. 0 0 | 0 1 0 | -4 49. 0 1 | 6 Select the correct answer. What is the factored form of this expression? x^2 12x + 36 A. (x 6)(x + 6) B. (x 6)^2 C. (x 12)(x 3) D. (x + 6)^2 Big Boomers makes custom clubs for golfers. Most of the work is done by hand and with small tools used by craftsmen. Customers are quoted a price in advance of their clubs being manufactured. To produce clubs at a profit, management must have a thorough understanding of product costs. Jeff Ranck, manager of the business, is using direct labor hours as the activity base for allocating overhead costs. He estimated the following amounts at the beginning of 2022:Estimated total overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $180,000Estimated direct labor hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15,000 hoursThe following information is available for job number 17, which was started and completed in February 2022: Direct materials used $1000 Direct labor used $600 (corresponding to 10 direct labor hours)Prepare journal entries to:a. Record all the manufacturing costs charged to job 17.b. Record the completion of job 17.c. Record the cash sale of job 17 in its entirety at a selling price of 120% of its manufacturing cost. Record in a separate entry the related cost of goods sold. Can you see any biases in todays news?to be explained in 200 words write a DEEP analysis of an animal that stays in an extremefreezing climate. Discuss the anatomical and physiological featuresof the muscular system and skeletal system. True-False Questions 1. The posteruptive stage goes on for the life of the tooth or the life of the patient. 2. The eruptive stage begins with the development of the root. 3. The gubernacular canal was formed by the presence of the successional lamina from the original dental lamina. 4. If interproximal contact between molars is lost, attempts at re-establishment are made through mesial drift. 5. Supraeruption is not considered as a part of the eruptive stages. 6. A retained primary tooth in an adult only occurs. when there is no permanent successor. 7. If the root of a tooth is severed and the apical portion is pinned into position, the coronal part will still continue to erupt. 8. Alveolar bone growth is necessary for eruption. 9. The role of the periodontal ligament seems to be more important in the later stages of eruption. 10. The tooth itself has not been shown to be an i essential cause of eruption. 11. Retained root fragments result when the root tip is not in the pathway of the erupting permanent tooth. 12. Osteoblasts resorb roots of primary teeth. Multiple-Choice Questions 13. Which of the following along with the gubernacular canal aid in the eruption of the teeth? a. Macrophages b. Osteoclasts c. Enzymes d. Jaw growth e. All of the above 14. Which of these statements is not true about the eruptive stage of tooth eruption? a. Osteoclastic activity may deepen the crypt while the root is growing. b. Alveolar bone growth keeps pace with eruption for at while but then slows down. c. As the tooth approaches the surface, the reduced enamel epithelium fuses with the oral epithelium to form what is sometimes called the united oral epithelium. d. All of the above are true. 15. The dental sac (or dental follicle) plays a role in forming all of the following except: a. Cementum b. Periodontal ligament c. Alveolar bone d. All of the above. 16. During the eruptive stage the primary and permanent dentition erupts in an occlusal-facial position. The permanent dentition may sometimes erupt to the lingual of the anterior deciduous teeth. a. Both statements are true. b. both statements are false. c. The first statement is true; the second is false. d. The first statement is false; the second is true. Case Study Use the following information to answer questions 17 and 18. A mother brings her 7-year-old child into the dental office. She says that the child has "two sets of lower front teeth," and upon examination two sets of mandibular central incisors are found. One set is located immediately lingual to the other set; the teeth in front seem to be a bit smaller than the ones behind. 17. Which teeth are located lingually? a. Primary teeth b. Permanent teeth c. Some primary and some permanent teeth d. Impossible to determine without a radiograph 18. Which statement best explains the presence of two sets? a. There was no resorption of primary roots. b. Primary and permanent incisors erupted at the same time. c. The process. permanent teeth erupted too early in the eruptive d. The primary incisors are ankylosed. Es un animal. Es verde. Camina muy despacio. Qu animal es? A proton travels with a speed of 3.00 106 m/s at an angle of 23.0 with the direction of a magnetic field of 0.850 T in the +y direction.(a) What are the magnitude of the magnetic force on the proton?_____ N(b) What is its acceleration?______ m/s2