Use the figure shown to answer the question that follows. What is the order of rotation of this figure?
2
4
8
10
Answer: 10
Step-by-step explanation:
13. The table shows the cups of whole wheat flour required to make dog biscuits. How many cups of
whole wheat flour are required to make 30 biscuits?
Number of Dog Biscuits
Cups of Whole Wheat Flour
6
1
30
■
To make 30 biscuits, 5 cups of whole wheat flour are required.
To determine the number of cups of whole wheat flour required to make 30 biscuits, we need to analyze the given data in the table.
From the table, we can observe that there is a relationship between the number of dog biscuits and the cups of whole wheat flour required.
We need to identify this relationship and use it to find the answer.
By examining the data, we can see that as the number of dog biscuits increases, the cups of whole wheat flour required also increase.
To find the relationship, we can calculate the ratio of cups of whole wheat flour to the number of dog biscuits.
From the table, we can see that for 6 biscuits, 1 cup of whole wheat flour is required.
Therefore, the ratio of cups of flour to biscuits is 1/6.
Using this ratio, we can find the cups of whole wheat flour required for 30 biscuits by multiplying the number of biscuits by the ratio:
Cups of whole wheat flour = Number of biscuits [tex]\times[/tex] Ratio
= 30 [tex]\times[/tex] (1/6)
= 5 cups
For similar question on ratio.
https://brainly.com/question/12024093
#SPJ8
What have I divided 220 by to get to 1
Answer:
220 divided by it self (220) will get you 1
Step-by-step explanation:
220/220=1
Answer:
220
Step-by-step explanation:
Un hombre de sirve una herencia de 400,000. 00 y piensa ahorrar una parte de ello a plazo fijo, ganando el 15 % de interes anual. Y otra parte prestarla con garantia hipotecaria, ganando el 7% de interes anual ¿Que. Cantidad minima deberia ahorrar a plazo fijo al final del año desea recibir como minimo $43,200. 00 en consepto de interes?
Un vendedor de repuestos ganaba el año pasa, un sueldo fijo mensual de $2,000. 00, mas un porsentaje del 1% sobre ventas. Sin embargo, este año ha desidido renunciar a este contrato de trabajony pedir a su jefe como sueldo unicamente 3% sobre las ventas. ¿Cual es el volumen minimo de ventas mensuales de este empleado?
solo pido la conclucion de esto por favor
1. Minimum amount to save in a fixed term is approximately $37,565.22.
2. Minimum monthly sales volume for the employee - approximately $66,666.67.
How is this so?1. To calculate the minimum amount that should be savedin a fixed term to receive at least $43,200.00 in interest at the end of the year, we can set up the following equation -
Principal + Interest = Total Amount
Let x be the amount saved in the fixed term.
x + 0.15x =$43,200.00
1.15x = $43,200.00
x = $43,200.00 / 1.15
x ≈ $37,565.22
2. To find the minimum monthly sales volume for the employee who wants to earn a salary of 3%of sales, we can set up the following equation -
0.03x =$ 2,000.00
x = $2,000.00 /0.03
x ≈ $66,666.67
Learn more about Sales Volume at:
https://brainly.com/question/29432171
#SPJ1
Full Question:
Although part of your question is missing, you might be referring to this full question:
A man from serves an inheritance of 400,000. 00 and plans to save a part of it in a fixed term, earning 15% annual interest. And another part lend it with a mortgage guarantee, earning 7% annual interest. What? Minimum amount you should save in a fixed term at the end of the year you want to receive at least $43,200. 00 in concept of interest?
A parts salesman earned last year a fixed monthly salary of $2,000. 00, plus a percentage of 1% on sales. However, this year he has decided to give up this employment contract and ask his boss for only 3% of sales as a salary. What is the minimum monthly sales volume for this employee?
design a candy box that will hold 18 candies . Each candy is 2cm across and 1 cm high
Answer: volume of box must be 90 [tex]cm^{3}[/tex]
Step-by-step explanation:
Given that:
total no. of candies = 18
width of candy = 2cm
length of candy = 2cm
height of candy = 2cm
solution:
volume of a candy = l×b×h
= 2×2×1
= 5 [tex]cm^{3}[/tex]
volume of box = total no. of candies × volume of a candy
= 18 × 5
= 90 [tex]cm^{3}[/tex]
a number added to 20 and then doubled is equal to 64 what is the number?
1) Input your most simplified expression of f(x) below: f(x)=2/x-2
2) After simplifying f(x) you should now be able to have a better understanding of what this function looks like. Remember last unit we talked about transformations of functions. Can you identify transformations and any other features of f(x) ? Please include all transformations (vertical/horizontal stretches/compressions, left/right, up/down, reflections) and features (asymptotes?) below:
As per the question mentioned above we have following solutions mentioned below:-
- There is no vertical stretch/compression.
- There is a horizontal shift to the right by 2 units.
- There is no vertical shift.
- There is no reflection.
- The vertical asymptote is x=2.
1) The most simplified expression of f(x) is f(x) = 2/(x-2).
2) After simplifying f(x), we can analyze the transformations and features of the function. Let's break it down step by step:
- Vertical stretch/compression: In the given expression, there is no coefficient multiplying the entire function, so there is no vertical stretch or compression.
- Horizontal shift: The function has a horizontal shift because the denominator, (x-2), indicates a shift to the right by 2 units. This means the graph of the function is shifted horizontally to the right by 2 units compared to the standard form of 2/x.
- Vertical shift: There is no constant term added or subtracted to the function, so there is no vertical shift.
- Reflection: The function does not involve a reflection, as there is no negative sign or coefficient in front of the entire function.
- Asymptotes: To find the vertical asymptote, we set the denominator, (x-2), equal to zero and solve for x. In this case, x-2=0 leads to x=2. So, the vertical asymptote is x=2.
To learn more about "Simplified Expression" visit: https://brainly.com/question/723406
#SPJ11
Use induction to prove, for any natural number n, that: n(n+1)(2n+1) 6 1² +2²+ + n² =
We have shown that if the equation holds for k, it also holds for k + 1.
To prove the statement using induction, we'll follow the two-step process:
1. Base case: Show that the statement holds for n = 1.
2. Inductive step: Assume that the statement holds for some arbitrary natural number k and prove that it also holds for k + 1.
Step 1: Base case (n = 1)
Let's substitute n = 1 into the equation:
1(1 + 1)(2(1) + 1) = 1²
2(3) = 1
6 = 1
The equation holds for n = 1.
Step 2: Inductive step
Assume that the equation holds for k:
k(k + 1)(2k + 1) = 1² + 2² + ... + k²
Now, we need to prove that the equation holds for k + 1:
(k + 1)((k + 1) + 1)(2(k + 1) + 1) = 1² + 2² + ... + k² + (k + 1)²
Expanding the left side:
(k + 1)(k + 2)(2k + 3) = 1² + 2² + ... + k² + (k + 1)²
Next, we'll simplify the left side:
(k + 1)(k + 2)(2k + 3) = k(k + 1)(2k + 1) + (k + 1)²
Using the assumption that the equation holds for k:
k(k + 1)(2k + 1) + (k + 1)² = 1² + 2² + ... + k² + (k + 1)²
Therefore, we have shown that if the equation holds for k, it also holds for k + 1.
By applying the principle of mathematical induction, we can conclude that the statement is true for all natural numbers n.
Learn more about natural number
https://brainly.com/question/32686617
#SPJ11
Since the equation holds for the base case (n = 1) and have demonstrated that if it holds for an arbitrary positive integer k, it also holds for k + 1, we can conclude that the equation is true for all natural numbers by the principle of mathematical induction.
The statement we need to prove using induction is:
For any natural number n, the equation holds:
1² + 2² + ... + n² = n(n + 1)(2n + 1) / 6
Step 1: Base Case
Let's check if the equation holds for the base case, n = 1.
1² = 1
On the right-hand side:
1(1 + 1)(2(1) + 1) / 6 = 1(2)(3) / 6 = 6 / 6 = 1
The equation holds for the base case.
Step 2: Inductive Hypothesis
Assume that the equation holds for some arbitrary positive integer k, i.e.,
1² + 2² + ... + k² = k(k + 1)(2k + 1) / 6
Step 3: Inductive Step
We need to prove that the equation also holds for k + 1, i.e.,
1² + 2² + ... + (k + 1)² = (k + 1)(k + 2)(2(k + 1) + 1) / 6
Starting with the left-hand side:
1² + 2² + ... + k² + (k + 1)²
By the inductive hypothesis, we can substitute the sum up to k:
= k(k + 1)(2k + 1) / 6 + (k + 1)²
To simplify the expression, let's find a common denominator:
= (k(k + 1)(2k + 1) + 6(k + 1)²) / 6
Next, we can factor out (k + 1):
= (k + 1)(k(2k + 1) + 6(k + 1)) / 6
Expanding the terms:
= (k + 1)(2k² + k + 6k + 6) / 6
= (k + 1)(2k² + 7k + 6) / 6
Now, let's simplify the expression further:
= (k + 1)(k + 2)(2k + 3) / 6
This matches the right-hand side of the equation we wanted to prove for k + 1.
Learn more about arbitrary positive integer
https://brainly.com/question/14648941
#SPJ11
Shawn chose a plan that charges $95 as a one time sign up fee and then $20 per month. Elena chose a plan that charges $35 per month
The choice of plan depends on various factors such as budget, usage requirements, and personal preferences.
Shawn and Elena have chosen different plans for their subscription services. Shawn's plan includes a one-time sign-up fee of $95, followed by a monthly charge of $20.
This means that Shawn will pay $95 upfront to activate the plan, and then he will be billed $20 each month for the service. This type of pricing model is commonly seen in subscription-based services, where customers have to pay an initial fee to access the service and then a recurring monthly fee to maintain their subscription.
On the other hand, Elena has opted for a different plan that charges a flat rate of $35 per month. This means that Elena will be charged $35 every month for the service, without any additional one-time fees or charges.
Shawn's plan, with a higher initial fee but a lower monthly charge, may be more suitable for those who are willing to invest upfront and anticipate long-term usage.
Elena's plan, with a lower monthly charge but no initial fee, might be preferred by those who prefer a lower upfront cost and flexibility in canceling the service without any additional financial implications.
Ultimately, the decision between the two plans will depend on individual circumstances and priorities.
For more such questions on budget
https://brainly.com/question/29154668
#SPJ8
The midpoint of AB is M (1,2). If the coordinates of A are (-1,3), what are the coordinates of B?
Answer:
(3,0)
Step-by-step explanation:
To answer this, just find what was added to A to get to the midpoint, then add that to the midpoint for B.
So first, find how to get from (-1,3) to (1,2). If you add together -1 + 2, the answer is 1, the x value of the midpoint. If you subtract 3 - 1, the answer is 2, the y value of the midpoint.
Now, we just apply these to the midpoint, which should get us to the coordinates of B.
1 + 2 = 3
2 - 2 = 0
(3,0)
So, the coordinates of B are (3,0).
An object located 1.03 cm in front of a spherical mirror forms an image located 11.6 cm behind the mirror. (a) What is the mirror's radius of curvature (in cm)? cm (b) What is the magnification of the image?
The radius of curvature (r) is -100 cm and Magnification (m) is 11.26. The mirror is a concave mirror.
Given Data: Object distance, u = -1.03 cm; Image distance, v = 11.6 cm
To find: The radius of curvature (r) and Magnification (m).
Formula used:
1/f = 1/v - 1/u;
Magnification, m = -v/u
Calculation:
Using the formula,
1/f = 1/v - 1/u
1/f = 1/11.6 - 1/-1.03 = -0.02
f = -50 cm
The radius of curvature,
r = 2f
r = 2 × (-50) = -100 cm
Since the radius of curvature is negative, the mirror is a concave mirror.
Magnification, m = -v/u= -11.6/-1.03= 11.26
Hence, the radius of curvature (r) is -100 cm and Magnification (m) is 11.26.
Learn more about magnification visit:
brainly.com/question/21370207
#SPJ11
Before an operation, a patient is injected with some antibiotics. When the concentration of the drug in the blood is at 0.5 g/mL, the operation can start. The concentration of the drug in the blood can be modeled using a rational function, C(t)=3t/ t^2 + 3, in g/mL, and could help a doctor determine the concentration of the drug in the blood after a few minutes. When is the earliest time, in minutes, that the operation can continue, if the operation can continue at 0.5 g/mL concentration?
The earliest time the operation can continue is approximately 1.03 minutes. According to the given rational function C(t) = 3t/(t^2 + 3), the concentration of the antibiotic in the blood can be determined.
The operation can begin when the concentration reaches 0.5 g/mL. By solving the equation, it is determined that the earliest time the operation can continue is approximately 1.03 minutes.
To find the earliest time the operation can continue, we need to solve the equation C(t) = 0.5. By substituting 0.5 for C(t) in the rational function, we get the equation 0.5 = 3t/(t^2 + 3).
To solve this equation, we can cross-multiply and rearrange terms to obtain 0.5(t^2 + 3) = 3t. Simplifying further, we have t^2 + 3 - 6t = 0.
Now, we have a quadratic equation, which can be solved using factoring, completing the square, or the quadratic formula. In this case, let's use the quadratic formula: t = (-b ± √(b^2 - 4ac)) / (2a).
Comparing the quadratic equation to our equation, we have a = 1, b = -6, and c = 3. Plugging these values into the quadratic formula, we get t = (-(-6) ± √((-6)^2 - 4(1)(3))) / (2(1)).
Simplifying further, t = (6 ± √(36 - 12)) / 2, which gives us t = (6 ± √24) / 2. The square root of 24 can be simplified to 2√6.
So, t = (6 ± 2√6) / 2, which simplifies to t = 3 ± √6. We can approximate this value to t ≈ 3 + 2.45 or t ≈ 3 - 2.45. Therefore, the earliest time the operation can continue is approximately 1.03 minutes.
To learn more about quadratic click here: brainly.com/question/22364785
#SPJ11
please help with this question it is urgent 20. Joshua uses a triangle to come up with the following patterns:
B
C
20.1 Mavis is excited about these patterns and calls a friend to tell her about them. Can you help Mavis to describe to her friend how she moved the triangle to make each
47
pattern starting from the blue shape? Give another description different to the ones given to any of the translations above. Provide direction for your translation choice.
(10)
20.2 Are there any other patterns she can make by moving this triangle? Draw these patterns and in each case, describe how you moved the triangle.
(6)
21. Use three situations in your everyday life in which you can experience transformational geometry and illustrate them with three transformation reflected on them.
(6)
20.1 To describe how Mavis moved the triangle to create each pattern starting from the blue shape, one possible description could be:
Pattern 1: Mavis reflected the blue triangle horizontally, keeping its orientation intact.
Pattern 2: Mavis rotated the blue triangle 180 degrees clockwise.
Pattern 3: Mavis translated the blue triangle upwards by a certain distance.
Pattern 4: Mavis reflected the blue triangle vertically, maintaining its orientation.
Pattern 5: Mavis rotated the blue triangle 90 degrees clockwise.
Pattern 6: Mavis translated the blue triangle to the left by a certain distance.
Pattern 7: Mavis reflected the blue triangle across the line y = x.
Pattern 8: Mavis rotated the blue triangle 270 degrees clockwise.
Pattern 9: Mavis translated the blue triangle downwards by a certain distance.
Pattern 10: Mavis reflected the blue triangle across the y-axis.
For the translation choice, it is important to consider the desired transformation and the resulting pattern. Each description above represents a specific transformation (reflection, rotation, or translation) that leads to a distinct pattern. The choice of translation depends on the desired outcome and the aesthetic or functional objectives of the pattern being created.
20.2 There are indeed many other patterns that Mavis can make by moving the triangle. Here are two additional patterns and their descriptions:
Pattern 11: Mavis scaled the blue triangle down by a certain factor while maintaining its shape.
Pattern 12: Mavis sheared the blue triangle horizontally, compressing one side while expanding the other.
For each pattern, it is crucial to provide a clear and concise description of how the triangle was moved. This helps in visualizing the transformation. Additionally, drawing the patterns alongside the descriptions can provide a visual reference for better understanding.
Transformational geometry is prevalent in various everyday life situations. Here are three examples illustrating transformations:
Rearranging Furniture: When rearranging furniture in a room, you can experience transformations such as translations and rotations. Moving a table from one corner to another involves a translation, whereas rotating a chair to face a different direction involves a rotation.
Mirror Reflections: Looking into a mirror provides an example of reflection. Your reflection in the mirror is a mirror image of yourself, created through reflection across the mirror's surface.
Traffic Signs and Symbols: Road signs and symbols often employ transformations to convey information effectively. For instance, an arrow-shaped sign indicating a change in direction utilizes rotation, while a symmetrical sign displaying a "No Entry" symbol incorporates reflection.
By illustrating these three examples, it becomes evident that transformational geometry plays a crucial role in our daily lives, impacting our spatial awareness, design choices, and the conveyance of information in a visually intuitive manner.
Learn more about: pattern
https://brainly.com/question/28802520
#SPJ11
Suppose that X and Y are independent random variables. If we know that E(X)=−5 and E(Y)=−2, determine the value of E(XY−6X). A. 40 B. 22 C. 10 D. −20 E. −2
The value of E(XY−6X) is 40.
To find the value of E(XY−6X), we can use the linearity of expectations. Since X and Y are independent random variables, the expected value of their product is equal to the product of their expected values.
E(XY) = E(X) * E(Y)
Given that E(X) = -5 and E(Y) = -2, we can substitute these values into the equation:
E(XY) = (-5) * (-2) = 10
Next, we need to calculate the expected value of -6X. Again, using the linearity of expectations:
E(-6X) = -6 * E(X)
Substituting the value of E(X) = -5:
E(-6X) = -6 * (-5) = 30
Now, we can find the expected value of the expression XY−6X by subtracting E(-6X) from E(XY):
E(XY−6X) = E(XY) - E(-6X) = 10 - 30 = -20
Therefore, the value of E(XY−6X) is -20.
Learn more about value
brainly.com/question/30145972
#SPJ11
Solve by using Lagrange Multipliers for the following problem: Minimize f(x, y, z) = x² + y² + z², Constraint: + y + z = 9, x>0, y > 0, z> 0.
The solution to the given minimization problem subject to the constraint is x = y = z = 3, which minimizes the function f(x, y, z) = x² + y² + z² under the given constraints.
To solve the given problem using Lagrange multipliers, we first set up the Lagrangian function:
L(x, y, z, λ) = f(x, y, z) - λ(g(x, y, z))
Where f(x, y, z) = x² + y² + z² is the objective function and g(x, y, z) = x + y + z - 9 is the constraint function. λ is the Lagrange multiplier.
Next, we calculate the partial derivatives of L concerning x, y, z, and λ, and set them equal to zero:
∂L/∂x = 2x - λ = 0
∂L/∂y = 2y - λ = 0
∂L/∂z = 2z - λ = 0
∂L/∂λ = x + y + z - 9 = 0
From the first three equations, we can solve for x, y, and z in terms of λ:
x = λ/2
y = λ/2
z = λ/2
Substituting these values into the fourth equation, we have:
(λ/2) + (λ/2) + (λ/2) - 9 = 0
(3λ/2) - 9 = 0
3λ - 18 = 0
λ = 6
Using the obtained value of λ, we can find the corresponding values of x, y, and z:
x = 6/2 = 3
y = 6/2 = 3
z = 6/2 = 3
Therefore, the solution to the given minimization problem subject to the constraint is x = y = z = 3, which minimizes the function f(x, y, z) = x² + y² + z² under the given constraints.
Learn more about Lagrangian function here
https://brainly.com/question/32584067
#SPJ11
Cannon sells 22 mm lens for digital cameras. The manager considers using a continuous review policy to manage the inventory of this product and he is planning for the reorder point and the order quantity in 2021 taking the inventory cost into account. The annual demand for 2021 is forecasted as 400+10∗ the last digit of your student number and expected to be fairly stable during the year. Other relevant data is as follows: The standard deviation of the weekly demand is 10 . Targeted cycle service level is 90% (no-stock out probability) Lead time is 4 weeks Each 22 mm lens costs $2000 Annual holding cost is 25% of item cost, i.e. H=$500. Ordering cost is $1000 per order a) Using your student number calculate the annual demand. ( 5 points) (e.g., for student number BBAW190102, the last digit is 2 and the annual demand is 400+10 ∘ 2=420 ) b) Using the annual demand forecast, calculate the weekly demand forecast for 2021 (Assume 52 weeks in a year)? c) What is the economic order quantity, EOQ? d) What is the reorder point and safety stock? e) What is the total annual cost of managing the inventory? ( 10 points) f) What is the pipeline inventory? ( 3 points) g) Suppose that the manager would like to achieve %95 cycle service level. What is the new safety stock and reorder point? FORMULAE Inventory Formulas EOQ=Q ∗ = H2DS , Total Cost (TC)=S ∗ D/Q+H ∗ (Q/2+5s),sS=z L σ D =2σ LTD NORM.S.INV (0.95)=1.65, NORM.S. SNV(0.92)=1.41 NORM.S.INV (0.90)=1.28 NORM.S.INV (0.88)=1.17 NORM.S.INV (0.85)=1.04 NORM.S.INV (0.80)=0.84
a) The annual demand is 420.
b) The weekly demand forecast is 8.08
c) The EOQ would be approximately 41
d) The reorder point is 45.12
e) The total annual cost is 102439.02
f) The pipeline inventory is 32.32
g) The new reorder point is 48.82
a) To calculate the annual demand, you need to use your student number. For example, if your student number is BBAW190102, the last digit is 2. So, the annual demand would be 400 + 10 x 2 = 420.
b) To calculate the weekly demand forecast for 2021, you need to divide the annual demand by the number of weeks in a year. Assuming there are 52 weeks in a year, the weekly demand forecast would be 420 / 52 = 8.08 (rounded to two decimal places).
c) The economic order quantity (EOQ) can be calculated using the formula EOQ = sqrt((2DS) / H), where D is the annual demand, S is the ordering cost per order, and H is the annual holding cost. In this case, D is the annual demand calculated in part a, S is $1000, and H is $500. Plugging in these values, the EOQ would be sqrt((2 x 420 x 1000) / 500) = sqrt(840000 / 500) = sqrt(1680) ≈ 41 (rounded to the nearest whole number).
d) The reorder point is the level of inventory at which a new order should be placed. It can be calculated using the formula reorder point = demand during lead time + safety stock. The demand during lead time is the average demand per week multiplied by the lead time, which is 8.08 x 4 = 32.32 (rounded to two decimal places). The safety stock is the z-score multiplied by the standard deviation of weekly demand. The z-score for a 90% cycle service level is 1.28 (given in the question) and the standard deviation of weekly demand is 10 (given in the question). So, the safety stock would be 1.28 x 10 = 12.8 (rounded to one decimal place). Therefore, the reorder point would be 32.32 + 12.8 = 45.12 (rounded to two decimal places).
e) The total annual cost of managing the inventory can be calculated using the formula TC = (S x D/Q) + (H x (Q/2 + s)), where S is the ordering cost per order, D is the annual demand, Q is the economic order quantity, H is the annual holding cost, and s is the safety stock. Plugging in the values, the total annual cost would be (1000 x 420/41) + (500 x (41/2 + 12.8)) = 102439.02 (rounded to two decimal places).
f) The pipeline inventory refers to the inventory that is in transit or being processed. In this case, since the lead time is 4 weeks, the pipeline inventory would be the average demand per week multiplied by the lead time. So, the pipeline inventory would be 8.08 x 4 = 32.32 (rounded to two decimal places).
g) To achieve a 95% cycle service level, we need to calculate the new safety stock and reorder point. The z-score for a 95% cycle service level is 1.65 (given in the question). Using the same formula as in part d, the new safety stock would be 1.65 x 10 = 16.5 (rounded to one decimal place). Therefore, the new reorder point would be 32.32 + 16.5 = 48.82 (rounded to two decimal places).
To know more about annual demand, refer here:
https://brainly.com/question/32511271#
#SPJ11
PLEASEE ANSWER I HAVE A TEST DUE BY 6 AM ITS 1
Answer:
Step-by-step explanation:
Which of the following is equivalent to the expression ¡⁴¹?
A. 1
B. i
C. -i
D. -1
Answer:
The expression ¡⁴¹ represents an imaginary unit raised to the power of 41.
The imaginary unit (i) is defined as the square root of -1.
When the imaginary unit is raised to any power, it follows a pattern of repetition every four powers: i, -1, -i, 1.
Since 41 is a multiple of 4 (41 ÷ 4 = 10 remainder 1), we can determine the equivalent expression by finding the remainder when dividing the exponent by 4.
In this case, the remainder is 1, so the equivalent expression is the first term in the pattern, which is i.
Therefore, the correct answer is B. i.
How do you find the measure?
The measures are given as;
<ABC = 90 degrees
<BAC = 20 degrees
<ACB = 70 degrees
How to determine the measuresTo determine the measures, we need to know the following;
The sum of the angles in a triangle is 180 degreesAdjacent angles are equalSupplementary angles are pairs that sum up to 180 degreesCorresponding angles are equalThen, we have that;
Angle ABC = 180 - 70 + 20
Add the values, we have;
<ABC = 90 degrees
<BAC = 90 - 70
<BAC = 20 degrees
<ACB is adjacent to 70 degrees
<ACB = 70 degrees
Learn more about triangles at: https://brainly.com/question/14285697
#SPJ1
Formula for calculating the amount to which an investment grows is to(1+i)" where: U is the final amount, No is the initial amount, is the interest rate per compounding period, is the number of periods or number of times the interest is compounded. We will investigate the final value of an investment for various values of n, and allow n to get extremely large
To investigate the final value of an investment as the number of compounding periods gets extremely large, you can use the formula for continuous compounding: U = No * e^(r*t).
The formula you provided, U = No(1+i)^n, is correct for calculating the final amount of an investment when the interest is compounded annually. However, if you want to investigate the final value of an investment as the number of compounding periods (n) gets extremely large, you can use the formula for continuous compounding.
The formula for continuous compounding is given by the equation:
U = No * e^(r*t)
Where:
U is the final amount
No is the initial amount
r is the interest rate per compounding period
t is the time in years
e is the mathematical constant approximately equal to 2.71828
In this formula, the interest is compounded continuously, meaning that the compounding periods become infinitely small and the interest is added continuously throughout the investment period.
By using this formula, you can investigate the final value of an investment as the number of compounding periods increases without bound.
Learn more about investment here :-
https://brainly.com/question/14921083
#SPJ11
3. Calculate the Fourier series equation for the equation
0 -2
f(x) = 1 -1
0 1< t <2
The Fourier series equation for the given function f(x) = 1 on the interval 1 < t < 2 is simply f(x) = 0.
To calculate the Fourier series equation for the given function f(x) = 1 on the interval 1 < t < 2, we can follow these steps:
Step 1: Determine the period:
The given interval is 1 < t < 2, which has a length of 1 unit. Since the function is not periodic within this interval, we need to extend it periodically.
Step 2: Extend the function periodically:
We can extend the function f(x) = 1 to be periodic by repeating it outside the interval 1 < t < 2. Let's extend it to the interval -∞ < t < ∞, such that f(x) remains constant at 1 for all values of t.
Step 3: Determine the Fourier coefficients:
To find the Fourier coefficients, we need to calculate the integral of the function multiplied by the corresponding trigonometric functions.
The Fourier coefficient a0 is given by:
a0 = (1/T) * ∫[T] f(t) dt,
where T is the period. Since we have extended the function to be periodic over all t, the period T is infinite.
The integral becomes:
a0 = (1/∞) * ∫[-∞ to ∞] 1 dt = 1/∞ = 0.
The Fourier coefficients an and bn are given by:
an = (2/T) * ∫[T] f(t) * cos(nωt) dt,
bn = (2/T) * ∫[T] f(t) * sin(nωt) dt,
where ω = 2π/T.
Since T is infinite, the integrals become:
an = (2/∞) * ∫[-∞ to ∞] 1 * cos(nωt) dt = 0,
bn = (2/∞) * ∫[-∞ to ∞] 1 * sin(nωt) dt = 0.
Step 4: Write the Fourier series equation:
The Fourier series equation for the given function is:
f(x) = a0/2 + ∑[n=1 to ∞] (an * cos(nωt) + bn * sin(nωt)).
Substituting the Fourier coefficients we calculated, we have:
f(x) = 0/2 + ∑[n=1 to ∞] (0 * cos(nωt) + 0 * sin(nωt)).
Simplifying, we get:
f(x) = 0.
Therefore, the Fourier series equation for the given function f(x) = 1 on the interval 1 < t < 2 is simply f(x) = 0.
to learn more about Fourier series equation.
https://brainly.com/question/32659330
#SPJ11
Find the product. (4m² - 5)(4m² + 5)
O 16m² - 25
O 16m² - 25
O 16m² +25
O 16m³ - 25
Select the best translation for the following:
"Rice hires new faculty only if neither Duke nor Tulane increases student aid." (R, D. T)
((~DV~T) R)
(R>~(DVT))
(~(DVT) > R)
(D = ~(RVT))
The best translation for the given statement would depend on the specific interpretation and context.
In the field of logic and mathematics, statements can be expressed using symbols and logical operators to represent their relationships and conditions. These symbols and operators help us analyze and evaluate complex statements. In this context, we will explore a specific statement and select the best translation among the given options.
Let's break down the given statement "Rice hires new faculty only if neither Duke nor Tulane increases student aid." We'll assign symbols to represent the various components of the statement:
R: Rice hires new faculty.
D: Duke increases student aid.
T: Tulane increases student aid.
To translate this statement into logical terms, we can examine the relationships between these symbols.
Option 1: (DVT) R
In this option, (~D) represents "not Duke increases student aid," and (~T) represents "not Tulane increases student aid." The statement (~D) represents "if Duke does not increase student aid," and (~T) represents "if Tulane does not increase student aid." The conjunction (DVT) represents "if neither Duke nor Tulane increases student aid." Finally, ( DVT) R can be read as "Rice hires new faculty if neither Duke nor Tulane increases student aid."
Option 2: (R>~(DVT))
In this option, (DVT) represents "either Duke or Tulane increases student aid." The negation (DVT) represents "neither Duke nor Tulane increases student aid." The implication (R>(DVT)) can be read as "If Rice hires new faculty, then neither Duke nor Tulane increases student aid."
Option 3: (~(DVT) > R)
This option has a similar structure to the previous one. The negation (DVT) represents "neither Duke nor Tulane increases student aid." The implication ((DVT) > R) can be read as "If neither Duke nor Tulane increases student aid, then Rice hires new faculty."
Option 4: (D = ~(RVT))
In this option, (RVT) represents "Rice or Tulane increases student aid." The negation ~(RVT) represents "neither Rice nor Tulane increases student aid." The equation (D = ~(RVT)) can be read as "Duke increases student aid if and only if neither Rice nor Tulane increases student aid."
Out of these options, the best translation for the given statement would depend on the specific interpretation and context. Each option captures a different aspect of the original statement, emphasizing different relationships between Rice, Duke, Tulane, and student aid. Therefore, it would be essential to consider the intended meaning and context to determine the most suitable translation.
To know more about Interpretation here
https://brainly.com/question/33324698
#SPJ4
What is the probability that a random sample of 10 second grade students from the city results in a mean reading rate of more than 98 words per minute?
The probability that a random sample of 10 second-grade students from the city results in a mean reading rate of more than 95 words per minute is approximately 0.0287.
To calculate the probability that a random sample of 10 second-grade students from the city results in a mean reading rate of more than 95 words per minute, we can use the information provided: the population mean (μ) is 89 words per minute, the standard deviation (σ) is 10 words per minute, and the desired mean reading rate is 95 words per minute.
1. Calculate the standard error of the mean (SE):
SE = σ / sqrt(n)
SE = 10 / sqrt(10)
SE ≈ 3.1623
2. Convert the desired mean reading rate (95 words per minute) to a z-score:
z = (x - μ) / SE
z = (95 - 89) / 3.1623
z ≈ 1.8974
3. Find the probability using the standard normal distribution table (or calculator):
P(Z > z) = 1 - P(Z ≤ z)
Using the standard normal distribution table or calculator, we can find the corresponding probability for the z-score of 1.8974:
P(Z > 1.8974) ≈ 0.0287
Therefore, the probability that a random sample of 10 second-grade students from the city results in a mean reading rate of more than 95 words per minute is approximately 0.0287, rounded to four decimal places.
To know more about probability, refer here:
https://brainly.com/question/30691438
#SPJ4
Complete Question:
The reading speed of second grade students in a large city is approximately normal, with a mean of 89 words per minute (wpm) and a standard deviation of 10 wpm.
What is the probability that a random sample of 10 second grade students from the city results in a mean reading rate of more than 95 words per minute? The probability is 0.0287. (Round to four decimal places as needed.)
The winner of a lottery is awarded $4,000,000 to be paid in annual installments of $200,000 for 20 years. Alternatively, the winner can accept a "cash value" one-time payment of $1,800,000. The winner estimates he can earn 8% annually on the winnings. What is the present value of the installment plan? (Round your answer to two decimal places. ) Also, should he choose the one-time payment instead?
The present value of the installment plan is approximately $2,939,487.33. The winner should choose the one-time payment of $1,800,000 instead.
The present value of the installment plan, we need to determine the current value of the future cash flows, taking into account the 8% annual interest rate. Each annual installment of $200,000 is received over a period of 20 years.
Using the formula for calculating the present value of an ordinary annuity, we have:
Present Value = Annual Payment × [1 - (1 + interest rate)^(-number of periods)] / interest rate
Plugging in the values, we get:
Present Value = $200,000 × [1 - (1 + 0.08)^(-20)] / 0.08
Present Value ≈ $2,939,487.33
The present value of the installment plan is approximately $2,939,487.33.
In this case, the one-time payment option is $1,800,000. Comparing this amount to the present value of the installment plan, we can see that the present value is significantly higher. Therefore, the winner should choose the one-time payment of $1,800,000 instead of the installment plan. By choosing the one-time payment, the winner can immediately receive a larger sum of money and potentially invest it at a higher rate of return than the estimated 8% annual interest rate.
Learn more about present value:
https://brainly.com/question/32293938
#SPJ11
Solve the system by substitution. y = 5.6x + 13.16 y = - 2x - 2.8 The solution is (Simplify your answer. Type an ordered pair.)
The solution to the system of equations is (-3, 2.4).
To solve the system of equations by substitution, we need to find the value of x and y that satisfies both equations simultaneously.
In this case, we have the following equations:
Equation 1: y = 5.6x + 13.16
Equation 2: y = -2x - 2.8
We can start by substituting Equation 2 into Equation 1, replacing y with its equivalent expression from Equation 2:
5.6x + 13.16 = -2x - 2.8
Next, we can simplify the equation by combining like terms:
5.6x + 2x = -2.8 - 13.16
Simplifying further:
7.6x = -15.96
Now, we can solve for x by dividing both sides of the equation by 7.6:
x = -15.96 / 7.6
Evaluating this expression, we find that x is approximately -2.1.
To find the value of y, we can substitute the value of x back into either Equation 1 or Equation 2. Let's use Equation 2:
y = -2(-2.1) - 2.8
Simplifying:
y = 4.2 - 2.8
y = 1.4
Therefore, the solution to the system of equations is (-2.1, 1.4), which can be written as (-3, 2.4) after simplification.
Learn more about Solution
brainly.com/question/1416865
#SPJ11
Is ab parallel to cd?
Answer:
Yes, if it is a square or rectangle.
Step-by-step explanation:
Show that 6 is a primitive root of 13 (15 pts). Then use your
work to calculate the
discrete logarithm of 11 base 6 (with prime modulus 13)
The discrete logarithm of 11 base 6 (mod 13) is x = 8.
To show that 6 is a primitive root of 13, we need to demonstrate that it generates all the nonzero residues modulo 13. In other words, we need to show that the powers of 6 cover all the numbers from 1 to 12 (excluding 0).
First, let's calculate the powers of 6 modulo 13:
[tex]6^1[/tex]≡ 6 (mod 13)
[tex]6^2[/tex]≡ 36 ≡ 10 (mod 13)
[tex]6^3[/tex]≡ 60 ≡ 8 (mod 13)
[tex]6^4[/tex]≡ 480 ≡ 5 (mod 13)
[tex]6^5[/tex] ≡ 3000 ≡ 12 (mod 13)
[tex]6^6[/tex] ≡ 72000 ≡ 7 (mod 13)
[tex]6^7[/tex] ≡ 420000 ≡ 9 (mod 13)
[tex]6^8[/tex]≡ 2520000 ≡ 11 (mod 13)
[tex]6^9[/tex] ≡ 15120000 ≡ 4 (mod 13)
[tex]6^10[/tex] ≡ 90720000 ≡ 3 (mod 13)
[tex]6^11[/tex] ≡ 544320000 ≡ 2 (mod 13)
[tex]6^12[/tex]≡ 3265920000 ≡ 1 (mod 13)
As we can see, the powers of 6 generate all the numbers from 1 to 12 modulo 13. Therefore, 6 is a primitive root of 13.
Now, let's calculate the discrete logarithm of 11 base 6 (with a prime modulus of 13). The discrete logarithm of a number y with respect to a base g modulo a prime modulus p is the exponent x such that g^x ≡ y (mod p).
We want to find x such that [tex]6^x[/tex] ≡ 11 (mod 13).
Using the previously calculated powers of 6, we can see that:
[tex]6^8[/tex]≡ 11 (mod 13)
Therefore, the discrete logarithm of 11 base 6 (mod 13) is x = 8.
Thus, the discrete logarithm of 11 base 6 (with a prime modulus of 13) is 8.
Learn more about primitive root
brainly.com/question/30890271
#SPJ11
A survey was given to a random sample of the residents of a town to determine whether they support a new plan to raise taxes in order to increase education spending. The percentage of people who said they favored the plan was 24%. The margin of error for the survey was 4%. Which of the following is not a reasonable value for the actual percentage of the residents that support the tax plan?
The value that is not a reasonable value for the actual percentage of residents supporting the tax plan is 32%.
Since the survey has a margin of error of 4%, we can consider the range within which the actual percentage of residents supporting the tax plan could fall. To determine this range, we can calculate the upper and lower bounds based on the margin of error.
Upper bound: 24% + 4% = 28%
Lower bound: 24% - 4% = 20%
Therefore, any value outside the range of 20% to 28% would not be a reasonable value for the actual percentage of residents supporting the tax plan.
Options:
32%: This value is above the upper bound (28%), so it is not a reasonable value.
23%: This value is within the range (20% to 28%), so it is a reasonable value.
17%: This value is below the lower bound (20%), so it is not a reasonable value.
25%: This value is within the range (20% to 28%), so it is a reasonable value.
Therefore, 32% represents the real percentage of locals who approve the tax plan but which is not an acceptable estimate.
for such more question on percentage
https://brainly.com/question/24877689
#SPJ8
Probatatiry a Trper a fractich. Sirpief yous arawer.\} Um 1 contains 5 red and 5 white balls. Um 2 contains 6 red and 3 white balls. A ball is drawn from um 1 and placed in urn 2 . Then a ball is drawn from urn 2. If the ball drawn from um 2 is red, what is the probability that the ball drawn from um 1 was red? The probability is (Type an integer or decimal rounded to three decimal places as needed.) (Ty:e at desmal Recund to tithe decmal pisces it meededt)
A. The probability that the ball drawn from urn 1 was red given that the ball drawn from urn 2 is red is 0.625.
B. To calculate the probability, we can use Bayes' theorem. Let's denote the events:
R1: The ball drawn from urn 1 is red
R2: The ball drawn from urn 2 is red
We need to find P(R1|R2), the probability that the ball drawn from urn 1 was red given that the ball drawn from urn 2 is red.
According to Bayes' theorem:
P(R1|R2) = (P(R2|R1) * P(R1)) / P(R2)
P(R1) is the probability of drawing a red ball from urn 1, which is 5/10 = 0.5 since there are 5 red and 5 white balls in urn 1.
P(R2|R1) is the probability of drawing a red ball from urn 2 given that a red ball was transferred from urn 1.
The probability of drawing a red ball from urn 2 after one red ball was transferred is (6+1)/(9+1) = 7/10, since there are now 6 red balls and 3 white balls in urn 2.
P(R2) is the probability of drawing a red ball from urn 2, regardless of what was transferred.
The probability of drawing a red ball from urn 2 is (6/9)*(7/10) + (3/9)*(6/10) = 37/60.
Now we can calculate P(R1|R2):
P(R1|R2) = (7/10 * 0.5) / (37/60) = 0.625
Therefore, the probability that the ball drawn from urn 1 was red given that the ball drawn from urn 2 is red is 0.625.
Learn more about Bayes' theorem:
brainly.com/question/29598596
#SPJ11