Mr Clink has the genotype IOIO
Mrs Clink has genotype IOIA
The child can not belong to them because the IAIB genotype is not in the Punnet square shown
What is genotype?Genotype refers to the genetic makeup of an organism, specifically the combination of alleles (different versions of genes) inherited from its parents. It determines the traits that an organism will express, including physical characteristics, behavioral traits, and susceptibility to certain diseases.
The mother's genotype in question 2 is IOIO
The father's genotype is IAIB
The baby belongs to them because it is possible from the Punnet square shown
Learn more about genotype:https://brainly.com/question/12116830
#spj1
Conservation of Mass In chemical reactions, mass is neither gained nor lost. The total mass of all the reactants equals the total mass of all the products. Atoms are just rearranged into different compounds. Using this idea, solve the following problems. 1. 2KCIO3 2KCI+ 30₂ If 500 g of KCIO, decomposes and produces 303 g of KCI, how many grams of O₂ are produced? 2. N₂ + 3H₂ 2NH3 How many grams of H₂ are needed to react with 100 g of N₂ to produce 121 g of NH₂? 3. 4Fe +30₂ 2Fe₂O3 How many grams of oxygen are needed to react with 350 g of iron to produce 500 g of Fe₂O3? 4. CH₂ + 20₂2 CO₂ + 2H₂O 16 g of CH₂ react with 64 g of O₂, producing 44 g of CO₂ How many grams of water are produced? 5. CaCO3 Cao + CO, How much CO, is produced from the decomposition of 200 g of CaCO, if 112 g of CaO are produced?
Answer:
1. The balanced equation is 2KCIO3 → 2KCI + 3O2. According to the law of conservation of mass, the mass of the reactants must equal the mass of the products. Therefore, the mass of oxygen produced is:
Mass of oxygen = Mass of KCIO3 - Mass of KCI
Mass of oxygen = 500 g - 303 g
Mass of oxygen = 197 g
Therefore, 197 g of O2 are produced.
2. The balanced equation is N2 + 3H2 → 2NH3. We need to find out how much H2 is needed to react with 100 g of N2 to produce 121 g of NH3. First, we need to calculate the number of moles of N2 and NH3:
Moles of N2 = Mass of N2 / Molar mass of N2
Moles of N2 = 100 g / 28 g/mol
Moles of N2 = 3.57 mol
Moles of NH3 = Mass of NH3 / Molar mass of NH3
Moles of NH3 = 121 g / 17 g/mol
Moles of NH3 = 7.12 mol
According to the balanced equation, 1 mole of N2 reacts with 3 moles of H2 to produce 2 moles of NH3. Therefore, the number of moles of H2 needed is:
Moles of H2 = Moles of N2 x (3/1)
Moles of H2 = 3.57 mol x 3
Moles of H2 = 10.71 mol
Finally, we can calculate the mass of H2 needed:
Mass of H2 = Moles of H2 x Molar mass of H2
Mass of H2 = 10.71 mol x 2 g/mol
Mass of H2 = 21.42 g
Therefore, 21.42 g of H2 are needed.
3. The balanced equation is 4Fe + 3O2 → 2Fe2O3. We need to find out how much oxygen is needed to react with 350 g of Fe to produce 500 g of Fe2O3. First, we need to calculate the number of moles of Fe and Fe2O3:
Moles of Fe = Mass of Fe / Molar mass of Fe
Moles of Fe = 350 g / 55.85 g/mol
Moles of Fe = 6.26 mol
Moles of Fe2O3 = Mass of Fe2O3 / Molar mass of Fe2O3
Moles of Fe2O3 = 500 g / 159.69 g/mol
Moles of Fe2O3 = 3.13 mol
According to the balanced equation, 4 moles of Fe react with 3 moles of O2 to produce 2 moles of Fe2O3. Therefore, the number of moles of O2 needed is:
Moles of O2 = Moles of Fe x (3/4)
Moles of O2 = 6.26 mol x (3/4)
Moles of O2 = 4.69 mol
Finally, we can calculate the mass of O2 needed:
Mass of O2 = Moles of O2 x Molar mass of O2
Mass of O2 = 4.69 mol x 32 g/mol
Mass of O2 = 150.08 g
Therefore, 150.08 g of O2 are needed.
4. The balanced equation is CH2 + 2O2 → CO2 + 2H2O. We know that 16 g of CH2 reacts with 64 g of O2 to produce 44 g of CO2. We need to find out how much water is produced. First, we need to calculate the number of moles of CH2 and CO2:
Moles of CH2 = Mass of CH2 / Molar mass of CH2
Moles of CH2 = 16 g / 14 g/mol
Moles of CH2 = 1.14 mol
Moles of CO2 = Mass of CO2 / Molar mass of CO2
Moles of CO2 = 44 g / 44 g/mol
Moles of CO2 = 1 mol
According to the balanced equation, 1 mole of CH2 reacts with 2 moles of O2 to produce 2 moles of H2O. Therefore, the number of moles of H2O produced is:
Moles of H2O = Moles of CH2 x (2/1)
Moles of H2O = 1.14 mol x 2
Moles of H2O = 2.28 mol
Finally, we can calculate the mass of H2O produced:
Mass of H2O = Moles of H2O x Molar mass of H2O
Mass of H2O = 2.28 mol x 18 g/mol
Mass of H2O = 41.04 g
Therefore, 41.04 g of H2O are produced.
5. The balanced equation is CaCO3 → CaO + CO2. We need to find out how much CO2 is produced from the decomposition of 200 g of CaCO3 if 112 g of CaO are produced. First, we need to calculate the number of moles of CaCO3 and CaO:
Moles of CaCO3 = Mass of CaCO3 / Molar mass of CaCO3
Moles of CaCO3 = 200 g / 100.09 g/mol
Moles of CaCO3 = 1.999 mol
Moles of CaO = Mass of CaO / Molar mass of CaO
Moles of CaO = 112 g / 56.08 g/mol
Moles of CaO = 1.999 mol
According to the balanced equation, 1 mole of CaCO3 produces 1 mole of CaO and 1 mole of CO2. Therefore, the number of moles of CO2 produced is:
Moles of CO2 = Moles of CaCO3 x (1/1)
Moles of CO2 = 1.999 mol
Finally, we can calculate the mass of CO2 produced:
Mass of CO2 = Moles of CO2 x Molar mass of CO2
Mass of CO2 = 1.999 mol x 44 g/mol
Mass of CO2 = 87.96 g
Therefore, 87.96 g of CO2 are produced.
What is the percent of Ca in
Ca(C2H3O2)2?
(Ca = 40.08 g/mol, C = 12.01 g/mol,
H= 1.01 g/mol, O = 16.00 g/mol)
[?] % Ca
Answer:
25.3%
Explanation:
Since
Ca has just 1 mole
Ca ×1 = 40.08
C has 4 moles
C×4 = 48.04
H has 6 moles
H×6 = 6.06
O has 4 moles
O×4 = 64
64+6.06+48.04+40.08=158 (approx.)
40.08÷158 ×100% = 25.3%
How many significant figures are in 6.07×10^14
Answer:3
Explanation: counting from left to right there is 3 sig figs.
In the reaction NH3(g) + O2(g) → NO(g) + H₂O(g) How many grams of H₂0 are generated when 1.54 moles of NH3 react?
Answer: 2.31 mole H2O
Explanation: blance the equation first
4 NH3 + 5O2 --> 4 NO + 6 H20
1.54 moles NH3 x ( 6 mole H20/ 4 moles NH3) X (18 g H20/1mole H20)
2.31 mole H20
Barium – 122 has a half-life of 2 minutes. Suppose you obtain a sample weighing 20.0 g and it takes 10 minutes to set up an experiment. How many grams of Barium – 122 will remain at the point when you begin the experiment?
What are the best insulators to keep ice from melting for at least twenty minutes? Please name at least 6.
Answer:
Here are six materials that are good insulators to keep ice from melting for at least twenty minutes:
Styrofoam: This material is often used to make insulated coolers because of its low thermal conductivity, which makes it an excellent insulator.
Fiberglass: This material is often used in insulation for walls and attics because it traps air and reduces heat transfer.
Polyurethane foam: This material is used to insulate refrigerators and freezers because of its excellent thermal insulation properties.
Cellulose insulation: This is a type of insulation made from recycled materials that provides good thermal insulation.
Mineral wool: This is a type of insulation made from natural rock materials that provides good thermal insulation and fire resistance.
Aerogel: This is a highly effective insulator made from a gel-like substance that has been dried to create a material that is more than 95% air. It is often used in scientific applications where extreme temperature control is required.
I don’t get this at allll
The volume of the nitrogen oxide gas is 35.2 L
How do you apply stoichiometry?Stoichiometry is the quantitative study of reactants and products in a chemical reaction. It is used to determine the amount of reactants needed to produce a certain amount of product, or to determine the amount of product that will be produced from a given amount of reactant.
To apply stoichiometry;
We know that;
Number of moles of Cu = 150/ 63.5g/mol = 2.36 moles
If 3 moles of Cu produced 2 moles of NO
2.36 moles of Cu will produce 2.36 * 2/3
= 1.57 moles
If 1 moles of NO occupies 22.4 L
1.57 moles of NO will occupy 1.57 * 22.4/1
= 35.2 L
Learn more about stoichiometry:https://brainly.com/question/30215297
#SPJ1
Calculate the amount of energy in kilojoules needed to change 207 g
of water ice at −
10 ∘C
to steam at 125 ∘C
. The following constants may be useful:
Cm (ice)=36.57 J/(mol⋅∘C)
Cm (water)=75.40 J/(mol⋅∘C)
Cm (steam)=36.04 J/(mol⋅∘C)
ΔHfus=+6.01 kJ/mol
ΔHvap=+40.67 kJ/mol
Therefore, the amount of energy required to change 207 g of water ice at −10 ∘C to steam at 125 ∘C is 744.3618 kJ.
What does kJ mean in terms of energy?Similar to how kilometres measure distance, a kilojoule is a measurement used to measure energy. Some nations continue to use the Calories (Cal) system, which was once used to quantify food energy. These are the conversions: 1 kJ equals 0.2 Cal.
To figure out how much energy is needed to convert 207 g of water ice at -10°C to steam at 125°C, we must divide the process into several stages and figure out how much energy is needed for each one:
Heating ice from -10°C to 0°C:
q1 = m × Cm(ice) × ΔT
= 207 g ÷ 18.02 g/mol × 36.57 J/(mol⋅∘C) × (0 - (-10)) ∘C
= 41324.8 J
= 41.3248 kJ
Melting ice at 0°C:
q2 = n × ΔHfus
= m ÷ M × ΔHfus
= 207 g ÷ 18.02 g/mol × 6.01 kJ/mol
= 56.804 kJ
Heating water from 0°C to 100°C:
q3 = m × Cm(water) × ΔT
= 207 g ÷ 18.02 g/mol × 75.40 J/(mol⋅∘C) × (100 - 0) ∘C
= 174667.6 J
= 174.6676 kJ
Vaporizing water at 100°C:
q4 = n × ΔHvap
= m ÷ M × ΔHvap
= 207 g ÷ 18.02 g/mol × 40.67 kJ/mol
= 467.7326 kJ
Heating steam from 100°C to 125°C:
q5 = m × Cm(steam) × ΔT
= 207 g ÷ 18.02 g/mol × 36.04 J/(mol⋅∘C) × (125 - 100) ∘C
= 3832.8 J
= 3.8328 kJ
Total energy required:
qtotal = q1+q2+q3+q4+q5
= 41.3248 kJ + 56.804 kJ + 174.6676 kJ + 467.7326 kJ + 3.8328 kJ
= 744.3618 kJ.
To know more about energy visit:-
https://brainly.com/question/8630757
#SPJ9
Which statement describes gases
according to kinetic molecular theory?
According to the kinetic molecular theory, gases are described by the following statement:
Gases consist of small particles (atoms or molecules) that are in constant random motion.What does the statement meanThis statement highlights that gases are made up of particles that are in constant motion, moving in straight lines until they collide with another particle or the walls of the container.
The motion of gas particles is random, and their energy increases as the temperature of the gas increases. The kinetic molecular theory also suggests that the particles in a gas are far apart from each other and do not attract or repel each other, except during collisions.
Additionally, the kinetic molecular theory states that the pressure of a gas is caused by the collisions of gas particles with the walls of the container. The higher the concentration of gas particles or the faster they are moving, the greater the pressure of the gas.
Learn more about kinetic molecular theory at:
https://brainly.com/question/15451798
#SPJ1
Which of the following could be a useful IPM monitoring strategy to reduce crop damage from pests?
A.mating disruption devices B.noisemakers C.pesticides D.forecasting software
Answer:
C. pesticides
Explanation:
hope it helps :)
Zinc reacts with hydrochloric acid according to the reaction equation
Zn(s) + 2 HCl(aq) → ZnCl₂(aq) + H₂(g)
How many milliliters of 1.50 M HCl(aq) are required to react with 5.05 g Zn(s)?
volume: ___ mL
Answer:
many milliliters of 1.50 M HCl(aq) are required to react with 5.05 g Zn(s)?
volume: 16 mL
First, we need to calculate the number of moles of Zn:
m(Zn) = 5.05 g
M(Zn) = 65.38 g/mol (molar mass of Zn)
n(Zn) = m(Zn) / M(Zn) = 5.05 g / 65.38 g/mol = 0.0773 mol
According to the balanced chemical equation, 1 mole of Zn reacts with 2 moles of HCl. Therefore, the number of moles of HCl needed is:
n(HCl) = 2 × n(Zn) = 2 × 0.0773 mol = 0.1546 mol
Now we can use the molarity of the HCl solution to calculate the volume needed:
M(HCl) = 1.50 mol/L
n(HCl) = V(HCl) × M(HCl)
V(HCl) = n(HCl) / M(HCl) = 0.1546 mol / 1.50 mol/L = 0.103 L = 103 mL
Therefore, we need 103 mL of 1.50 M HCl(aq) to react with 5.05 g Zn(s).
help please need by tomorrow
A metal object with mass of 20.9 g is heated to 97.0 ∘C and then transferred to an insulated container containing 86.0 g of water at 20.5 ∘C. The water temperature rises and the temperature of the metal object falls until they both reach the same final temperature of 24.1 ∘C.
What is the specific heat of this metal object? Assume that all the heat lost by the metal object is absorbed by the water.
Answer:
To find the specific heat of the metal object, we can use the equation:
q = mcΔT
where q is the amount of heat transferred, m is the mass of the object, c is the specific heat capacity, and ΔT is the change in temperature.
We know that the metal object loses heat while the water gains heat, and the total amount of heat lost by the metal object is equal to the total amount of heat gained by the water:
qmetal = qwater
Using the equation above for each of these, we get:
mcΔT = mwatercwaterΔTwater
where cwater is the specific heat capacity of water and mwater is the mass of water.
Substituting in the given values, we get:
(20.9 g)(c)(97.0 °C - 24.1 °C) = (86.0 g)(4.184 J/g·°C)(24.1 °C - 20.5 °C)
Simplifying and solving for c, we get:
c = [(86.0 g)(4.184 J/g·°C)(24.1 °C - 20.5 °C)] / [(20.9 g)(97.0 °C - 24.1 °C)]
c = 0.385 J/g·°C
Therefore, the specific heat of the metal object is 0.385 J/g·°C.
how many hydrogen atoms are in 2 moles of h2o?
Answer:
1 mole = 6.022×10^23 atoms. 1 water molecule = 2 Hydrogen atoms + 1 oxygen atom. So, 1 mole H2O = 1.2044×10^24 hydrogen atoms. Therefore 2 mole H2O will have 2.4088×10^24 hydrogen atoms.
Explanation:
How many moles of MgS are in 1.00g MgS?
Answer:
24.31 g/mol.
Explanation:
moles =mass/molar mass
n=w/m
How many moles of hydrogen (H ₂) would it take to make 600 grams of
ammonia (NH,)? (round to 3 significant figures)
N₂ (g) + 3H₂ (g) → 2NH₂ (g)
Hydrogen (H₂) would take 52.8 moles of H₂ to make 600 grams of NH₃.
What are the moles?
The molar mass of NH₃ is 17.03 g/mol (14.01 g/mol for nitrogen and 3.02 g/mol for hydrogen).
To determine the number of moles of H₂ required to make 600 grams of NH₃, we need to first find the number of moles of NH₃:
moles NH₃ = mass of NH₃ / molar mass of NH₃
moles NH₃ = 600 g / 17.03 g/mol
moles NH₃ = 35.2 mol
According to the balanced chemical equation, 3 moles of H₂ are required to produce 2 moles of NH₃.
So, the number of moles of H₂ required to make 35.2 moles of NH₃ would be:
moles H₂ = (3/2) x moles NH₃
moles H₂ = (3/2) x 35.2 mol
moles H₂ = 52.8 mol
Therefore, it would take 52.8 moles of H₂ to make 600 grams of NH₃.
To know more about moles, visit:
https://brainly.com/question/20486415
#SPJ1
Complete question is: Hydrogen (H₂) would take 52.8 moles of H₂ to make 600 grams of NH₃.
In a heat engine, 700 J of heat enters the system, and the piston does 400 J of work.
What is the final internal (thermal) energy of the system if the initial energy is 1200 J?
Responses
300 J
300 J
900 J
900 J
1100 J
1100 J,
1500 J
Answer:
2300J
Explanation:
The first law of thermodynamics states that the change in internal energy of a system is equal to the heat added to the system minus the work done by the system:
ΔU = Q - W
Where ΔU is the change in internal energy, Q is the heat added to the system, and W is the work done by the system.
In this case, ΔU is what we want to find, Q is 700 J, and W is -400 J (note that the work done by the system is negative because it is done on the surroundings). Substituting these values into the equation:
ΔU = Q - W
ΔU = 700 J - (-400 J)
ΔU = 700 J + 400 J
ΔU = 1100 J
The final internal energy of the system is therefore 1100 J + the initial energy of 1200 J, which equals 2300 J.
When 25 mL of 1.0M H₂SO4 is added to 50 mL of 1.0 M NaOH at 25°C in a calorimeter,
the temperature of the aqueous solution increases to 33.9 °C. Assuming that the specific
heat of the solution is 4.18 J/g°C, that its density is 1.00/mL, and that the calorimeter
itself absorbs a negligible amount of heat, calculate the amount of heat absorbed for the
reaction.
Answer: The amount of heat absorbed for the reaction of 25 mL of 1.0 M H₂SO4 and 50 mL of 1.0 M NaOH, resulting in a temperature increase from 25°C to 33.9°C, is 10.14 kJ.
Explanation:
1.Explain the Theory of Plate Tectonics and provide three observations about the earth
that provide evidence to support the theory. Describe how plate tectonics cause
major geological events such as ocean basins, earthquakes, and volcanic eruptions.
Be sure to:
• Use science terms appropriately
.
• Organize and develop your ideas effectively
• Choose your words carefully
.
• Edit your writing for grammar, mechanics, and spelling
The Theory of Plate Tectonics is a scientific theory that explains how the Earth's outer shell is composed of several large plates that move and interact with each other over time.
What is the theory of plate tectonics?Three observations about the Earth that provide evidence to support the Theory of Plate Tectonics are:
Earthquakes: Earthquakes occur when the movement and interaction of the tectonic plates cause rocks to fracture and shift. These seismic events are most common along the boundaries of the tectonic plates, where the movement and interaction are most pronounced. The distribution of earthquakes around the world is consistent with the theory of plate tectonics.
Volcanic Activity: Volcanic activity is closely related to the movement of tectonic plates. Many of the world's most active and well-known volcanoes are located near plate boundaries, where the movement and interaction of plates lead to the formation of magma chambers and the release of volcanic material. This relationship between volcanoes and plate boundaries supports the theory of plate tectonics.
Continental Drift: The theory of plate tectonics also explains the phenomenon of continental drift, which refers to the movement of the Earth's continents over time. According to this theory, the continents are part of the tectonic plates and have moved and shifted over millions of years. The fit of the coastlines of Africa and South America is a well-known example of continental drift and supports the theory of plate tectonics.
Learn more about plate tectonics:https://brainly.com/question/19317822
#SPJ1
**If you have 5.0 moles of calcium, how many moles of calcium carbonate will be produced?
5.0 moles of calcium will produce 5.0 moles of calcium carbonate.
The equation for the reaction of calcium and carbon dioxide is:Ca + CO2 → CaCO3
Therefore, for every 1 mole of calcium, 1 mole of calcium carbonate will be produced.
Given: 5.0 moles of calcium
Therefore, 5.0 moles of calcium carbonate will be produced.
The reaction of calcium and carbon dioxide produces calcium carbonate. For every 1 mole of calcium, 1 mole of calcium carbonate will be produced. In this case, 5.0 moles of calcium will result in the production of 5.0 moles of calcium carbonate.
This reaction is used in a variety of applications, such as the production of cement, lime, and mortar. Calcium carbonate is also used in the production of medicines and supplements, as well as in the food industry to increase calcium levels in foods. Calcium carbonate is also used in water treatment to remove heavy metals and other contaminants. In conclusion, 5.0 moles of calcium will produce 5.0 moles of calcium carbonate.
Learn more about calcium here:
https://brainly.com/question/26636816
#SPJ1
The acid should be handled with great care why?
The acid should be handled with great care because Acids are highly corrosive in nature. Splashing of acid on our skin can cause severe burns and irritation in the skin. Therefore, we should be careful while handling acids.
What is an acid?An acid is a type of chemical substance that donates positively charged hydrogen ions (H+) to other substances, typically in a chemical reaction. Acids are defined as substances that have a pH value of less than 7 on the pH scale, which measures the acidity or alkalinity of a solution. The lower the pH value, the more acidic the substance is.
Some common examples of acids include hydrochloric acid (HCl), sulfuric acid (H2SO4), and acetic acid (CH3COOH). Acids can be found in a wide range of natural and synthetic substances, including citrus fruits, vinegar, and battery acid. They can be corrosive and dangerous if not handled properly.
Learn more about acid at:
https://brainly.com/question/25148363
#SPJ1
How old is H2O or water?
4.5 billion years old
hope this helps
Answer:
Earth's water is 4.5 billion years old.
Explanation:
Water is a transparent, odorless, tasteless liquid, a compound of hydrogen and oxygen, H2O, freezing at 32°F or 0°C and boiling at 212°F or 100°C, that in a more or less impure constitutes rain, oceans, lakes, rivers, etc.: it contains 11.188 percent hydrogen and 88.812 percent oxygen, by weight.
Suppose 0.850 L of 0.400 M H₂SO, is mixed with 0.800 L of 0.250 M KOH. What concentration of sulfuric acid remains
after neutralization?
_______ M H₂SO4
Explanation:
The balanced chemical equation for the reaction between sulfuric acid and potassium hydroxide is:
H₂SO4(aq) + 2KOH(aq) → K₂SO4(aq) + 2H₂O(l)
From the equation, we can see that 1 mole of H₂SO4 reacts with 2 moles of KOH. We can use this information to determine the number of moles of H₂SO4 and KOH present in the mixture before neutralization:
moles of H₂SO4 = 0.850 L x 0.400 mol/L = 0.34 mol
moles of KOH = 0.800 L x 0.250 mol/L = 0.20 mol
Since KOH is the limiting reagent, it will be completely consumed in the reaction. The number of moles of H₂SO4 that reacts with the KOH is given by:
moles of H₂SO4 reacted = 2 x moles of KOH = 0.40 mol
The remaining moles of H₂SO4 after neutralization is:
moles of H₂SO4 remaining = moles of H₂SO4 - moles of H₂SO4 reacted
moles of H₂SO4 remaining = 0.34 mol - 0.40 mol
moles of H₂SO4 remaining = -0.06 mol
Since the moles of H₂SO4 remaining is negative, it means that all of the H₂SO4 has reacted with the KOH and there is an excess of KOH. Therefore, the concentration of sulfuric acid remaining after neutralization is 0 M.
For the following diagram, select all statements that are true. (Picture provided)
According to given Information:
The energy change of the reaction is -20kJ is true statement, This is exothermic reaction.
What is exothermic?Exothermic meaning that the products of the reaction have lower energy than the reactants.
The negative value of the energy change (-20kJ) indicates that energy is released during the reaction.
What is energy change?Energy change refers to the difference in energy between the products and reactants of a chemical reaction. If the energy change is positive, it means that energy is absorbed by the reaction and the reaction is endothermic.
If the energy change is negative, it means the energy is released by the reaction and the reaction is exothermic. The magnitude of the energy change provides information about the amount of energy that is released or absorbed during the reaction
To know more about exothermic reaction, visit:
https://brainly.com/question/4345448
#SPJ1
pls help!!
Which statement best describes the difference between speed and velocity?
A.
Velocity is plotted on the x-axis of a graph and speed is plotted on the y-axis.
B.
Velocity is related to position but speed is not.
C.
Velocity does not depend on time but speed does.
D.
Velocity has a specific direction but speed does not.
Answer:
option a
Velocity is plotted on the x-axis of a graph and speed is plotted on the y-axis.
Sheila spilled tea on her notes and is now unable to read some words.
What is the correct title for this section of Sheila's notes?
Volume
Density
Weight
Mass
Based οn the wοrds prοvided, a pοssible title fοr this sectiοn οf Sheila's nοtes cοuld be Mass.
What are Prοperties οf Matter in chemistry?In chemistry, prοperties οf matter refer tο the characteristics οr attributes that can be used tο describe and identify a substance. These prοperties can be divided intο twο categοries: physical prοperties and chemical prοperties.
Physical attributes are thοse that can be examined οr measured withοut changing the substance's makeup. Mass, vοlume, density, cοlοr, melting pοint, bοiling temperature, and sοlubility are examples οf physical qualities.
Chemical prοperties, οn the οther hand, describe hοw a substance interacts with οther substances tο prοduce new substances.
Understanding the prοperties οf matter is impοrtant in chemistry because it allοws scientists tο identify and classify different substances based οn their unique characteristics. This knοwledge can alsο be used tο predict hοw substances will behave under different cοnditiοns and tο design new materials with specific prοperties fοr variοus applicatiοns.
To learn more about Density, visit:
https://brainly.com/question/26364788
#SPJ1
Complete question:
Sheila spilled tea on her notes and is now unable to read some words.
What is the correct title for this section of Sheila’s notes?
Volume Density Weight Masssuperstition can only be used to explain rogue waves in what types of water
Answer: calm water.
Explanation:
How many moles of MgS are in 100.g MgS?
The number or amount of moles of magnesium sulfide in 100g of MgS is 1.774 moles.
How to calculate number of moles?The number of moles in a substance can be calculated by dividing the mass of the substance by its molar mass as follows:
Mole is the base unit of amount of substance i.e. the amount of substance of a system which contains exactly 6.02214076 × 10²³ elementary entities.
no of moles = mass ÷ molar mass
According to this question, 100g of magnesium sulfide is given. The molar mass of magnesium sulfide is 56.38 g/mol.
moles = 100g ÷ 56.38g/mol
moles = 1.774 moles
Learn more about moles at: https://brainly.com/question/26416088
#SPJ1
The pressure of a gas will ? when the volume is decreased and will ? when the absolute temperature is decreased.
Answer:
Explanation:
Pressure and volume are indirectly related.
Pressure and temperature are directly related.
so first ? is increase
2nd ? is decrease
Effect of Solvent:
Record the results.
H2O =
alcohol =
glycerin =
In which liquid is the salt most soluble?
Using the concept of `'Like dissolves like," explain why you got the results you did.
Explain how the choice of solvent affects the dissolving process.
Effect of Pulverizing:
Record of dissolving times.
crystal =
pulverized =
Why are the dissolving rates different?
Effect of Temperature:
Record of dissolving times.
cold =
hot
Using the concepts of kinetic energy, describe why you found the results you did.
Effect of Stirring:
Record the times necessary to dissolve each sample.
Record of dissolving time.
stirred =
unstirred =
Perform the experiment again using hot tap water this time. Are there any differences in the results between the cold water experiment and the hot water experiment? Explain.
Conclusions:
Review the four factors of dissolving you have just investigated. Given the correct solvent for a solute, what could you do to hasten the solution process?
1.
2.
3.
To hasten the solution process, we can choose the correct solvent for the solute, pulverize the solute to increase its surface area, increase the temperature of the solvent.
Effect of Solvent:
H2O = most soluble
alcohol = least soluble
glycerin = intermediate solubility
The salt is most soluble in water because salt is an ionic compound and water is a polar solvent. "Like dissolves like" means that substances with similar polarity and intermolecular forces tend to dissolve each other. Water is a polar solvent, meaning it has a partial positive charge on one end and a partial negative charge on the other, while salt is an ionic compound made up of positively and negatively charged ions. The partial charges on the water molecule can interact with the ions of salt, causing the salt to dissolve.
The choice of solvent affects the dissolving process because it determines the ability of the solvent to interact with the solute. Solvents that are similar in polarity and intermolecular forces to the solute tend to dissolve the solute more easily.
Effect of Pulverizing:
crystal = longest dissolving time
pulverized = shortest dissolving time
The dissolving rates are different because pulverizing the salt increases its surface area, exposing more salt to the solvent and allowing for a greater opportunity for the solute-solvent interactions to occur.
Effect of Temperature:
cold = longest dissolving time
hot = shortest dissolving time
Increasing the temperature of the solvent increases the kinetic energy of the solvent molecules, which leads to more frequent and energetic collisions with the solute particles, resulting in faster dissolving rates.
Effect of Stirring:
stirred = shorter dissolving time
unstirred = longer dissolving time
Stirring increases the rate of the dissolving process by helping to disperse the solute particles evenly throughout the solvent, increasing the surface area of the solute that is in contact with the solvent, and promoting the mixing of the solute and solvent.
Conclusions:
To hasten the solution process, we can choose the correct solvent for the solute, pulverize the solute to increase its surface area, increase the temperature of the solvent, and stir the solution to disperse the solute particles evenly throughout the solvent.
Learn more about solubility here
https://brainly.com/question/28170449
#SPJ1
determine the mass-to-mass ratio concentration of 5 g salt in 100 g water. Show the steps of calculation.
Considering the definition of mass-to-mass ratio concentration, the mass-to-mass ratio concentration of 5 g salt in 100 g water is 0.05%.
Definition of mass-to-mass ratio concentrationThe percentage by mass or mass-to-mass ratio concentration indicates the amount of mass of solute present in 100 grams of solution.
The percentage by mass is calculated as the mass of the solute divided by the mass of the solution, the result of which is multiplied by 100 to give a percentage:
mass-to-mass ratio concentration= (mass of solute÷ mass of solution)×100%
Mass-to-mass ratio concentration in this caseIn this case, you know:
mass of solute= 5 gmass of water= 100 gReplacing in the definition of mass-to-mass ratio concentration:
mass-to-mass ratio concentration= (5 g÷ 100 g)×100%
Solving:
percent by mass= 0.05 %
Finally, the mass-to-mass ratio concentration is 0.05%.
Learn more about mass-to-mass ratio concentration:
brainly.com/question/19168984
#SPJ1