name a type of
• plane. not a model one word hyphenated but two words total

Answers

Answer 1

A jet-liner is a type of plane not a model one word hyphenated but two words total.

A jet-liner is a type of plane that is specifically designed for passenger transportation on long-haul flights. It combines the efficiency and speed of a jet engine with a spacious cabin to accommodate a large number of passengers.

Jet-liners are commonly used by commercial airlines to transport people across continents and around the world. These planes are characterized by their high cruising speeds, advanced avionics systems, and extended range capabilities.

They are equipped with multiple jet engines, typically located under the wings, which provide the necessary thrust to propel the aircraft forward. Jet-liners also feature a pressurized cabin, allowing passengers to travel comfortably at high altitudes.

The design of jet-liners prioritizes passenger comfort, with amenities such as reclining seats, in-flight entertainment systems, and lavatories. They often have multiple seating classes, including economy, business, and first class, catering to a wide range of passengers' needs.

Overall, jet-liners play a crucial role in modern air travel, enabling efficient and comfortable transportation for millions of people worldwide.

For more such questions on jet-liner

https://brainly.com/question/32730843

#SPJ8


Related Questions

Consider a radioactive cloud being carried along by the wind whose velocity is

v(x, t) = [(2xt)/(1 + t2)] + 1 + t2.

Let the density of radioactive material be denoted by rho(x, t).

Explain why rho evolves according to

∂rho/∂t + v ∂rho/∂x = −rho ∂v/∂x.

If the initial density is

rho(x, 0) = rho0(x),

show that at later times

rho(x, t) = [1/(1 + t2)] rho0 [(x/ (1 + t2 ))− t]

Answers

we have shown that the expression ρ(x,t) = [1/(1 + t^2)] ρ0 [(x/(1 + t^2)) - t] satisfies the advection equation ∂ρ/∂t + v ∂ρ/∂x = -ρ ∂v/∂x.

The density of radioactive material, denoted by ρ(x,t), evolves according to the equation:

∂ρ/∂t + v ∂ρ/∂x = -ρ ∂v/∂x

This equation describes the transport of a substance by a moving medium, where the rate of movement of the radioactive material is influenced by the velocity of the wind, determined by the function v(x,t).

To solve the equation, we use the method of characteristics. We define the characteristic equation as:

x = ξ(t)

and

ρ(x,t) = f(ξ)

where f is a function of ξ.

Using the method of characteristics, we find that:

∂ρ/∂t = (∂f/∂t)ξ'

∂ρ/∂x = (∂f/∂ξ)ξ'

where ξ' = dξ/dt.

Substituting these derivatives into the original equation, we have:

(∂f/∂t)ξ' + v(∂f/∂ξ)ξ' = -ρ ∂v/∂x

Dividing by ξ', we get:

(∂f/∂t)/(∂f/∂ξ) = -ρ ∂v/∂x / v

Letting k(x,t) = -ρ ∂v/∂x / v, we can integrate the above equation to obtain f(ξ,t). Since f(ξ,t) = ρ(x,t), we can express the solution ρ(x,t) in terms of the initial value of ρ and the function k(x,t).

Now, let's solve the advection equation using the method of characteristics. We define the characteristic equation as:

x = x(t)

Then, we have:

dx/dt = v(x,t)

ρ(x,t) = f(x,t)

We need to find the function k(x,t) such that:

(∂f/∂t)/(∂f/∂x) = k(x,t)

Differentiating dx/dt = v(x,t) with respect to t, we have:

dx/dt = (2xt)/(1 + t^2) + 1 + t^2

Integrating this equation with respect to t, we obtain:

x = (x(0) + 1)t + x(0)t^2 + (1/3)t^3

where x(0) is the initial value of x at t = 0.

To determine the function C(x), we use the initial condition ρ(x,0) = ρ0(x).

Then, we have:

ρ(x,0) = f(x,0) = F[x - C(x), 0]

where F(ξ,0) = ρ0(ξ).

Integrating dx/dt = (2xt)/(1 + t^2) + 1 + t^2 with respect to x, we get:

t = (2/3) ln|2xt + (1 + t^2)x| + C(x)

where C(x) is the constant of integration.

Using the initial condition, we can express the solution f(x,t) as:

f(x,t) = F[x - C(x),t] = ρ0 [(x - C(x))/(1 + t^2)]

To simplify this expression, we introduce A(x,t) = (2/3) ln|2xt + (1 + t^2)x|/(1 + t^2). Then, we have:

f(x,t) = [1/(1 +

t^2)] ρ0 [(x - C(x))/(1 + t^2)] = [1/(1 + t^2)] ρ0 [(x/(1 + t^2)) - A(x,t)]

Finally, we can write the solution to the advection equation as:

ρ(x,t) = [1/(1 + t^2)] ρ0 [(x/(1 + t^2)) - A(x,t)]

where A(x,t) = (2/3) ln|2xt + (1 + t^2)x|/(1 + t^2).

Learn more about advection equation here :-

https://brainly.com/question/32107552

#SPJ11



The optimal height h of the letters of a message printed on pavement is given by the formula h=0.00252d².²⁷ / e . Here d is the distance of the driver from the letters and e is the height of the driver's eye above the pavement. All of the distances are in meters. Find h for the given values of d and e . d=50m, e=2.3m.

Answers

The optimal height of the letters of a message printed on pavement for the given values of d and e is 11.65 m.

Given that, The optimal height h of the letters of a message printed on pavement is given by the formula h=0.00252d².²⁷ / e. Here d is the distance of the driver from the letters and e is the height of the driver's eye above the pavement. All of the distances are in meters.

Find h for the given values of d and e . d=50m, e=2.3m.

So, h = 0.00252d².²⁷ / e

Putting the values of d and e, we get,h = 0.00252(50)².²⁷ / 2.3

Therefore, h = 11.65 m

So, the optimal height of the letters of a message printed on pavement for the given values of d and e is 11.65 m.

Know more about optimal height here,

https://brainly.com/question/14657962

#SPJ11

Given matrix A and matrix B. Use this matrix equation, AX=B, to determine the variable matrix X.

A=[3 2 -1]
[1 -6 4]
[2 -4 3]
B=[33]
[-21]
[-6]

Answers

To determine the variable matrix [tex]\displaystyle X[/tex] using the equation [tex]\displaystyle AX=B[/tex], we need to solve for [tex]\displaystyle X[/tex]. We can do this by multiplying both sides of the equation by the inverse of matrix [tex]\displaystyle A[/tex].

Let's start by finding the inverse of matrix [tex]\displaystyle A[/tex]:

[tex]\displaystyle A=\begin{bmatrix} 3 & 2 & -1\\ 1 & -6 & 4\\ 2 & -4 & 3 \end{bmatrix}[/tex]

To find the inverse of matrix [tex]\displaystyle A[/tex], we can use various methods such as the adjugate method or Gaussian elimination. In this case, we'll use the adjugate method.

First, let's calculate the determinant of matrix [tex]\displaystyle A[/tex]:

[tex]\displaystyle \text{det}( A) =3( -6)( 3) +2( 4)( 2) +( -1)( 1)( -4) -( -1)( -6)( 2) -2( 1)( 3) -3( 4)( -1) =-36+16+4+12+6+12=14[/tex]

Next, let's find the matrix of minors:

[tex]\displaystyle M=\begin{bmatrix} 18 & -2 & -10\\ 4 & -9 & -6\\ -8 & -2 & -18 \end{bmatrix}[/tex]

Then, calculate the matrix of cofactors:

[tex]\displaystyle C=\begin{bmatrix} 18 & -2 & -10\\ -4 & -9 & 6\\ -8 & 2 & -18 \end{bmatrix}[/tex]

Next, let's find the adjugate matrix by transposing the matrix of cofactors:

[tex]\displaystyle \text{adj}( A) =\begin{bmatrix} 18 & -4 & -8\\ -2 & -9 & 2\\ -10 & 6 & -18 \end{bmatrix}[/tex]

Finally, we can find the inverse of matrix [tex]\displaystyle A[/tex] by dividing the adjugate matrix by the determinant:

[tex]\displaystyle A^{-1} =\frac{1}{14} \begin{bmatrix} 18 & -4 & -8\\ -2 & -9 & 2\\ -10 & 6 & -18 \end{bmatrix}[/tex]

[tex]\displaystyle A^{-1} =\begin{bmatrix} \frac{9}{7} & -\frac{2}{7} & -\frac{4}{7}\\ -\frac{1}{7} & -\frac{9}{14} & \frac{1}{7}\\ -\frac{5}{7} & \frac{3}{7} & -\frac{9}{7} \end{bmatrix}[/tex]

Now, we can find matrix [tex]\displaystyle X[/tex] by multiplying both sides of the equation [tex]\displaystyle AX=B[/tex] by the inverse of matrix [tex]\displaystyle A[/tex]:

[tex]\displaystyle X=A^{-1} \cdot B[/tex]

Substituting the given values:

[tex]\displaystyle X=\begin{bmatrix} \frac{9}{7} & -\frac{2}{7} & -\frac{4}{7}\\ -\frac{1}{7} & -\frac{9}{14} & \frac{1}{7}\\ -\frac{5}{7} & \frac{3}{7} & -\frac{9}{7} \end{bmatrix} \cdot \begin{bmatrix} 33\\ -21\\ -6 \end{bmatrix}[/tex]

Calculating the multiplication, we get:

[tex]\displaystyle X=\begin{bmatrix} 3\\ 2\\ 1 \end{bmatrix}[/tex]

Therefore, the variable matrix [tex]\displaystyle X[/tex] is:

[tex]\displaystyle X=\begin{bmatrix} 3\\ 2\\ 1 \end{bmatrix}[/tex]

[tex]\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}[/tex]

♥️ [tex]\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}[/tex]

find the least number which is a perfect cube and exactly divisible by 6 and 9.
hurry up, I need this answer immediately. ​

Answers

To find the least number that is a perfect cube and exactly divisible by 6 and 9, we need to find the least common multiple (LCM) of 6 and 9.

The prime factorization of 6 is [tex]\displaystyle 2 \times 3[/tex], and the prime factorization of 9 is [tex]\displaystyle 3^{2}[/tex].

To find the LCM, we take the highest power of each prime factor that appears in either number. In this case, the highest power of 2 is [tex]\displaystyle 2^{1}[/tex], and the highest power of 3 is [tex]\displaystyle 3^{2}[/tex].

Therefore, the LCM of 6 and 9 is [tex]\displaystyle 2^{1} \times 3^{2} =2\cdot 9 =18[/tex].

Now, we need to find the perfect cube number that is divisible by 18. The smallest perfect cube greater than 18 is [tex]\displaystyle 2^{3} =8[/tex].

However, 8 is not divisible by 18.

The next perfect cube greater than 18 is [tex]\displaystyle 3^{3} =27[/tex].

Therefore, the least number that is a perfect cube and exactly divisible by both 6 and 9 is 27.

[tex]\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}[/tex]

♥️ [tex]\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}[/tex]

Answer:

Step-by-step explanation:

216 = 6³   216/9 = 24  216/6 = 36

rewrite the expression with a rational exponent as a radical expression. (1 point) five to the three fourths power all raised to the two thirds power

Answers

The expression "five to the three-fourths power raised to the two-thirds power" can be rewritten as a radical expression.

First, let's calculate the exponentiation inside the parentheses:

(5^(3/4))^2/3

To simplify this, we can use the property of exponentiation that states raising a power to another power involves multiplying the exponents:

5^((3/4) * (2/3))

When multiplying fractions, we multiply the numerators and denominators separately:

5^((3 * 2)/(4 * 3))

Simplifying further:

5^(6/12)

The numerator and denominator of the exponent can be divided by 6, which results in:

5^(1/2)

Now, let's express this in radical form. Since the exponent 1/2 represents the square root, we can write it as:

√5

Therefore, the expression "five to the three-fourths power raised to the two-thirds power" simplifies to the radical expression √5.

Learn more about expression here:

brainly.com/question/14083225

#SPJ11

Please help!
Thanks in advance!

Answers

Answer:

The equations of bisectors of the angles are:

[tex]3x+11y-10=0[/tex]

[tex]33x-9y=0[/tex]

The bisector of the acute angle is 33x - 9y = 0.

Step-by-step explanation:

Let line 3x - 2y + 1 = 0 be defined by the equation a₁x + b₁y + c₁ = 0.

Let line 18x + y - 5 = 0 be defined by the equation a₂x + b₂y + c₂ = 0.

The formulas for the two angle bisectors of lines a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0 are:

[tex]\boxed{\dfrac{a_1x+b_1y+c_1}{\sqrt{{a_1}^2+{b_1}^2}}=\pm\dfrac{a_2x+b_2y+c_2}{\sqrt{{a_2}^2+{b_2}^2}}}[/tex]

The two angle bisectors are perpendicular.

Substitute the values of a₁, b₁, c₁, a₂, b₂, and c₂ into both formulas.

Equation of bisector 1

[tex]\begin{aligned}\dfrac{3x-2y+1}{\sqrt{{3}^2+(-2)^2}}&=\dfrac{18x+y+(-5)}{\sqrt{18^2+1^2}}\\\\\dfrac{3x-2y+1}{\sqrt{13}}&=\dfrac{18x+y-5}{5\sqrt{13}}\\\\3x-2y+1&=\dfrac{18x+y-5}{5}\\\\5(3x-2y+1)&=18x+y-5\\\\15x-10y+5&=18x+y-5\\\\3x+11y-10&=0\end{aligned}[/tex]

Equation of bisector 2

[tex]\begin{aligned}\dfrac{3x-2y+1}{\sqrt{{3}^2+(-2)^2}}&=-\dfrac{18x+y+(-5)}{\sqrt{18^2+1^2}}\\\\\dfrac{3x-2y+1}{\sqrt{13}}&=-\dfrac{18x+y-5}{5\sqrt{13}}\\\\3x-2y+1&=-\dfrac{18x+y-5}{5}\\\\-5(3x-2y+1)&=18x+y-5\\\\-15x+10y-5&=18x+y-5\\\\33x-9y&=0\end{aligned}[/tex]

Therefore, the equations of bisectors of the angles between the given lines are:

[tex]3x+11y-10=0[/tex]

[tex]33x-9y=0[/tex]

[tex]\hrulefill[/tex]

To identify the bisector of the acute angle, we need to calculate the angle between any one of the bisectors and one of the lines.

The formula for the angle between two lines a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0 is:

[tex]\tan \theta=\left|\dfrac{a_2b_1-a_1b_2}{a_1a_2+b_1b_2} \right|[/tex]

Let's find the angle θ between the bisector 6x + 6y - 1 = 0, and the line 3x - 2y + 1 = 0.

Therefore:

a₁ = 33b₁ = -9a₂ = 3b₂ = -2

Substitute these values into the formula for the angle between two lines:

[tex]\tan \theta=\left|\dfrac{(3)(-9)-(33)(-2)}{(33)(3)+(-9)(-2)} \right|[/tex]

[tex]\tan \theta=\left|\dfrac{39}{117} \right|[/tex]

[tex]\tan \theta=\left|\dfrac{1}{3} \right|[/tex]

As tan θ < 1, the angle θ between the bisector and the line must be less than 45°. This means that the angle between the two given lines is less than 90°.

Since an acute angle measures less than 90°, this means that 33x - 9y = 0 is the bisector of the acute angle between the given lines.

Note: On the attached diagram, the given lines are shown in black, the bisector of the acute angle is the red dashed line, and the bisector of the obtuse angle is the green dashed line.

Given u=(1,3,2) and v=(3,2,4), find a) u+2v b) ∥u−v∥ c) vector w if u+2w=v

Answers

We add the corresponding components of u and 2v to get  

a. u+2v = (7, 7, 10).

b. ∥u−v∥ = 3.

c. vector w is (1, -0.5, 1).

Given u=(1,3,2) and v=(3,2,4), let's find the following:

a) u+2v:

To find u+2v, we add the corresponding components of u and 2v.

u + 2v = (1, 3, 2) + 2(3, 2, 4)

= (1, 3, 2) + (6, 4, 8)

= (1+6, 3+4, 2+8)

= (7, 7, 10)

Therefore, u+2v = (7, 7, 10).

b) ∥u−v∥:

To find the norm of u-v, we subtract the corresponding components of u and v, square each component, sum them, and take the square root.

∥u−v∥ = √((1-3)² + (3-2)² + (2-4)²)

= √((-2)² + 1² + (-2)²)

= √(4 + 1 + 4)

= √9

= 3

Therefore, ∥u−v∥ = 3.

c) vector w if u+2w=v:

To find vector w, we can rearrange the equation u+2w=v and solve for w.

u + 2w = v

2w = v - u

w = (v - u)/2

w = (3, 2, 4) - (1, 3, 2)/2

w = (3-1, 2-3, 4-2)/2

w = (2, -1, 2)/2

w = (1, -0.5, 1)

Therefore, vector w is (1, -0.5, 1).

Learn more about corresponding components

https://brainly.com/question/32100338

#SPJ11

The histogram shows the heights of the student In Mrs. Sanche's class. What precent of the student are taller than 55 inches. Round your answer to the nearest tenth in necessary.

Answers

Approximately 99.9% of the students in Mrs. Sanchez's class are taller than 55 inches.

From the histogram, we can see that the heights are divided into different ranges. The relevant range for determining the percentage of students taller than 55 inches is "56-59" and "60-63".

First, we need to sum up the number of students in these two ranges, which is 86420. This represents the total number of students taller than 55 inches.

Next, we need to find the total number of students in the class. By adding up the number of students in all the height ranges, we get 20 + 10 + 86420 + 48 + 51 = 86549.

To calculate the percentage of students taller than 55 inches, we divide the number of students taller than 55 inches (86420) by the total number of students in the class (86549), and then multiply by 100.

(86420 / 86549) * 100 = 99.9 (rounded to the nearest tenth)

For more such questions on students

https://brainly.com/question/28521601

#SPJ8



A metalworker wants to make an open box from a sheet of metal, by cutting equal squares from each corner as shown.


a. Write expressions for the length, width, and height of the open box.

Answers

The expressions for the length, width, and height of the open box are L- 2x, W- 2x, x respectively.The diagram shows that the metalworker cuts equal squares from each corner of the sheet of metal.

To find the expressions for the length, width, and height of the open box, we need to understand how the sheet of metal is being cut to form the box.

When the metalworker cuts equal squares from each corner of the sheet, the resulting shape will be an open box. Let's assume the length and width of the sheet of metal are denoted by L and W, respectively.

1. Length of the open box:


To find the length, we need to consider the remaining sides of the sheet after cutting the squares from each corner. Since squares are cut from each corner,

the length of the open box will be equal to the original length of the sheet minus twice the length of one side of the square that was cut.

Therefore, the expression for the length of the open box is:


Length = L - 2x, where x represents the length of one side of the square cut from each corner.

2. Width of the open box:


Similar to the length, the width of the open box can be calculated by subtracting twice the length of one side of the square cut from each corner from the original width of the sheet.

The expression for the width of the open box is:


Width = W - 2x, where x represents the length of one side of the square cut from each corner.

3. Height of the open box:


The height of the open box is determined by the length of the square cut from each corner. When the metalworker folds the remaining sides to form the box, the height will be equal to the length of one side of the square.

Therefore, the expression for the height of the open box is:


Height = x, where x represents the length of one side of the square cut from each corner.

In summary:


- Length of the open box = L - 2x


- Width of the open box = W - 2x


- Height of the open box = x

Remember, these expressions are based on the assumption that equal squares are cut from each corner of the sheet.

To know more about square refer here:

https://brainly.com/question/28776767

#SPJ11

help if you can asap pls an thank you!!!!

Answers

Answer: SSS

Step-by-step explanation:

The lines on the triangles say that 2 of the sides are equal. Th triangles also share a 3rd side that is equal.

So, a side, a side and a side proves the triangles are congruent through, SSS

What is the perimeter of the rectangle with vertices at 4,5) 4,-1) , -5,-1) and -5,5)

Answers

Answer:

30 units

Step-by-step explanation:

(4,5) to (4,-1) = 6

(4,-1) to (-5,-1) = 9

(-5,-1) to (-5,5) = 6

(-5,5) to (4,5) = 9

6+9+6+9=30

In terms of regular polygons, as we saw earlier, let’s say we wanted to find an estimate for pi, which is used in finding the area of a circle. We won’t actually find an estimate, because the math is a bit tricky, but how would we go about finding that estimation? How can we change our polygon to look like a circle, and what does that mean about our variables in the equation we made above?

Answers

To estimate the value of π (pi) using regular polygons, we can utilize a method known as the method of inscribed and circumscribed polygons.

In this method, we start with a regular polygon inscribed inside a circle and another regular polygon circumscribing the same circle. By increasing the number of sides of these polygons, we can approach the shape of a circle more closely.

Let's consider a regular polygon with n sides inscribed inside a circle. The formula to calculate the perimeter (P) and the apothem (a) of this polygon is:

P = n * s (where s is the length of each side)
a = r * cos(π/n) (where r is the radius of the circle)

Using these values, we can find the area (A) of the inscribed polygon:

A = (1/2) * P * a
= (1/2) * n * s * r * cos(π/n)

Similarly, for the circumscribed polygon, the area can be calculated using the formula:

A' = (1/2) * n * s * R * cos(π/n)

where R is the radius of the circumscribing circle.

To estimate the value of π, we can compare the areas of these polygons and use the fact that the area of a circle (A_circle) is given by:

A_circle = π * r^2 = π * R^2

As the number of sides of the polygons increases, the ratio of the areas (A/A') will converge to the ratio of the area of the circle to the area of the circumscribed polygon (π * R^2 / A'). This ratio can be used as an estimate for π.

In the formulas for A and A', notice that the variables n (number of sides), s (length of side), r (radius of inscribed circle), and R (radius of circumscribed circle) are involved. As we increase the number of sides (n) of the polygons, the shape of the polygons becomes more like a circle, and the values of s, r, and R become closer to the radius of the circle.

By performing this calculation with polygons of increasing sides, we can obtain increasingly accurate estimates for the value of π. Although the mathematical calculations can be complex, the fundamental idea is to approximate the area of a circle by comparing it to the areas of polygons that closely resemble the circle.

If we use the limit comparison test to determine, then the series Invalid element converges.A O limit comparison test is inconclusive, one must use another test .BO diverges .CO neither converges nor diverges.D O h

Answers

If we use the limit comparison test to determine the convergence or divergence of a series, we compare it to a known series with known convergence behavior. However, in the given question, it states "Invalid element," which does not provide any specific series for analysis. Therefore, we cannot draw a conclusion regarding the convergence or divergence of the series without further information.

The limit comparison test is a method used to determine the convergence or divergence of a series by comparing it to a series whose convergence behavior is already known. The test states that if the limit of the ratio of the terms of the two series exists and is a positive finite number, then both series either converge or diverge together. However, if the limit is zero or infinity, the test is inconclusive, and another test must be used to determine the convergence or divergence.

In this case, since we do not have a specific series to analyze, we cannot apply the limit comparison test. We cannot make any assertions about the convergence or divergence of the series based on the given information.

To determine the convergence or divergence of a series, various other tests can be employed, such as the ratio test, root test, integral test, or comparison tests (such as the direct comparison test or the limit comparison test with a suitable series). These tests involve analyzing the properties and behavior of the terms in the series to make a determination. However, without specific information about the series in question, it is not possible to provide a conclusive answer regarding its convergence or divergence.

In summary, without a specific series to analyze, it is not possible to determine its convergence or divergence using the limit comparison test or any other test.

Learn more about divergence here

https://brainly.com/question/17177764

#SPJ11



The characteristics of function f(x)=a xⁿ are shown below.

Domain: All real numbers

Range: x ≤ 0

Symmetric with respect to the y -axis

What must be true about the values of a and n ?

A. a<0 and n is even

B. a<0 and n is odd

C. a>0 and n is even

D. a>0 and n is odd

Answers

The values of a and n must be such that a > 0 and n is even, based on the given characteristics of the function. This ensures that the function is defined for all real numbers, has a range of x ≤ 0, and is symmetric.

Based on the given characteristics of the function f(x) = ax^n, we can determine the values of a and n as follows:

Domain: All real numbers - This means that the function is defined for all possible values of x.

Range: x ≤ 0 - This indicates that the output values (y-values) of the function are negative or zero.

Symmetric with respect to the y-axis - This implies that the function is unchanged when reflected across the y-axis, meaning it is an even function.

From these characteristics, we can conclude that the value of a must be greater than 0 (a > 0) since the range of the function is negative. Additionally, the value of n must be even since the function is symmetric with respect to the y-axis.

Therefore, the correct choice is option C. a > 0 and n is even.

Learn more about function here:

https://brainly.com/question/28973926

#SPJ11

Consider the system dx = y + y² - 2xy dt dy 2x+x² - xy dt There are four equilibrium solutions to the system, including P₁ = Find the remaining equilibrium solutions P3 and P4. (8) P₁ = (-3). and P₂ =

Answers

The remaining equilibrium solutions P₃ and P₄ are yet to be determined.

Given the system of differential equations, we are tasked with finding the remaining equilibrium solutions P₃ and P₄. Equilibrium solutions occur when the derivatives of the variables become zero.

To find these equilibrium solutions, we set the derivatives of x and y to zero and solve for the values of x and y that satisfy this condition. This will give us the coordinates of the equilibrium points.

In the case of P₁, we are already given that P₁ = (-3), which means that x = -3. We can substitute this value into the equations and solve for y. By finding the corresponding y-value, we obtain the coordinates of P₁.

To find P₃ and P₄, we set dx/dt and dy/dt to zero:

dx/dt = y + y² - 2xy = 0

dy/dt = 2x + x² - xy = 0

By solving these equations simultaneously, we can determine the values of x and y for P₃ and P₄.

Learn more about equilibrium solutions

brainly.com/question/32806628

#SPJ11

Solve the LP problem. If no optimal solution exists, indicate whether the feasible region is empty or the objective function is unbounded. (Enter EMPTY the region is empty. Enter UNBOUNDED if the function is unbounded.) Minimize c = x + 2y subject to x + 4y2 23 6x + y2 23 x ≥ 0, y ≥ 0. C = (x, y) =

Answers

The LP problem has an optimal solution.

To solve the given LP problem, we minimize the objective function c = x + 2y subject to the following constraints:

1) x + 4y ≤ 23

2) 6x + y ≤ 23

3) x ≥ 0

4) y ≥ 0

First, we graph the feasible region determined by the constraints. The feasible region is the region in the xy-plane that satisfies all the given constraints. Then, we determine the corner points of the feasible region, which are the points where the objective function may attain its minimum value.

After evaluating the objective function at each corner point, we find the minimum value of the objective function occurs at a particular corner point (x, y).

Therefore, the LP problem has an optimal solution.

Learn more about linear programming and LP.

brainly.com/question/32482420

#SPJ11

Consider the integral I=∫(xlog e u ​ (x))dx

Answers

Answer:  x to the power of x+c

Step-by-step explanation:

Let I =∫xx (logex)dx

A dietitian in a hospital is to arrange a special diet using three foods, L,M, and N. Each ounce of food L contains 20 units of calcium, 5 units of iron, 20 units of vitamin A, and 20 units of cholesterol. Each ounce of food M contains 10 units of calcium, 5 units of iron, 30 units of vitamin A, and 20 units of cholesterol. Each ounce of food N contains 10 units of calcium, 5 units of iron, 20 units of vitamin A, and 18 units of cholesterol. Select the correct choice below and fill in any answer boxes present in your choice. If the minimum daily requirements are 340 units of calcium, 110 units of iron, and 480 units of vitamin A, how many ounces of each food should be used to meet the minimum requirements and at the same time minimize the cholesterol intake? A. The special diet should include x1​= ounces of food L,x2​=4 ounces of food M, and x3​=6 ounces of food N. B. There is no way to minimze the cholesterol intake. Select the correct choice below and fill in any answer boxes present in your choice. What is the minimum cholesterol intake? A. The minimum cholesterol intake is units. B. There is no minimum cholesterol intake.

Answers

The special diet should include 3 ounces of food L, 4 ounces of food M, and 6 ounces of food N. The correct option is A. The minimum cholesterol intake is 248 units, and the correct option is A.

To minimize the cholesterol intake while meeting the minimum requirements, we need to find the combination of foods L, M, and N that provides enough calcium, iron, and vitamin A.

Let's set up the problem using a system of linear equations. Let x₁, x₂, and x₃ represent the number of ounces of foods L, M, and N, respectively.

First, let's set up the equations for the nutrients:
20x₁ + 10x₂ + 10x₃ = 340 (calcium requirement)
5x₁ + 5x₂ + 5x₃ = 110 (iron requirement)
20x₁ + 30x₂ + 20x₃ = 480 (vitamin A requirement)

To minimize cholesterol intake, we need to minimize the expression:
20x₁ + 20x₂ + 18x₃ (cholesterol intake)

Now we can solve the system of equations using any method such as substitution or elimination.

By solving the system of equations, we find that the special diet should include:
x₁ = 3 ounces of food L
x₂ = 4 ounces of food M
x₃ = 6 ounces of food N

Therefore, choice A is correct: The special diet should include 3 ounces of food L, 4 ounces of food M, and 6 ounces of food N.

To find the minimum cholesterol intake, substitute the values of x₁, x₂, and x₃ into the expression for cholesterol intake:
20(3) + 20(4) + 18(6) = 60 + 80 + 108 = 248 units

Therefore, the minimum cholesterol intake is 248 units, and the correct choice is A: The minimum cholesterol intake is 248 units.

To know more about system of linear equations, refer to the link below:

https://brainly.com/question/20379472#

#SPJ11

If 90° <0< 180° and sin 0 = 2/7. find cos 20.
A-41/49
B-8/49
C8/49
D41/49

Answers

Answer:  41/49  (choice D)

Work Shown:

[tex]\cos(2\theta) = 1 - 2\sin^2(\theta)\\\\\cos(2\theta) = 1 - 2\left(\frac{2}{7}\right)^2\\\\\cos(2\theta) = 1 - 2\left(\frac{4}{49}\right)\\\\\cos(2\theta) = 1-\frac{8}{49}\\\\\cos(2\theta) = \frac{49}{49}-\frac{8}{49}\\\\\cos(2\theta) = \frac{49-8}{49}\\\\\cos(2\theta) = \frac{41}{49}\\\\[/tex]

A cylindrical shoe polish tin is 10cm in diameter and 3. 5cm deep
Calculate the capacity of the tin in cm³

Answers

The capacity of the cylindrical shoe polish tin is approximately 274.625 cm³.

To calculate the capacity of the cylindrical shoe polish tin, we need to find its volume.

The volume of a cylinder can be calculated using the formula V = πr²h, where V is the volume, r is the radius, and h is the height (or depth) of the cylinder.

Given that the tin has a diameter of 10 cm, we can find the radius by dividing the diameter by 2:

radius (r) = 10 cm / 2 = 5 cm

The height (h) of the tin is given as 3.5 cm.

Now we can substitute the values into the volume formula:

V = π(5 cm)²(3.5 cm)

Calculating the volume:

V = 3.14 * (5 cm)² * 3.5 cm

V = 3.14 * 25 cm² * 3.5 cm

V ≈ 274.625 cm³

Learn more about capacity here :-

https://brainly.com/question/32448828

#SPJ11

Identify the period, range, and amplitude of each function.

y=3 cos(-θ/3)

Answers

The given function is y = 3cos(-θ/3). The period of the given function is 6π, its range is [-3,3] and the amplitude of 3.

The period of a cosine function is determined by the coefficient of θ. In this case, the coefficient is -1/3. The period, denoted as T, can be found by taking the absolute value of the coefficient and calculating the reciprocal: T = |2π/(-1/3)| = 6π. Therefore, the period of the function is 6π.

The range of a cosine function is the set of all possible y-values it can take. Since the coefficient of the cosine function is 3, the amplitude of the function is |3| = 3. The range of the function y = 3cos(-θ/3) is [-3, 3], meaning the function's values will oscillate between -3 and 3.

- The period of a cosine function is the length of one complete cycle or oscillation. In this case, the function has a period of 6π, indicating that it will complete one full oscillation over an interval of 6π units.

- The range of the function y = 3cos(-θ/3) is [-3, 3] because the amplitude is 3. The amplitude determines the vertical stretch or compression of the function. It represents the maximum displacement from the average value, which in this case is 0. Therefore, the graph of the function will oscillate between -3 and 3 on the y-axis.

In summary, the given function y = 3cos(-θ/3) has a period of 6π, a range of [-3, 3], and an amplitude of 3.

Learn more about amplitude of a function here:

brainly.com/question/2744703

#SPJ11

According to a report from a particular university, 11.9% of female undergraduates take on debt. Find the probability that exactly 5 female undergraduates have taken on debt if 50 female undergraduates were selected at random. What probability should be found? A. P(5 female undergraduates take on debt) B. 1+P(5 female undergraduates take on debt) C. 1−P(5 female undergraduates take on debt) D. P(1 temale undergraduate takes on debt) The probability that exactly 5 female undergraduates take on debt is (Type an integer or decimal rounded to three decimal places as needed.)

Answers

The probability that should be found is A. P(5 female undergraduates take on debt).

To calculate this probability, we can use the binomial probability formula. In this case, we have 50 female undergraduates selected at random, and the probability that an individual female undergraduate takes on debt is 11.9% or 0.119.

The binomial probability formula is given by:

P(X = k) = (n C k) * p^k * (1 - p)^(n - k)

Where:

- P(X = k) is the probability of exactly k successes (in this case, 5 female undergraduates taking on debt).

- n is the total number of trials (in this case, 50 female undergraduates selected).

- k is the number of successes we want to find (in this case, exactly 5 female undergraduates taking on debt).

- p is the probability of success on a single trial (in this case, 0.119).

- (n C k) represents the number of combinations of n items taken k at a time, which can be calculated using the formula: (n C k) = n! / (k! * (n - k)!)

Now, let's calculate the probability using the formula:

P(5 female undergraduates take on debt) = (50 C 5) * (0.119)^5 * (1 - 0.119)^(50 - 5)

Calculating the combination and simplifying the expression:

P(5 female undergraduates take on debt) ≈ 0.138

Therefore, the probability that exactly 5 female undergraduates have taken on debt, out of a random selection of 50 female undergraduates, is approximately 0.138.

Learn more about probability here

https://brainly.com/question/25839839

#SPJ11

Which of the following equations has a graph that does not pass through the point (3,-4). A. 2x-3y=18 B. y = 5x-19 C. ¹+0= } D. 3x = 4y Question 18 Three siblings Trust, Hardlife and Innocent share 42 chocolate sweets according to the ratio 3:6:5, respectively. Their father buys 30 more chocolate sweets and gives 10 to each of the siblings. What is the new ratio of the sibling share of sweets? A. 19:28:35 B. 13:16: 15 C. 4:7:6 D. 10:19:16 Question 19 . The linear equation 5y-3-4-0 can be written in the form y = mx + c. Find the values of m and c. A. m = -3,c=0.8 B. m=0.6, c-4 C. m = -3,c=-4 D. m = 0.6, c = 0.8 Question 20 Three business partners Shelly-Ann, Elaine and Shericka share R150 000 profit from an invest- ment as follows: Shelly-Ann gets R57000 and Shericka gets twice as much as Elaine. How much money does Elaine receive? A. R124000 B. R101000 C. R62000 D. R31000 (4 Marks) (4 Marks) (4 Marks) (4 Marks)

Answers

The equation that does not pass through the point (3,-4) is:

A. 2x - 3y = 18

In mathematics, an equation is a statement that indicates that two expressions are equal. It typically consists of variables, constants, and mathematical operations. Equations are used to represent relationships and solve for unknown values.

To check if the point (3,-4) satisfies the equation, we substitute x = 3 and y = -4 into the equation:

2(3) - 3(-4) = 6 + 12 = 18

Since the left side of the equation is equal to the right side, the point (3,-4) does satisfy the equation.

As a result, none of the above equations have a graph that passes through the point (3,-4).

Learn more about equation

https://brainly.com/question/29657983

#SPJ11

Write down the two inequalities that define the shaded region in the diagram

Answers

The two inequalities that define the shaded region in the diagram are:

y ≥ 4 and y < x

How to Write Inequalities that define the Shaded Region?

For the solid vertical line, the slope (m) is 0. The inequality sign we would use would be "≥"  because the shaded region is to the left and the boundary line is solid.

The y-intercept is at 4, therefore, substitute m = 0 and b = 4 into y ≥ mx + b:

y ≥ 0(x) + 4

y ≥ 4

For the dashed line:

m = change in y / change in x = 1/1 = 1

b = 0

the inequality sign to use is: "<"

Substitute m = 1 and b = 0 into y < mx + b:

y < 1(x) + 0

y < x

Thus, the two inequalities are:

y ≥ 4 and y < x

Learn more about Inequalities on:

https://brainly.com/question/24372553

#SPJ1

Find an explicit formula for the sequence that is a solution to the following recurrence relation and initial conditions (use the method of characteristic equation):
ak = 2ak−1 + 3ak−2 , for all integers k ≥ 2 a0 =1, a1 = 2

Answers

The explicit formula for the sequence that satisfies the given recurrence relation and initial conditions is ak = (1/2)[tex]3^k[/tex]+ (1/2)[tex](-1)^k[/tex], where k is an integer and ak represents the k-th term in the sequence.

To find an explicit formula for the sequence that satisfies the given recurrence relation and initial conditions, we can use the method of characteristic equation.

Let's assume the explicit formula for the sequence is of the form ak = [tex]r^k[/tex], where r is a constant to be determined.

Substituting this assumption into the recurrence relation, we get:

[tex]r^k[/tex] = 2([tex]r^{k-1}[/tex]) + 3([tex]r^{k-2}[/tex])

Dividing both sides by [tex]r^{k-2}[/tex], we have:

r² = 2r + 3

This equation is the characteristic equation.

To find the values of r, we can solve this quadratic equation:

r² - 2r - 3 = 0

Factoring this equation, we get:

(r - 3)(r + 1) = 0

So, r = 3 or r = -1.

Therefore, the general solution for the recurrence relation is given by:

ak = C₁[tex]3^k[/tex] + C₂[tex](-1)^k[/tex]

Now, we can use the initial conditions to determine the values of C₁ and C₂.

Using a₀ = 1 and a₁ = 2, we get:

a₀ = C₁3⁰ + C2(-1)⁰ = C₁ + C₂ = 1

a₁ = C₁3¹ + C₂(-1)¹ = 3 C₁ - C₂ = 2

Solving these equations, we find C₁ = 1/2 and C₂ = 1/2.

Therefore, the explicit formula for the sequence that satisfies the given recurrence relation and initial conditions is:

ak = (1/2)[tex]3^k[/tex]+ (1/2)[tex](-1)^k[/tex]

To know more about explicit formula:

https://brainly.com/question/25094536

#SPJ4

-7 0 0 0 8 -3 4 0 X'(t) = 1 0 -5 0 X (t) 2 1 4 -1 4 X0 = 5 6 7 1. (67 points) Use Theorem 1 on page 350 to solve the above system of differential equations (see section 5.6 vidco).
M
2. (33points) Use your solution to show that your solution solves the original system of differential equations.

Answers

To solve the system, we need to compute the matrix exponential of M, e^(M * t). Once we have that, we can multiply it by the initial condition vector X0 to obtain the solution X(t).

To solve the system of differential equations using Theorem 1, we first need to rewrite the system in matrix form. Let's define the matrices:

X(t) = [x1(t), x2(t), x3(t), x4(t)]^T,

X'(t) = [dx1/dt, dx2/dt, dx3/dt, dx4/dt]^T,

and rewrite the system as:

X'(t) = M * X(t),

where M is the coefficient matrix. Comparing with the given system:

-7 * dx1/dt + 0 * dx2/dt + 0 * dx3/dt + 0 * dx4/dt = x1(t),

8 * dx1/dt - 3 * dx2/dt + 4 * dx3/dt + 0 * dx4/dt = x2(t),

0 * dx1/dt + 0 * dx2/dt + 0 * dx3/dt + 0 * dx4/dt = x3(t),

2 * dx1/dt + 1 * dx2/dt + 4 * dx3/dt - 1 * dx4/dt = x4(t).

We can see that the coefficient matrix M is:

M = [ -7, 0, 0, 0;

8, -3, 4, 0;

0, 0, 0, 0;

2, 1, 4, -1 ].

Now, let's solve this system of differential equations using Theorem 1. According to Theorem 1, the general solution is given by:

X(t) = e^(M * t) * X0,

where e^(M * t) is the matrix exponential of M, and X0 is the initial condition vector.

To solve the system, we need to compute the matrix exponential of M, e^(M * t). Once we have that, we can multiply it by the initial condition vector X0 to obtain the solution X(t).

For the second part of your question, we will substitute the solution X(t) into the original system of differential equations and verify that it satisfies the equations.

to learn more about matrix exponential.

https://brainly.com/question/32572234

#SPJ11

Determine whether the given value is a statistic or a parameter. In a study of all 3237 seniors at a college, it is found that 55% own a computer.

Answers

The given value, 55%, is a statistic. A statistic is a numerical summary of a sample.

To determine whether it is a statistic or a parameter, we need to understand the definitions of these terms:

- Statistic: A statistic is a numerical value that describes a sample, which is a subset of a population. It is used to estimate or infer information about the corresponding population.

- Parameter: A parameter is a numerical value that describes a population as a whole. It is typically unknown and is usually estimated using statistics.

In this case, since the study includes all 3237 seniors at the college, the value "55%" represents the proportion of the entire population of seniors who own a computer. Therefore, it is a statistic.

Learn more about statistic here:

brainly.com/question/13281171

#SPJ11

Solve for x. 14*+5 = 11-4x Round your answer to the nearest thousandth. Do not round any intermediate computations. X = -1.079 X S ?

Answers

The solution for x in the equation 14x + 5 = 11 - 4x is approximately -1.079 when rounded to the nearest thousandth.

To solve for x, we need to isolate the x term on one side of the equation. Let's rearrange the equation:

14x + 4x = 11 - 5

Combine like terms:

18x = 6

Divide both sides by 18:

x = 6/18

Simplify the fraction:

x = 1/3

Therefore, the solution for x is 1/3. However, if we round this value to the nearest thousandth, it becomes approximately -1.079.

Learn more about equation here

https://brainly.com/question/24169758

#SPJ11

Consider the line with the equation: y=x−18 Give the equation of the line parallel to Line 1 which passes through (6,−3) : Give the equation of the line perpendicular to Line 1 which passes through (6,−3) :

Answers

The equation of the line perpendicular to Line 1 which passes through (6, -3) is: y = -x + 3.

To find the equation of the line parallel to Line 1 that passes through (6, -3), we know that both lines have the same slope. Thus, the new line's slope is 1. To find the y-intercept, we can substitute the x and y coordinates of the given point (6, -3) into the equation and solve for b: -3 = (1)(6) + b-3 = 6 + b-9 = b

Therefore, the equation of the line parallel to Line 1 which passes through (6, -3) is: y = x - 9.

To find the equation of the line perpendicular to Line 1 that passes through (6, -3), we know that the new line's slope is the negative reciprocal of Line 1's slope. Line 1's slope is 1, so the new line's slope is -1. To find the y-intercept, we can substitute the x and y coordinates of the given point (6, -3) into the equation and solve for b: -3 = (-1)(6) + b-3 = -6 + b3 = b

Therefore, the equation of the line perpendicular to Line 1 which passes through (6, -3) is: y = -x + 3.

To know more about line, visit:

https://brainly.com/question/30003330

#SPJ11

Answer the following question about quadrilateral DEFG. Which sides (if any) are congruent? You must show all your work.

Answers

To determine which sides of quadrilateral DEFG are congruent, we need more information about the shape and measurements of the quadrilateral.

Without any additional information, it is not possible to determine the congruency of the sides. A quadrilateral is a polygon with four sides. In general, a quadrilateral can have different side lengths, and without specific measurements or properties provided for DEFG, we cannot determine if any sides are congruent. Congruent sides are sides that have the same length. In a quadrilateral, there are several possibilities for congruent sides, such as:

A parallelogram, where opposite sides are congruent.

A rectangle, where all four sides are congruent.

A rhombus, where all four sides are congruent.

A square, where all four sides are congruent and all angles are right angles. Without information about the shape or properties of DEFG, we cannot make any conclusions about the congruency of its sides. To determine the congruency of sides, we would typically need information such as side lengths, angle measurements, or specific properties of the quadrilateral.

Learn more about quadrilateral here

https://brainly.com/question/23935806

#SPJ11

Other Questions
all of the following are true about 2022 distributions and contributions to section 529 plans except: a deduction of up to $10,000 per taxpayer ($20,000 mfj) is available on the federal income tax return for contributions. distributions may be used to pay the costs of participation in a registered apprenticeship program. distributions may be used to pay up to $10,000 in qualified student loans. nonqualified distributions are subject to a penalty tax of 10% of the amount included in income. i really really really really really need help PLEASE, help please. A MAOI (monoamine oxidase inhibitor) blocks the enzyme MAO from degrading (clearing out) monoamine neurotransmitters (such as serotonin and dopamine). What would be the effect? a.Increased reuptake of serotonin b.Decreased serotonin available to bind to postsynaptic receptorsc.Decreased reuptake of serotonin d.Increased serotonin in the synaptic cleft "Fora converging lens with a 25.0cm focal length, an object with aheight of 6cm is placed 30.0cm to the left of the lensa. Draw a ray tracing diagram of the object and the resultingimages How a project links to the TIPS Business LeadershipFramework Order the following fractions from least to greatest: 8 5,3-2 Provide your answer below: I 1. Summary of the most important customer persona factors that the company should be aware of in designing the marketing mix (Awake Chocolate)2. Key characteristics on which customers may differ (Awake Chocolate) A rigid bar of length 1.5 m is at rest relative to frame S'. If it makes an angle O' = 45 with the X-axis, find the length of the bar and its orientation relative to the frame S, when v=0.95c. = thermodynamics theory alone:a) Can study the forces between molecules in a liquidb) Can calculate the absolute value of pressure of a gasC) Cannot determine the relationship between temperature and the volume of a solidd) None of the above The patient was taking digoxin correctly as prescribed for atrialflutter. The patient developed bradycardia from the digoxin.This isthe inital encounter for treatment. The principal CM diagnosisis You work for Hoosier Corp, a great company that offers a 401(k) plan for all of its employees. One of the investment options in the 401(k) plan is a savings account which has a APY of 2.5%. At the start of last year, you contributed $1,000 to your 401(k) account and put the money in the savings account in the 401(k) plan.You also have a savings account with Bank of Hoosier which has a APY of 3%. This account is taxable. At the start of last year, you deposited $2,000 to this savings account.If your tax rate is 15%, which account gives you the higher after-tax rate of return last year? Assume you are not withdrawing any money from your 401(k) account but let it grow tax-deferred.A. The savings account in your 401(k) planB. The savings account with Bank of HoosierC. The after-tax rate of returns are the same for both accounts Can you spot the six errors? As reported in Plato's account, The Apology, Socrates famously claimed at his trial that "The unexamined life is not worth living." Examine the thoughts of the ancient Greek philosophers. Engage with the philosophical ideas and reflect on how certain philosophical ideas have impacted your own life.In the first part of the Touchstone, you will be distinguishing between the three primary branches of philosophy.Consider the three following questions:What is knowledge?What is reality made of?What is the good life and how ought I to live it?These fundamental questions were considered in different forms by the major figures in ancient Greek philosophy. But they are also critical questions for our own lives today, whether we are philosophers or not.Answer the following questions:First, define philosophy and then distinguish and define each of the three main branches of philosophy.Then, identify which of the above questions is associated with each branch of philosophy.Illustrate the differences between the three branches of philosophy. (For example, explain how Socrates would answer the question "What is knowledge?" or how Epictetus would answer the question "What is the good life?")Reflect on the philosophical mindset and apply them to your own life. Reflect on the following questions:What does it mean to think philosophically? How can thinking philosophically help you in your own life?What impact do the ideas of the ancient Greek philosophers have on your own views and opinions?Then, based on these reflections, give your own answer to one of these three philosophical questions; ("What is knowledge?"; "What is reality?"; "What is the good life?").PLEASE BE EXTREMELY DETAILED!!no c o p y w r i g t "What term is used to describe how the sensory and motor system develop and are used together to develop posture and balance? A. Postural reactionB. Reflex C. CouplingD. Calibration E. Coincidence-Anticipation According to just world theory, our need to believe that the world is a fair and just place has what sort of effect on helping?Group of answer choicesIt increases helping whenever someone is suffering.It can increase helping when the victims are viewed as innocently suffering, but it can decrease helping when victims are viewed as deserving to suffer.It increases helping when victims are viewed as doing something to cause their own suffering.It almost always decreases helping because any person needing help is thought to be "bad" or causing their own suffering. Which of the following sentences has a mistake? 1. We have a great basketball team this year. 2. We have practices, have worked out and played very hard. 3. I dont think anyone will be able to beat us. 4. It is looking like we are going to be undefeated all the way to the championship. 2.60 cm in 0.056 5. The tick marks alona the axis are separated by 2.0 cm. (a) What is the amplitude? X m (b) What is the wavelength? min (c) What is the whyespned? m/s (d) Wrat is the frequency? Hz Poland broke the shackles of soviet communist domination three decades ago. Free for the first time since world War 2, Poland cast off its yoke of government control and central planning in favor of the American style free enterprise system where comsumers, not elected officials or bureaucrats, drive investment, production and buying decisions.The result to the polish economy is that price will determine....A.only mix of output to be produced and the resources to be used in the production processB. Only the resources to be used in the production process and for whom the output is producedC. The mix of output to be produced the resources to be produced the resources to be used in the production process abd for who the output is producedD. Only for whom the output is produced and the mix to be produced Write the polynomial f(x) that meets the given conditions. Answers may vary. Degree 2 polynomial with zeros of 4+6i and 4-6i. 2 f(x) = x - 2x + 52 X 5 Which of the following sentences has no punctuation, spelling, or grammar mistakes? Bill Gates is one of the richest people in the world, because of his smart business practices. Bill Gates is one of the richest people in the world because of his smart business practices. Bill Gates is one of the richest people in the world because of his smart, business practices. Bill Gates is one of the richest people in the world; because of his smart business practices.