Answer: Maybe B
Step-by-step explanation:
Guess from heart.
Identify all the solutions to the following-inequality.
3(x - 3) ≤ 27
Answer:
3(x - 3) ≤ 27
To solve this inequality, we'll start by isolating x on one side of the equation. To do this, we'll divide both sides of the inequality by 3:
x - 3 ≤ 9
Next, we'll add 3 to both sides of the inequality to get:
x <= 12
So the solution to the inequality is x <= 12.
It is also possible to express the solution in interval notation:
x ∈ (-∞, 12]
Please help, im so lost
Answer:
The Angle is AABC
they met at =46
Name the algebraic property of equality that the statement illustrates
The required properties for the algebraic expression are Addition, subtraction, multiplication, division, reflexive, symmetric, transitive, substitution, and square root.
What is an algebraic expression?The algebraic expression consists of constants and variables. eg x, y, z, etc.
Here,
Addition, subtraction, multiplication, division, reflexive, symmetric, transitive, substitution and square root qualities are the main nine properties of equality.
Algebraic equations involving real numbers can be resolved with the aid of the addition, subtraction, multiplication, and division characteristics of equality.
Thus, the required properties for the algebraic expression are Addition, subtraction, multiplication, division, reflexive, symmetric, transitive, substitution, and square root.
Learn more about algebraic expression here:
https://brainly.com/question/953809
#SPJ1
How do you convert 5/12 into a decimal and percent?
The value of 5/12 in decimal is 0.4167 and in percent is 41.67% .
What is Decimal ?The accepted method for representing both integer and non-integer numbers is the decimal numeral system. It is the expansion of the Hindu-Arabic numeral system to non-integer values. Decimal notation is the term used to describe the method of representing numbers in the decimal system.
In essence, percentages are fractions with a 100 as the denominator. We place the percent sign (%) next to the number to indicate that the number is a percentage. For instance, you would have received a 75% grade if you answered 75 of 100 questions correctly on a test (75/100).
The division is shown by the fractional bar between the "part" and the "whole." By dividing the numerator by the denominator, any fractions may be transformed into decimals. For instance, the fraction 45 denotes the ratio of 4 to 5, or 4/5. By dividing 4 by 5, this fraction may be changed into a decimal.
5/12 can be converted into decimal by dividing 5 by 12 we get 0.4167
5/12 in percent will be (5/12)*100 = 41.67 %
To learn more about Decimals refer to :
https://brainly.com/question/550071
#SPJ4
The formula for the area A of a trapezoid is A = 1/2 h(b1 + b2), where h is the height and b1 and b2 are the lengths of the two bases. Solve the formula for b1. Justify each step. Then find the length of one of the bases of the trapezoid when the area of the trapezoid is 91 square meters, the height is 7 meters, and the length of the other base is 20 meters.
Answer:
6 meters
Step-by-step explanation:
refer attachment
7,725 ft² of grass cover the trapezoidal field.
What is a trapezoid?A trapezoid is a quadrilateral that is convex. A trapezoid has at least two sides that are parallel. The bases are the parallel sides, and the legs are the non-parallel sides.A trapezoid's area is equal to 0.5 times its height times the sum of its parallel sides.0.5 x (125 + 81) x 75
0.5 x 206 x 75 = 7,725 ft².
With the help of the clue and the provided formula, we can solve the issue. Since the question specifically asks for the number of square feet of grass, we know we are solving for area, A. It also states that the field is 75 feet high (facing downhill), and the two bases are 125 feet and 81 feet respectively (b1 and b2). The equation can then be solved. The field has a square footage of 7725.To Learn more About trapezoidal field Refer To:
https://brainly.com/question/5170023
#SPJ4
Let f(x) = x, where x is the number of people seated on the bus that has a maximum seating capacity of 50. What are resonable values for the domain of f(x)?
The reasonable values for the domain of f(x) is D = {x ∈ W | x ≤ 50}
What are domains of a function?The domain of a function is the complete set of possible values of the independent variable.
Given that, f(x) = x, where x is the number of people seated on the bus that has a maximum seating capacity of 50
Let us assume the maximum number of people that can sit on a bus is 50.
We know that, domain is all the possible values of x in set notation.
First, state the type of numbers that can be the number of people seated.
Since you cannot have a negative number of people, you cannot have a part of a person, but you can have 0 people, so the type to be included is W whole.
Therefore, the domain can be defined as, D = {x ∈ W | x ≤ 50}
That mean, the domain is x is an element of all whole numbers, x is less than or equal to 50.
Hence, the reasonable values for the domain of f(x) is D = {x ∈ W | x ≤ 50}
Learn more about domains, click;
https://brainly.com/question/28135761
#SPJ1
Calculate the compound interest and amount, by using formula, if interest is
compounded half-yearly.
a. Principal = $5,900; Time = 2 years; Rate = 14%
b. Principal = $7,800; Time = 6 years; Rate = 18%
Answer: To calculate the compound interest and amount for a given principal, interest rate, and time period, we can use the formula:
A = P(1 + r/n)^(nt)
where:
A = the final amount (principal + interest)
P = the principal (initial investment)
r = the annual interest rate (expressed as a decimal)
n = the number of times the interest is compounded per year
t = the number of years the investment is held
a. Principal = $5,900; Time = 2 years; Rate = 14%
n = 2 (since the interest is compounded half-yearly)
t = 2
r = 0.14
A = 5900(1+0.14/2)^(22)
A = 5900(1+0.07)^4
A = 59001.07^4
A = 5900*1.298844
A = 7,638.21
So the final amount, including interest, would be $7,638.21
b. Principal = $7,800; Time = 6 years; Rate = 18%
n = 2 (since the interest is compounded half-yearly)
t = 6
r = 0.18
A = 7800(1+0.18/2)^(26)
A = 7800(1+0.09)^12
A = 78001.09^12
A = 7800*2.05832
A = 16,093.32
So the final amount, including interest, would be $16,093.32
Please note that the above calculations are based on the compound interest formula and the assumption that the interest is compounded half-yearly, without taking into account any fees, taxes or any other associated cost.
Step-by-step explanation:
a fraction has a denominator of 20. the numerator has the value of “x less than the denominator” if the fraction is equivalent to 1/4, what i’d the value of x?
Answer:
First what you want to do is find what fraction is equal to 1/4 and has a denominator of 20.
The way you can find this is by taking 1/4 and seeing how many times the denominator or 4 will go into 20.
4 * 5 = 20
Since 4 times 5 is 20, we will multiply 5 to the numerator of the fraction to.
1 * 5 = 5
So 5/20 is = to 1/4
x = 5
Now the question says, " x less thsn the denominator" so we just need to find how much less is 5 compared to 20.
20 - 5 = 15
The numerator has a value, "15 less than the denominator."
Step-by-step explanation:
Hope this helps! =D
A stone is thrown downward from the top of a cliff at 24m/s and hits the ground 7 seconds later. How tall is the cliff?
Answer:
The height of the cliff is 408.1 m
Step-by-step explanation:
To find the height of the cliff given a stone is thrown downward from the top of a cliff at 24m/s and hits the ground 7 seconds later, use constant acceleration equations (SUVAT).
Constant Acceleration Equations (SUVAT)
[tex]\boxed{\begin{array}{c}\begin{aligned}v&=u+at\\\\s&=ut+\dfrac{1}{2}at^2\\\\ s&=\left(\dfrac{u+v}{2}\right)t\\\\v^2&=u^2+2as\\\\s&=vt-\dfrac{1}{2}at^2\end{aligned}\end{array}} \quad \boxed{\begin{minipage}{4.6 cm}$s$ = displacement in m\\\\$u$ = initial velocity in ms$^{-1}$\\\\$v$ = final velocity in ms$^{-1}$\\\\$a$ = acceleration in ms$^{-2}$\\\\$t$ = time in s (seconds)\end{minipage}}[/tex]
Note: When using SUVAT, assume the object is modeled as a particle and that acceleration is constant.
List the given variables, taking downwards as positive:
s = su = 24 m/sa = 9.8 m/s²t = 7 sSelect the SUVAT equation with s, u, a and t in it:
[tex]s=ut+\dfrac{1}{2}at^2[/tex]
[tex]\begin{aligned}\textsf{Substitute the values}: \quad s&=24(7)+\dfrac{1}{2}(9.8)(7)^2\\s&=168+240.1\\s&=408.1\; \sf m \end{aligned}[/tex]
Therefore, the height of the cliff is 408.1 m.
A large equilateral triangle pyramid stands in front of the city's cultural center. Each side of the base measures 50 feet and the slant height of each lateral side of the pyramid is 40 feet.
A painter can paint 100 square feet of the pyramid in 18 minutes.
How long does it take the painter to paint 75% of the pyramid?
Enter your answer, rounded to the nearest tenth, in the box.
Answer:
316 min
Step-by-step explanation:
Find the area of 1 side of the pyramid:
h = height of the triangle
40² = (50/2)² + h²
h² = 1600 - 625 = 975
h = √975 = 31.225
A = 1/2bh = 1/2(50)(31.225) = 780.6
Atotal = 3(780.6) = 2342
2342(.75) = 1756.4
(1756.4 sf)(18 min/100 sf) = 316.15 min
Answer: 551.1
Step-by-step explanation:
i took the quiz
Suppose that there is a circle with 4 non-overlapping circle touching the circumference of the circle. If the diameter of 1 of the smaller circle is 2cm, find the radius of the larger circle.
Answer:
2cm
convert 2 cm to mm
20 mm
A company charge 211. 25 for 5 tree and 15 hrub. The company charge 15. 25 more for a tree than a hrub how much doe each hrub cot
Each shrub costs $6.1.
Let's call the cost of each shrub "s".
The cost of 5 trees is 15.25 more than the cost of 15 shrubs, so the cost of 5 trees is 15 shrubs + 15.25:
5 * (s + 15.25) = 15 * s + 15.25
Expanding and simplifying the left side:
5s + 76.25 = 15s + 15.25
Subtracting 5s from both sides:
76.25 = 10s + 15.25
Subtracting 15.25 from both sides:
61 = 10s
Dividing both sides by 10:
s = 6.1
A linear equation is an algebraic equation with simply a constant and a first-order (linear) component of the form y=mx+b, where m is the slope and b is the y-intercept. The above is sometimes referred to as a "linear equation with two variables," where y and x are the variables.
Ax+By=C is the typical form for linear equations in two variables. 2x+3y=5, for example, is a simple linear equation. It is rather simple to get both intercepts when an equation is stated in this way (x and y).
For more questions on Linear Equation
https://brainly.com/question/2030026
#SPJ4
is this correct? ( also cloud someone explain how to do this i forgot .. ! )
Answer:
Below
Step-by-step explanation:
5x >= 15 first solve for 'x' by dividing both sides by 5
x >= 5 graph on the number line should be a solid dot at 5 (because it includes '5') and going off to the right....looks like you have it correct.
you borrow 14,000 to buy a car the simple interest rate of the loan is 18%. You pay the loan off in 5 years.
A) how much do you pay in interest on the loan?
B) What is the total amount you pay for the loan?
A) To find out how much you pay in interest on the loan, you can use the formula: Interest = Principal x Rate x Time
Therefore:
Principal = 14,000
Rate = 18% (or 0.18 when expressed as a decimal)
Time = 5 years
So, Interest = 14,000 x 0.18 x 5 = 1,540
B) To find the total amount you pay for the loan, you need to add the principal amount and the interest.
Total amount = Principal + Interest
Total amount = 14,000 + 1,540 = 15,540
Simple Interest:
https://brainly.com/question/25793394
https://brainly.com/question/2277782
using the fact that v1 · v2 = v1t v2, show that the dot product of two free vectors does not depend on the choice of frames in which their coordinates are defined
The dot product of two free vectors is independent of the choice of frames, as it relies only on the inner product of their transposed coordinate vectors.
The dot product of two free vectors, v1 and v2, can be expressed as the inner product of their transposed coordinate vectors, v1t and v2. This inner product is invariant under changes of frames, i.e. the same result will be obtained regardless of the choice of frames in which the coordinates are defined. This is because the transpose of a vector only changes the order of the coordinates, and the inner product of two vectors is unaffected by this reordering. Therefore, the dot product of two free vectors does not depend on the choice of frames in which their coordinates are defined.
Learn more about vectors here
https://brainly.com/question/30202103
#SPJ4
estimate the area under the graph of f(x)=e−3x2 from x=0 to x=2 using the midpoint rule with n=4. (round your answer to six decimal places)
Rounding to six decimal places, the estimated area is 0.719638.
The midpoint rule for estimating the area under a curve involves dividing the interval of integration into n subintervals and using the heights of rectangles with width equal to the subinterval width to approximate the area under the curve.
Let's divide the interval [0, 2] into 4 subintervals, each with width 0.5. Then the midpoints of the subintervals are: x1 = 0.25, x2 = 0.75, x3 = 1.25, x4 = 1.75
Using the midpoint rule, the estimated area is given by the sum of the areas of the rectangles:
A = 0.5 * f(0.25) + 0.5 * f(0.75) + 0.5 * f(1.25) + 0.5 * f(1.75) where f(x) = e^(-3x²).
Substituting the values of f(x) into the above expression and evaluating, we get:
A = 0.5 * e^(-3 * 0.25²) + 0.5 * e^(-3 * 0.75²) + 0.5 * e^(-3 * 1.25²) + 0.5 * e^(-3 * 1.75²)
= 0.5 * e^(-0.1875) + 0.5 * e^(-2.25) + 0.5 * e^(-3.9375) + 0.5 * e^(-6.0625)
= 0.5 * (1.208611495 + 0.102011764 + 0.024515807 + 0.000598427)
= 0.5 * (1.439275966)
= 0.719637983
Rounding to six decimal places, the estimated area is 0.719638.
Therefore, Rounding to six decimal places, the estimated area is 0.719638.
To learn more about integration,
Visit; brainly.com/question/18125359
#SPJ4
During his move to a new house, Raj lost 24% of his DVD collection. If Raj had 225 DVDs before the move, how many DVDs did he lose? Increase or decrease? amount of change original amount = percent Substitute and solve:
Answer:
The number of DVDs Raj lost can be calculated by:
24% of 225 DVDs = 0.24 * 225 DVDs = 54 DVDs
So Raj lost 54 DVDs during his move.
prove that lines RS and UV have the
same slope. You must show all of your work to receive credit. (10 points)
S
R
Q
B
7
6
5
4
3
2
-9-8-7-6-5-4-3-2-1
2
V
U
T
1 2 3 4 5
To obtain the slope for each function, you must take two points on the graph of the function.
Then, for these points, the slope of each line is given as follows:
m = (Change in y)/Change in x.
In the case that the lines have the same slope, then they are parallel lines.
How to obtain the slope of a line?The slope of a line represents the rate of change of the output variable y relative to the input variable x.
Hence, it is calculated taking two points on a line, and dividing the change in the output by the change in the input of these two points.
Missing InformationThe problem is incomplete, hence the answer was given in general terms.
More can be learned about linear functions at https://brainly.com/question/24808124
#SPJ1
PLSSSS HELP IF YOU TURLY KNOW THISS
By equating the equation, we can determine that the x value is 13. Whatever the value of the variables, an identity holds.
what is equation ?Its precise nature is supposed to be the score's smallest equivalent fraction. How to obtain the basic definition. Looking for shared factors in the denominator and ratio. A fractional number can be checked to discover if it is a power of two. A statement having two rotational symmetry and an equal sign in the middle is called to as a mathematical equation. Every variable's degrees are listed in ranking in the standard form of any equation. The formula for a linear equation is x + b = 0. The conceptual model of a two-variable linear equation is an x + b y + c = 0. (or something similar). Either conditioned equations or identities are categories for equation. An identification holds true because of whatever value of the variables.
given
equation = x + 7 = 20
x = 20 - 7
x = 13
By equating the equation, we can determine that the x value is 13. Whatever the value of the variables, an identity holds.
To know more about equation visit:
https://brainly.com/question/649785
#SPJ1
The complete question is :-
Solve for x .
x + 7 = 20
x = ?
an atomic absorption method for determination of copper in fuel samples yielded a pooled standard deviation of (). how many replicate measurements are necessary to decrease the 95 and 99% confidence limits to ?
Replicate measurements of 14 and 33 are necessary to decrease the 95 and 99% confidence limits to +0.19ug Cu/mL respectively.
a) For a 95% confidence limit, N is about 14
b) For a 99% confidence limit, N is about 33
To determine the number of replicate measurements necessary to achieve a desired confidence limit, we can use the formula:
[tex]N = (z * Spooled / d)^2[/tex]
where z is the Z-score associated with the desired confidence level (from the table provided), Spooled is the pooled standard deviation, and d is the desired decrease in the confidence limit.
For a 95% confidence level, z = 1.96. Substituting the given values into the formula, we get:[tex]N = (1.96 * 0.27 / 0.19)^2 = 14.22 = 14[/tex] (rounded to the nearest integer)
For a 99% confidence level, z = 2.58. Substituting the given values into the formula, we get:[tex]N = (2.58 * 0.27 / 0.19)^2 = 33.06 = 33[/tex] (rounded to the nearest integer)
Learn more about Atomic absorption method here:
https://brainly.com/question/28697356
#SPJ4
Complete Question:
An atomic absorption method for the determination of copper in fuel samples yielded a pooled standard deviation of Spooled = 0.27ug Cu/mL (s-->Sigma). How many replicate measurements are necessary to decrease the 95 and 99% confidence limits to +0.19ug Cu/mL?
Confidence Level%/z 95%/1.96 99%/2.58
a) For a 95% confidence limit, N is about __?
b) For a 99% confidence limit, N is about __?
a committee is to be formed consisting of 5 men and 3 women. if the committee members are to be chosen from 13 men and 9 women, how many different committees are possible?
There are 1,08,108 different committees that are possible.
Combinations are selections made by taking some or all of a number of objects, irrespective of their arrangements. The number of combinations of n different things taken r at a time, denoted by [tex]^nC_r[/tex].
The general formula for combination is:
[tex]^nC_r=\frac{n!}{r!(n-r)!}[/tex] ,where 0 ≤ r ≤ n.
In a committee, we can choose 13 men from 5 men in ¹³C₅ ways. similarly, we can choose 3 women from 9 women in ⁹C₃ ways.
total ways in which we can choose 13 men and 9 women to form a committee= ¹³C₅*⁹C₃
[tex]\frac{13*12*11*10*9}{5*4*3*2*1} *\frac{9*8*7}{3*2*1}[/tex]
⇒154440/120*504/6
⇒1287*84
⇒108180
Hence, there are 1,08,180 committees are possible.
To know more about Combinations:
https://brainly.com/question/295961
#SPJ4
In the figure below F is between E and G,and G is between F and H if EG=11 EH=17 and FH=9 find FG
Answer:
Since you are finding FG, FG=3
Step-by-step explanation:
picture above
simplify the expression. write your answer without negative exponents. 9x5⁄2 y5 x4 y−3⁄2 −2
The expression on simplification without negative exponents gives: = [tex]9x^{4.5} y^{6.5} -2[/tex]
Exponents are mathematical notations used to express a number as the power of another number. The number raised to the power is called the base, and the exponent indicates the number of times the base is used as a factor.
Product of powers: If a^m * a^n, where m and n are exponents and a is the base, then the result is a^(m+n).
Power of power: If (a^m)^n, where m and n are exponents and a is the base, then the result is a^(m * n).
The quotient of powers: If a^m / a^n, where m and n are exponents and a is the base, then the result is a^(m-n).
Zero exponents: a^0 = 1, where a is the base. For example, 2^0 = 1.
The expression can be simplified as follows:
[tex]9x^{5/2} y^{5} x^{4}y^{-3/2}-2[/tex]
= [tex]9x^{\frac{9}{2} } y^{\frac{13}{2} } -2[/tex]
= [tex]9x^{4.5} y^{6.5} -2[/tex]
Therefore, The expression on simplification without negative exponents gives [tex]9x^{4.5} y^{6.5} -2[/tex].
To know more about exponents refer to:
brainly.com/question/5497425
#SPJ4
can somebody try and quickly do this for me I need it done by tomorrow??
Answer: I do not now
Step-by-step explanation: WHO CARES
A flying squirrel's nest is 12 meters high in a tree. From its nest, the flying squirrel glides 15 meters to reach an acorn that is on the ground. How far is the acorn from the base of the tree?
The acorn is 9 meters far from the base of the tree. The solution has been obtained by using Pythagoras theorem.
What is Pythagoras theorem?
In a right-angled triangle, the square of the hypotenuse side is equal to the sum of the squares of the other two sides, according to Pythagoras's Theorem.
We are given that a flying squirrel's nest is 12 meters high in a tree.
So, the height is 12 meters.
Also, from its nest, the flying squirrel glides 15 meters to reach an acorn that is on the ground.
So, the distance the squirrel flied is 15 meters
Using Pythagoras theorem,
c² = a² + b²
Here, c = 15 and a = 12
So,
⇒b² = c² - a²
⇒b² = 15² - 12²
⇒b² = 225 - 144
⇒b² = 81
⇒b = 9
Hence, the acorn is 9 meters far from the base of the tree.
Learn more about Pythagoras theorem from the given link
https://brainly.com/question/343682
#SPJ1
the results of a national survey showed that on average, adults sleep hours per night. suppose that the standard deviation is hours. round your answers to the nearest whole number. a. use chebyshev's theorem to calculate the percentage of individuals who sleep between and hours. at least b. use chebyshev's theorem to calculate the percentage of individuals who sleep between and hours. at least c. assume that the number of hours of sleep follows a bell-shaped distribution. use the empirical rule to calculate the percentage of individuals who sleep between and hours per day. at least how does this result compare to the value that you obtained using chebyshev's theorem in part (a)? - select your answer -
a) The percentage of individuals who sleep between 4.5 and 9.3 hours is 75%.
b) By using Chebyshev's theorem, the percentage of individuals who sleep between 3.9 and 9.9 hours is 84%.
c) Using the empirical rule, the percentage of individuals who sleep between 4.5 and 9.3 hours day is 95%. But according to Chebyshev's theorem, this percentage is equals to 75%.
According to Chebyshev's theorem, the proportion of any distribution that lies within k standard deviations of the mean is at least equals to 1 − 1/k² , where k is a positive number, k> 1.
a) The average sleep hours per night is = 6.9 hours and standard deviation = 1.2 hours. Therefore, individuals who sleep between 4.5 and 9.3 hours are ± 2.4 hours or 2 standard deviations from the mean. Hence, k = 2. Using above theorem, the proportion of individuals who sleep between 4.5 hours and 9.3 hours = 1 - 1/2² = 1 - 1/4 = 0.75. Hence, the percentage of individuals who sleep between 4.5 hours and 9.3 hours
= 75%.
b) Again, the individuals who sleep between 3.9 and 9.9 hours are ±3 hours or 2.5 standard deviations from the mean. Hence, k = 2.5.
By Chebyshev's theorem, the proportion of individuals who sleep between 3.9 hours and 9.9 hours = 1 - 1/(2.5)² = 0.84 or 84 %.
c) The empirical rule is a rule-of-thumb used in statistics to forecast the behaviour of normally distributed data. Main points of Empirical rule:
The data within more than three standard deviations away from the mean are not normally distributed.In a normal distribution, if data lie within one standard deviation from the mean, then percentage become 68% .Further, if data lie within two standard deviation from the mean, then percentage become 95% .Lastly, if data lie within three standard deviation from the mean, then percentage become 99.7% ..The assumption here is that the number of hours of sleep follows a bell-shaped distribution i.e., the data are assumed to be normally distributed and therefore Empirical rule is applicable. As we see in individuals who sleep between 4.5 and 9.3 hours day are 2 standard deviations away from the mean. Therefore, by Empirical rule, the percentage is equals to 95% in this case. Thus, the conclusion is as per Empirical rule 95% of the individuals sampled in the national survey sleep between 4.5 and 9.3 hours. Whereas Chebyshev's theorem estimates that 75% individuals sleep between 4.5 and 9.3 hours.
To learn more about Chebyshev's theorem, refer:
https://brainly.com/question/5179184
#SPJ4
Complete question:
The results of a national survey showed that on average adults sleep 6.9 hours per night. Suppose that the standard deviation 1.2 hours. round your answers to the nearest whole number.
a. Use Chebyshev's theorem to calculate the percentage of individuals who sleep between 4.5 and 9.3 hours.
b. Use Chebyshev's theorem to calculate the percentage of individuals who sleep between 3.9 and 9.9 hours.
c. Assume that the number of hours of sleep follows a bell-shaped distribution. Use the empirical rule to calculate the percentage of individuals who sleep between 4.5 and 9.3 hours day. How does this result compare to the value that you obtained using Chebyshev's theorem in part(a)? select answer
Which expression gives the volume of a cylinder, where B is the base area and h is the height?
The expression for the volume of the cylinder is πB.
What is a cylinder?The cylinder is a three-dimensional figure that has a radius and a height.
The volume of a cylinder is πr²h.
Example:
The volume of a cup with a height of 5 cm and a radius of 2 cm is
Volume = 3.14 x 2 x 2 x 5 = 62.8 cubic cm
We have,
Volume = πr²h
Base area = πr²
Now,
B = πr²
r² = B/h
r = √(B/h)
Now,
Volume.
= πr²h
= π x B/h x h
= πB
Thus,
The volume of the cylinder is πB.
Learn more about cylinder here:
https://brainly.com/question/15891031
#SPJ1
The correct answer is Bh
ABC is an isosceles right angled triangle. Assuming AB=BC=x, find the value of each of the following trigonometric ratios:
1. sine 45 degree
the diagram shows a regular pentagon with centre o. work out the size of angle x
Answer: The size of angle x in a regular pentagon is 72 degrees.
To find the size of angle x in a regular pentagon, you need to divide the total number of degrees in a full circle (360) by the number of sides in a pentagon (5).
A full circle has 360 degrees, so each interior angle of a regular pentagon must measure 360/5 = 72 degrees.
Therefore, he size of angle x in a regular pentagon is 72 degrees.
how to find a the strongest and the weakest relationship between two variables?
The strongest linear relationship is indicated by a correlation coefficient of -1 or 1. The weakest linear relationship is indicated by a correlation coefficient equal to 0. A positive correlation means that if one variable gets bigger, the other variable tends to get bigger.
Now, According to the question:
The relationship between two variables is generally considered strong when their r value is larger than 0.7. The correlation r measures the strength of the linear relationship between two quantitative variables. Pearson r: r is always a number between -1 and 1.
The magnitude of the correlation coefficient indicates the strength of the association. For example, a correlation of r = 0.9 suggests a strong, positive association between two variables, whereas a correlation of r = -0.2 suggest a weak, negative association.
Learn more about Variables at:
https://brainly.com/question/17344045
#SPJ4