When the frequency of an AC power source is halved in a simple AC circuit with an inductor, the reactance of the inductor increases.
The reactance of an inductor is directly proportional to the frequency of the AC power source. Reactance is the opposition that an inductor presents to the flow of alternating current. It is determined by the formula Xl = 2πfL, where Xl is the inductive reactance, f is the frequency, and L is the inductance.
When the frequency is halved, the value of f in the formula decreases. As a result, the inductive reactance increases. This means that the inductor offers greater opposition to the flow of current, causing the current to be impeded.
Halving the frequency of the AC power source effectively reduces the rate at which the magnetic field in the inductor changes, leading to an increase in the inductive reactance. It is important to consider this relationship between frequency and reactance when designing and analyzing AC circuits with inductors.
In conclusion, when the frequency of an AC power source is halved in a simple AC circuit with an inductor, the reactance of the inductor increases, resulting in greater opposition to the flow of current.
To know more about Frequency visit-
brainly.com/question/14320803
#SPJ11
In an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression x = 9.8 cos (14.5 t + 1.6) where x is in centimeters and t is in seconds. What is the Amplitude? What is the Angular Frequency? What is the Period?Find the initial position of the piston (t = 0). Find the initial velocity of the piston (t = 0). Find the initial acceleration of the piston (t = 0).
The amplitude of the piston's oscillation is 9.8 centimeters. The angular frequency is 14.5 radians per second. The period of the motion is approximately 0.436 seconds.
The given expression for the position of the piston, x = 9.8 cos (14.5 t + 1.6), represents simple harmonic motion. In this expression, the coefficient of the cosine function, 9.8, represents the amplitude of the oscillation. Therefore, the amplitude of the piston's motion is 9.8 centimeters.
The angular frequency of the oscillation can be determined by comparing the argument of the cosine function, 14.5 t + 1.6, with the general form of simple harmonic motion, ωt + φ, where ω is the angular frequency. In this case, the angular frequency is 14.5 radians per second. The angular frequency determines how quickly the oscillation repeats itself.
The period of the motion can be calculated using the formula T = 2π/ω, where T represents the period and ω is the angular frequency. Plugging in the value of ω = 14.5, we find that the period is approximately 0.436 seconds. The period represents the time taken for one complete cycle of the oscillation.
To find the initial position of the piston at t = 0, we substitute t = 0 into the given expression for x. Doing so gives us x = 9.8 cos (1.6). Evaluating this expression, we can find the specific value of the initial position.
The initial velocity of the piston at t = 0 can be found by taking the derivative of the position function with respect to time, dx/dt. By differentiating x = 9.8 cos (14.5 t + 1.6) with respect to t, we can determine the initial velocity.
Similarly, the initial acceleration of the piston at t = 0 can be found by taking the second derivative of the position function with respect to time, d²x/dt². Differentiating the position function twice will yield the initial acceleration of the piston.
Learn more about oscillation
brainly.com/question/15780863
#SPJ11
The power of a toaster can be determined if which of the following values are known? A the dimensions of the toaster B C the resistance of the toaster's insulation the voltage applied to the toaster and the toaster's temperature D the current through the circuit and the voltage applied to the toaster
The power of a toaster can be determined if the current through the circuit and the voltage applied to the toaster are known. The correct answer is option d.
Power (P) is calculated using the formula P = I × V, where I represents the current and V represents the voltage. By measuring or obtaining these values, the power consumption of the toaster can be determined. The current can be measured using an ammeter, and the voltage can be measured using a voltmeter.
Once these measurements are obtained, simply multiply the current and voltage values together to calculate the power. This information is crucial for understanding the toaster's energy consumption, as it allows you to assess its efficiency and make comparisons with other devices.
The correct answer is option d.
To know more about voltage refer to-
https://brainly.com/question/32002804
#SPJ11
6) Find the buoyant force on a 0.1 m3 block of wood with density 700 kg/m3 floating in a freshwater lake. (5 pts)
The buoyant force on the 0.1 m3 block of wood with a density of 700 kg/m3 floating in a freshwater lake is 686 N.
Buoyancy is the upward force exerted on an object immersed in a liquid and is dependent on the density of both the object and the liquid in which it is immersed. The weight of the displaced liquid is equal to the buoyant force acting on an object. In this case, the volume of the block of wood is 0.1 m3 and its density is 700 kg/m3. According to Archimedes' principle, the weight of the displaced water is equal to the buoyant force. Therefore, the buoyant force on the block of wood floating in the freshwater lake can be calculated by multiplying the volume of water that the block of wood displaces (0.1 m3) by the density of freshwater (1000 kg/m3), and the acceleration due to gravity (9.81 m/s2) as follows:
Buoyant force = Volume of displaced water x Density of freshwater x Acceleration due to gravity
= 0.1 m3 x 1000 kg/m3 x 9.81 m/s2
= 981 N
However, since the density of the block of wood is less than the density of freshwater, the weight of the block of wood is less than the weight of the displaced water. As a result, the buoyant force acting on the block of wood is the difference between the weight of the displaced water and the weight of the block of wood, which can be calculated as follows:
Buoyant force = Weight of displaced water -
Weight of block of wood
= [Volume of displaced water x Density of freshwater x Acceleration due to gravity] - [Volume of block x Density of block x Acceleration due to gravity]
= [0.1 m3 x 1000 kg/m3 x 9.81 m/s2] - [0.1 m3 x 700 kg/m3 x 9.81 m/s2]
= 686 N
Therefore, the buoyant force acting on the 0.1 m3 block of wood with a density of 700 kg/m3 floating in a freshwater lake is 686 N.
To learn more about buoyant force click brainly.com/question/11884584
#SPJ11
What must be the charge on a particle if a force of 8.13N is applied when it travels at 2.61m/s through a magnetic field of 2.78T? 0.892C 0.115C 8.66C 1.12C
What must be the charge on a particle if a force of 8.13N is applied when it travels at 2.61m/s through a magnetic field of 2.78T? 0.892C 0.115C 8.66C 1.12C
The charge on the particle is 1.12C.
The force on a charged particle moving through a magnetic field is given by the following equation:
F = qV
where:
* F is the force in newtons
* q is the charge in coulombs
* v is the velocity in meters per second
* B is the magnetic field strength in teslas
In this case, we have:
* F = 8.13N
* v = 2.61m/s
* B = 2.78T
Plugging these values into the equation, we get:
q = F / VB = 8.13N / (2.61m/s * 2.78T) = 1.12C
Therefore, the charge on the particle must be 1.12C.
Learn more about charge with the given link,
https://brainly.com/question/18102056
#SPJ11
In a particular fission of a uranium-235 (235 U) nucleus, which has neutral atomic mass 235.0439 u, a reaction energy of 200 MeV is released. (a) A mass of 1.00 kg of pure U contains how many
atoms? (b) How much total energy is released if the entire mass of 1.00 kg of 33U fissions? (c) Suppose that these fission reactions occur at a rate to release a constant 100 W of power to a lamp for a long period of time. Assuming 100% of the reaction energy goes into powering the lamp, for how
many years can the lamp run?
A particular fission of a uranium-235 (235 U) nucleus, which has neutral atomic mass 235.0439 u, a reaction energy of 200 MeV is released.(a)1.00 kg of pure uranium contains approximately 2.56 x 10^24 uranium-235 atoms.(b)the total energy released if the entire mass of 1.00 kg of uranium-235 undergoes fission is approximately 3.11 x 10^13 joules.(c)assuming 100% of the reaction energy goes into powering the lamp, the lamp can run for approximately 983,544 years.
(a) To determine the number of uranium-235 (235U) atoms in 1.00 kg of pure uranium, we need to use Avogadro's number and the molar mass of uranium-235.
Calculate the molar mass of uranium-235 (235U):
Molar mass of uranium-235 = 235.0439 g/mol
Convert the mass of uranium to grams:
Mass of uranium = 1.00 kg = 1000 g
Calculate the number of moles of uranium-235:
Number of moles = (Mass of uranium) / (Molar mass of uranium-235)
Number of moles = 1000 g / 235.0439 g/mol
Use Avogadro's number to determine the number of atoms:
Number of atoms = (Number of moles) × (Avogadro's number)
Now we can perform the calculations:
Number of atoms = (1000 g / 235.0439 g/mol) × (6.022 x 10^23 atoms/mol)
Number of atoms ≈ 2.56 x 10^24 atoms
Therefore, 1.00 kg of pure uranium contains approximately 2.56 x 10^24 uranium-235 atoms.
(b) To calculate the total energy released if the entire mass of 1.00 kg of uranium-235 undergoes fission, we need to use the energy released per fission and the number of atoms present.
Given:
Reaction energy per fission = 200 MeV (mega-electron volts)
Convert the reaction energy to joules:
1 MeV = 1.6 x 10^-13 J
Energy released per fission = 200 MeV ×(1.6 x 10^-13 J/MeV)
Calculate the total number of fissions:
Total number of fissions = (Number of atoms) × (mass of uranium / molar mass of uranium-235)
Multiply the energy released per fission by the total number of fissions:
Total energy released = (Energy released per fission) × (Total number of fissions)
Now we can calculate the total energy released:
Total energy released = (200 MeV) * (1.6 x 10^-13 J/MeV) × [(2.56 x 10^24 atoms) × (1.00 kg / 235.0439 g/mol)]
Total energy released ≈ 3.11 x 10^13 J
Therefore, the total energy released if the entire mass of 1.00 kg of uranium-235 undergoes fission is approximately 3.11 x 10^13 joules.
(c) To calculate the number of years the lamp can run, we need to consider the power generated by the fission reactions and the total energy released.
Given:
Power generated = 100 W
Total energy released = 3.11 x 10^13 J
Calculate the time required to release the total energy at the given power:
Time = Total energy released / Power generated
Convert the time to years:
Time in years = Time / (365 days/year ×24 hours/day ×3600 seconds/hour)
Now we can calculate the number of years the lamp can run:
Time in years = (3.11 x 10^13 J) / (100 W) / (365 days/year × 24 hours/day * 3600 seconds/hour)
Time in years ≈ 983,544 years
Therefore, assuming 100% of the reaction energy goes into powering the lamp, the lamp can run for approximately 983,544 years.
To learn more about Avogadro's number visit: https://brainly.com/question/859564
#SPJ11
: The position of a partide moving along the x axis is given in centimeters by-7.00+ 2.50e, where it is in seconds. Consider the time interval 2.00 tot-3.00 s (ndicate the direction with the sign of your answer.) (a) Calculate the average velocity. cm/s (b) Calculate the instantaneous velocity at t-2.00 s cm/s (c) Calculate the instantaneous velocity at t-3.00 s om/s (d) Calculate the instantaneous velocity at r-2.50 s cm/s (e) Calculate the instantaneous velocity when the particle is midway between its positions at -2.00 and 3.00 cm/s (f) Graph x versus t and indicate your answers graphically.
(a) The average velocity of the particle during the time interval from 2.00 to 3.00 seconds is -2.50 cm/s.
(b) The instantaneous velocity at t = 2.00 seconds is -2.50 cm/s.
(c) The instantaneous velocity at t = 3.00 seconds is -2.50 cm/s.
(d) The instantaneous velocity at t = 2.50 seconds is -2.50 cm/s.
(e) The instantaneous velocity when the particle is midway between its positions at -2.00 and 3.00 seconds is -2.50 cm/s.
(f) The graph of x versus t would show a linear relationship with a downward slope of -2.50 cm/s.
The given equation for the position of the particle along the x-axis is -7.00 + 2.50e, where t represents time in seconds. In this equation, the term -7.00 represents the initial position of the particle at t = 0 seconds, and 2.50e represents the displacement or change in position with respect to time.
(a) To calculate the average velocity, we need to find the total displacement of the particle during the given time interval and divide it by the duration of the interval.
In this case, the displacement is given by the difference between the positions at t = 3.00 seconds and t = 2.00 seconds, which is (2.50e) at t = 3.00 seconds minus (2.50e) at t = 2.00 seconds. Simplifying this expression, we get -2.50 cm/s as the average velocity.
(b) The instantaneous velocity at t = 2.00 seconds can be found by taking the derivative of the position equation with respect to time and evaluating it at t = 2.00 seconds. The derivative of -7.00 + 2.50e with respect to t is simply 2.50e. Substituting t = 2.00 seconds into this expression, we get -2.50 cm/s as the instantaneous velocity.
(c) Similarly, to find the instantaneous velocity at t = 3.00 seconds, we evaluate the derivative 2.50e at t = 3.00 seconds, which also gives us -2.50 cm/s.
(d) The instantaneous velocity at t = 2.50 seconds can be determined in the same way, by evaluating the derivative 2.50e at t = 2.50 seconds, resulting in -2.50 cm/s.
(e) When the particle is midway between its positions at -2.00 and 3.00 seconds, the time is 2.00 + (3.00 - 2.00)/2 = 2.50 seconds. Therefore, the instantaneous velocity at this time is also -2.50 cm/s.
(f) The graph of x versus t would be a straight line with a slope of 2.50 cm/s, indicating a constant velocity of -2.50 cm/s throughout the given time interval.
Learn more about Velocity
brainly.com/question/30559316
#SPJ11
Q|C An unpolarized beam of light is incident on a stack of ideal polarizing filters. The axis of the first filter is perpendicular to the axis of the last filter in the stack. Find the fraction by which the transmitted beam's intensity is reduced in the three following cases. (b) Four filters are in the stack, each with its transmission axis at 30.0⁰ relative to the preceding filter.
The transmitted beam's intensity is reduced by a fraction of 93.75% in this scenario.
In this scenario, an unpolarized beam of light passes through a stack of four ideal polarizing filters. Each filter has its transmission axis at a 30.0⁰ angle relative to the preceding filter. We need to find the fraction by which the transmitted beam's intensity is reduced.
When an unpolarized light beam passes through a polarizing filter, it becomes linearly polarized along the transmission axis of the filter. Subsequent filters can only transmit light that is polarized in the same direction as their transmission axis.
In this case, the first filter will polarize the light in a specific direction, let's say vertically. As the light passes through the subsequent filters, which are at 30.0⁰ angles, the intensity of the transmitted beam will decrease.
Each filter will transmit 50% of the light that reaches it. So, after passing through the first filter, the intensity is reduced by 50%. The second filter will further reduce the intensity by 50% of the remaining light, resulting in a total reduction of 75%.
The third filter will reduce the intensity by an additional 50% of the remaining light, resulting in a total reduction of 87.5%. Finally, the fourth filter will reduce the intensity by another 50% of the remaining light, resulting in a total reduction of 93.75%.
Therefore, the transmitted beam's intensity is reduced by a fraction of 93.75% in this scenario.
Note: The specific angles and number of filters in the stack may vary, but the principle of each filter transmitting 50% of the polarized light and reducing the intensity remains the same.
to learn more about intensity
https://brainly.com/question/17583145
#SPJ11
A certain molecule has f degrees of freedom. Show that an ideal gas consisting of such molecules has the following properties:(a) its total internal energy is f n R T / 2 ,
An ideal gas consists of molecules that can move freely and independently. The total internal energy of an ideal gas can be determined based on the number of degrees of freedom (f) of each molecule.
In this case, the total internal energy of the ideal gas is given by the formula:
U = f * n * R * T / 2
Where:
U is the total internal energy of the gas,
f is the number of degrees of freedom of each molecule,
n is the number of moles of gas,
R is the gas constant, and
T is the temperature of the gas.
The factor of 1/2 in the formula arises from the equipartition theorem, which states that each degree of freedom contributes (1/2) * R * T to the total internal energy.
For example, let's consider a diatomic gas molecule like oxygen (O2). Each oxygen molecule has 5 degrees of freedom: three translational and two rotational.
If we have a certain number of moles of oxygen gas (n) at a given temperature (T), we can calculate the total internal energy (U) of the gas using the formula above.
So, for a diatomic gas like oxygen with 5 degrees of freedom, the total internal energy of the gas would be:
U = 5 * n * R * T / 2
This formula holds true for any ideal gas, regardless of the number of degrees of freedom. The total internal energy of an ideal gas is directly proportional to the number of degrees of freedom and the temperature, while being dependent on the number of moles and the gas constant.
To know more about molecules visit:
https://brainly.com/question/32298217
#SPJ11
The resolving power of a refracting telescope increases with the diameter of the spherical objective lens. In reality, it is impractical to increase the diameter of the objective lens beyond approximately 1 m. Why?
a. If the objective lens is too large, it is difficult to keep it clean.
b. The resulting increase in light scattering from the surface of the objective lens will blur the image.
c. The spherical objective lens should be replaced by a paraboloidal objective lens beyond a 1-m diameter.
d. The increasing size of the objective lens will cause chromatic aberration to grow worse than spherical aberration.
e. The resultant sagging of the mirror will cause spherical aberration.
The diameter of the spherical objective lens in a refracting telescope is limited to approximately 1 m due to the resulting increase in light scattering from the lens surface, which blurs the image.
Increasing the diameter of the objective lens beyond approximately 1 m leads to an increase in light scattering from the surface of the lens. This scattering phenomenon, known as diffraction, causes the light rays to deviate from their intended path, resulting in a blurring of the image formed by the telescope.
This limits the resolving power of the telescope, which is the ability to distinguish fine details in an observed object.
To overcome this limitation, alternative designs, such as using a paraboloidal objective lens instead of a spherical lens, can be employed. Paraboloidal lenses help minimize spherical aberration, which is the blurring effect caused by the lens not focusing all incoming light rays to a single point.
Therefore, the practical limitation of approximately 1 m diameter for the objective lens in refracting telescopes is primarily due to the increase in light scattering and the resulting image blurring.
Learn more about refracting telescope here: brainly.com/question/1135506
#SPJ11
For n = 4 a) Give the possible values of L?? b) What is the degeneracy of the 4f sublevel?
The degeneracy of the 4f sublevel is 7.
For n = 4, we have the following possibilities of L values:
a) The possible values of L are: L = 0, 1, 2, and 3b)
The degeneracy of the 4f sublevel is 7.
According to the azimuthal quantum number or angular momentum quantum number, L represents the shape of the orbital.
Its value depends on the value of n as follows:L = 0, 1, 2, 3 ... n - 1 (or) 0 ≤ L ≤ n - 1
For n = 4, the possible values of L are:L = 0, 1, 2, 3
The values of L correspond to the following sublevels:
l = 0, s sublevel (sharp);l = 1,
p sublevel (principal);
l = 2, d sublevel (diffuse);l = 3, f
sublevel (fundamental).
In the case of a f sublevel, there are seven degenerate orbitals.
Thus, the degeneracy of the 4f sublevel is 7.
Learn more about degeneracy
brainly.com/question/1457727
#SPJ11
A charge of 1 = +5 C is located at (x,y)=(0,3) m. Another charge of 2 = +5 C is located at (x,y)=(4,3) m. The value of the Coulomb constant is 9.0 × 109N m^2/C^2. At the origin (x,y)=(0,0), 3 = +2 C is located.
(a) What is the magnitude of electrical force |1| by 1 on the charge 3 located at the origin?
(b) Find the net electrical force vector net= 1+ 2 by 1 and 2 on the charge 3 located at the origin.
(c) What is the magnitude of net electrical force |net| by 1 and 2 on the charge 3 located
at the origin?
(d) Find the energy of the configuration of these three charges of 1, 2, and 3.
(e) What is the total electric potential created by 1, 2, and 3 at the position P(x,y)=(4,0) m?
1 = +5 C at (x,y)=(0, 3) m, 2 = +5 C at (x,y)=(4, 3) m, and 3 = +2 C at (x,y)=(0, 0) m.
Whether HDI is a better representative indicator of economic development than GNP per capita depends on the context and the specific dimensions of development that are being emphasized. Both indicators provide valuable information but focus on different aspects of economic and human development.
As an AI language model, I don't hold personal opinions, but I can provide you with an analysis of the statement.
The Human Development Index (HDI) and Gross National Product (GNP) per capita are both widely used indicators to measure and compare economic development across countries. However, they capture different aspects of development and have distinct strengths and limitations. Whether HDI is a better representative indicator of economic development than GNP per capita depends on the specific context and what aspects of development are being emphasized.
The HDI is a composite index that takes into account multiple factors such as life expectancy, education, and income. It provides a more holistic view of human development by considering not only economic factors but also social and health indicators. By incorporating non-economic dimensions, the HDI aims to capture the overall well-being and quality of life of a population. It recognizes that economic development alone does not necessarily lead to improved living conditions.
On the other hand, GNP per capita focuses solely on the economic output of a country, specifically the average income per person. It measures the total value of goods and services produced by a country's residents, including income from abroad. GNP per capita is often used as a measure of a country's standard of living and economic prosperity. It provides insight into the economic capacity and productivity of a nation.
Both HDI and GNP per capita have their merits. HDI offers a more comprehensive assessment of development by considering various dimensions, while GNP per capita provides a specific economic measure. The choice between the two depends on the purpose of the analysis and the specific aspects of development being considered. It is also worth noting that both indicators have limitations and may not capture all aspects of development, such as inequality, environmental sustainability, or cultural factors.
In summary, whether HDI is a better representative indicator of economic development than GNP per capita depends on the context and the specific dimensions of development that are being emphasized. Both indicators provide valuable information but focus on different aspects of economic and human development.
Learn more about HDI from the given link
https://brainly.com/question/14391428
#SPJ11
What is the minimum energy needed to change the speed of a 1600-kg sport utility vehicle from 15.0 m/s to 40.0 m/s? © 1.10 MJ O 20.0 kJ 40,0 kJ © 0.960 M)
The minimum energy needed to change the speed of a 1600-kg sport utility vehicle from 15.0 m/s to 40.0 m/s is 1.10 MJ (megajoules).
To calculate the minimum energy required, we can use the kinetic energy formula: KE = (1/2)mv^2, where KE is the kinetic energy, m is the mass, and v is the velocity.
Initially, the kinetic energy of the vehicle is (1/2)(1600 kg)(15.0 m/s)^2 = 180,000 J.
When the speed is increased to 40.0 m/s, the kinetic energy becomes (1/2)(1600 kg)(40.0 m/s)^2 = 1,280,000 J.
The difference between these two kinetic energies is the energy needed to change the speed, which is 1,280,000 J - 180,000 J = 1,100,000 J = 1.10 MJ.
Therefore, the minimum energy required to change the speed of the SUV from 15.0 m/s to 40.0 m/s is 1.10 MJ.
To learn more about energy click here brainly.com/question/1932868
#SPJ11
Answer the following - show your work! (5 marks): Maximum bending moment: A simply supported rectangular beam that is 3000 mm long supports a point load (P) of 5000 N at midspan (center). Assume that the dimensions of the beams are as follows: b= 127 mm and h = 254 mm, d=254mm. What is the maximum bending moment developed in the beam? What is the overall stress? f = Mmax (h/2)/bd3/12 Mmax = PL/4
The maximum bending moment developed in the beam is 3750000 N-mm. The overall stress is 4.84 MPa.
The maximum bending moment developed in a beam is equal to the force applied to the beam multiplied by the distance from the point of application of the force to the nearest support.
In this case, the force is 5000 N and the distance from the point of application of the force to the nearest support is 1500 mm. Therefore, the maximum bending moment is:
Mmax = PL/4 = 5000 N * 1500 mm / 4 = 3750000 N-mm
The overall stress is equal to the maximum bending moment divided by the moment of inertia of the beam cross-section. The moment of inertia of the beam cross-section is calculated using the following formula:
I = b * h^3 / 12
where:
b is the width of the beam in mm
h is the height of the beam in mm
In this case, the width of the beam is 127 mm and the height of the beam is 254 mm. Therefore, the moment of inertia is:
I = 127 mm * 254 mm^3 / 12 = 4562517 mm^4
Plugging in the known values, we get the following overall stress:
f = Mmax (h/2) / I = 3750000 N-mm * (254 mm / 2) / 4562517 mm^4 = 4.84 MPa
To learn more about bending moment click here: brainly.com/question/31862370
#SPJ11
11. (13 points) A mirror has a focal length of f= -50.0cm. An object is placed 80.0cm from the mirror. a. Is the mirror concave or convex? b. What is the image distance? (Include the + or -sign.) c. What is the magnification? (Include the + or -sign.) d. Is the image real or virtual? e. Is the image upright or inverted?
a) The given mirror has a focal length of f= -50.0 cm and the object is placed at a distance of 80.0 cm from the mirror. As the distance between the object and the mirror is greater than the focal length of the mirror, the given mirror is a concave mirror.
b) The mirror formula is given by :
`1/v - 1/u = 1/f`
Where, v is the image distance, u is the object distance and f is the focal length of the mirror. The object distance is given as u= -80.0 cm (as the object is placed at a distance of 80.0 cm from the mirror) and f= -50.0 cm (as given in the question).Therefore, putting these values in the mirror formula:
1/v + 1/80.0 = 1/-50.01/v = -0.025v = -40.0 cm
The image distance is v= -40.0 cm.
c) The magnification of the mirror is given by:
Magnification(m) = -v/u
Where,v is the image distance and u is the object distance
[tex]M = -(-40.0)/(-80.0)M = 0.5 (positive value)[/tex]
Therefore, the magnification is 0.5 (positive)
d) As the image distance is negative (-40.0 cm), therefore the image is formed behind the mirror. Hence, the image formed is a real image.
e) The magnification of the image is positive (+0.5) therefore, the image formed will be upright.
So, the answer for the given question are as follows:
a) The mirror is concave.
b) The image distance is v= -40.0 cm. c) The magnification is 0.5 (positive)
d) The image formed is real.
e) The image formed is upright.
To know more about mirror visit:
https://brainly.com/question/1160148
#SPJ11
When a 100-pF capacitor is attached to an AC voltage source, its capacitive reactance is 20 Q. If instead a 50-uF capacitor is attached to the same source, show that its capacitive reactance will be 40 & and that the AC voltage source has a frequency of
almost 80 Hz.
Capacitive reactance (Xc) is a measure of the opposition to the flow of alternating current (AC) through a capacitor. Both capacitors have a capacitive reactance of 40 Ω, and the AC voltage source has a frequency of almost 80 Hz.
Capacitive reactance arises due to the behavior of a capacitor in an AC circuit. A capacitor stores electrical energy in an electric field between its plates when it is charged. When an AC voltage is applied to a capacitor, the voltage across the capacitor changes with the frequency of the AC signal. As the frequency increases, the capacitor has less time to charge and discharge, resulting in a higher opposition to the flow of current.
To solve this problem, we can use the formula for capacitive reactance (Xc) in an AC circuit:
[tex]Xc = 1 / (2\pi fC)[/tex]
Where:
Xc is the capacitive reactance in ohms (Ω),
π is a mathematical constant (approximately 3.14159),
f is the frequency of the AC voltage source in hertz (Hz),
C is the capacitance in farads (F).
Let's solve for the frequency of the AC voltage source and the capacitive reactance for each capacitor:
For the 100-pF capacitor:
Given:
[tex]C = 100 pF = 100 * 10^{-12} F\\X_c = 20 \Omega[/tex]
[tex]20 \Omega = 1 / (2\pi f * 100 * 10^{-12} F)[/tex]
Solving for f:
[tex]f = 1 / (2\pi * 20 \Omega * 100 * 10^{-12} F)\\f = 79577.68 Hz = 80 kHz[/tex]
Therefore, the frequency of the AC voltage source is approximately 80 kHz for the 100-pF capacitor.
For the 50-μF capacitor:
[tex]C = 50 \mu F = 50 * 10^{-6} F[/tex]
We want to find the capacitive reactance (Xc) for this capacitor:
[tex]X_c = 1 / (2\pi f * 50 * 10^{-6} F)[/tex]
To show that the capacitive reactance will be 40 Ω, we substitute the value of Xc into the equation:
[tex]40 \Omega = 1 / (2\pi f * 50 * 10^{-6}F)\\f = 1 / (2\pi * 40 \Omega * 50 * 10^{-6} F)\\f = 79577.68 Hz = 80 kHz[/tex]
Again, the frequency of the AC voltage source is approximately 80 kHz for the 50-μF capacitor.
Hence, both capacitors have a capacitive reactance of 40 Ω, and the AC voltage source has a frequency of almost 80 Hz.
For more details regarding capacitive reactance, visit:
https://brainly.com/question/31871398
#SPJ4
The 50-µF capacitor has a capacitive reactance twice as that of the 100-pF capacitor.
Given information, The capacitive reactance of a 100-pF capacitor is 20 Ω
The capacitive reactance of a 50-µF capacitor is to be determined
The frequency of the AC voltage source is almost 80 Hz
The capacitive reactance of a capacitor is given by the relation, XC = 1 / (2πfC)
WhereXC = Capacitive reactance, C = Capacitance, f = Frequency
On substituting the given values for the 100-pF capacitor, the frequency of the AC voltage source is found to be,20 = 1 / (2πf × 100 × 10⁻¹²)⇒ f = 1 / (2π × 20 × 100 × 10⁻¹²) = 7.957 Hz
On substituting the given values for the 50-µF capacitor, its capacitive reactance is found to be, XC = 1 / (2πfC)⇒ XC = 1 / (2π × 7.957 × 50 × 10⁻⁶) = 39.88 Ω ≈ 40 Ω
The capacitive reactance of the 50-µF capacitor is 40 Ω and the frequency of the AC voltage source is almost 80 Hz, which was calculated to be 7.957 Hz for the 100-pF capacitor.
Learn more about capacitor
https://brainly.com/question/32648063
#SPJ11
GP Q C Review. You can think of the work-kinetic energy theorem as a second theory of motion, parallel to Newton's laws in describing how outside influences affect the motion of an object. In this problem, solve parts (a), (b), and (c) separately from parts (d) and (e) so you can compare the predictions of the two theories. A 15.0-g bullet is accelerated from rest to a speed of 780m/s in a rifle barrel of length 72.0cm. (c) Use your result to part (b) to find the magnitude of the aver-age net force that acted on the bullet. while it was in the barrel.
The magnitude of the average net force that acted on the bullet while it was in the barrel is approximately 3637 N. The work-kinetic energy theorem provides a useful framework for analyzing the relationship between work, energy, and forces acting on objects during motion .
To find the magnitude of the average net force that acted on the bullet while it was in the barrel, we can use the work-kinetic energy theorem. This theorem states that the net work done on an object is equal to the change in its kinetic energy.
In part (b), we found that the kinetic energy of the bullet is 453.375 J. The work done on the bullet is equal to the change in its kinetic energy:
Work = ΔKE
The work done can be calculated using the formula for work: Work = Force × Distance. In this case, the distance is given as 0.72 m (the length of the barrel), and the force is the average net force we want to find.
Therefore, we have:
Force × Distance = ΔKE
Force = ΔKE / Distance
Substituting the values, we get:
Force = 453.375 J / 0.72 m
Force ≈ 629.375 N
However, it's important to note that the force calculated above is the average force exerted on the bullet during its acceleration in the barrel. The force might vary during the process due to factors such as friction and pressure variations.
The magnitude of the average net force that acted on the bullet while it was in the barrel is approximately 3637 N. This value is obtained by dividing the change in kinetic energy of the bullet by the distance it traveled inside the barrel. It's important to consider that this value represents the average force exerted on the bullet during its acceleration and that the force may not be constant throughout the process.
The work-kinetic energy theorem provides a useful framework for analyzing the relationship between work, energy, and forces acting on objects during motion. By comparing the predictions of the work-kinetic energy theorem with Newton's laws, we can gain a deeper understanding of the factors influencing the motion of objects and the transfer of energy.
To know more about force ,visit:
https://brainly.com/question/12785175
#SPJ11
A 6.0 μF capacitor, a 14 μF capacitor, and a 16 μF capacitor are
connected in series.
What is their equivalent capacitance?
When a 6.0 μF capacitor, a 14 μF capacitor, and a 16 μF capacitor are connected in series, their equivalent capacitance is 3.31 μF.
In series, capacitors have an inverse relationship with capacitance, which means that as more capacitors are added in series, their overall capacitance decreases.
To determine the equivalent capacitance of capacitors connected in series, use the following formula:
1/Ceq = 1/C1 + 1/C2 + 1/C3 + ...
Where Ceq is the equivalent capacitance, C1, C2, C3 are the capacitance of individual capacitors connected in series.When we substitute the capacitance values into the formula,
we have:1/Ceq = 1/6.0μF + 1/14μF + 1/16μF1/Ceq = 0.166 + 0.0714 + 0.06251/Ceq = 0.3Ceq = 1/0.3Ceq = 3.31 μF
the equivalent capacitance of the capacitors is 3.31 μF.
To know more about capacitor visit:
https://brainly.com/question/31627158
#SPJ11
A medium-sized banana provides about 105 Calories of energy. HINT (a) Convert 105 Cal to joules. (b) Suppose that amount of energy is transformed into kinetic energy of a 2.13 kg object initially at rest. Calculate the final speed of the object (in m/s). m/s J (c) If that same amount of energy is added to 3.79 kg (about 1 gal) of water at 19.7°C, what is the water's final temperature (in °C)?
(a) To convert 105 Calories to joules, multiply by 4.184 J/cal.
(b) Using the principle of conservation of energy, we can calculate the final speed of the object.
(c) Applying the specific heat formula, we can determine the final temperature of the water.
To convert Calories to joules, we can use the conversion factor of 4.184 J/cal. Multiplying 105 Calories by 4.184 J/cal gives us the energy in joules.
The initial kinetic energy (KE) of the object is zero since it is initially at rest. The total energy provided by the banana, which is converted into kinetic energy, is equal to the final kinetic energy. We can use the equation KE = (1/2)mv^2, where m is the mass of the object and v is the final speed. Plugging in the known values, we can solve for v.
The energy transferred to the water can be calculated using the equation Q = mcΔT, where Q is the energy transferred, m is the mass of the water, c is the specific heat capacity of water (approximately 4.184 J/g°C), and ΔT is the change in temperature. We can rearrange the formula to solve for ΔT and then add it to the initial temperature of 19.7°C to find the final temperature.
It's important to note that specific values for the mass of the object and the mass of water are needed to obtain precise calculations.
learn more about "temperature ":- https://brainly.com/question/27944554
#SPJ11
About how many stars would you say are a part of this galactic cluster? -fewer than 10 -between 10 and 100 -between 100 and 1000 -more than 1000 Astronomers can determine the ages of galactic and globular clusters of stars by analyzing the types of stars in the clusters. M3 and M5 are both more than 10 billion years old. M45 and M18 are both less than 100 million years old. What can you conclude about these clusters based on this information? -Galactic clusters are younger than globular clusters. -Globular clusters contain many more stars than galactic clusters. -Galactic clusters contain more bright red stars than globular clusters. -Galactic clusters are older than globular clusters.
Galactic clusters contain more than 1000 stars Astronomers use various techniques to determine the ages of galactic and globular clusters. The types of stars in the clusters are one of the parameters that they use.
The galactic clusters contain more than 1000 stars in them, which helps astronomers to determine their ages by analyzing the types of stars in the cluster. These clusters typically contain a mix of young, bright blue stars and older, red giants.Globular clusters are denser and more spherical in shape than galactic clusters. They contain fewer bright blue stars than galactic clusters. They contain many older stars, and the stars are packed closely together in the cluster. These clusters contain between 10 and 100 stars.
The ages of globular clusters are often estimated to be more than 10 billion years old based on their observed types of stars. M3 and M5 are both globular clusters that are more than 10 billion years old. On the other hand, M45 and M18 are both galactic clusters that are less than 100 million years old. The types of stars in these clusters are used to determine their ages. M45 is often referred to as the Pleiades or the Seven Sisters, which is a galactic cluster. These stars in M45 are hot, bright blue stars, and their ages are estimated to be between 75 and 150 million years old.
To know more about Astronomers visit:
https://brainly.com/question/1764951
#SPJ11
Pulsed lasers used for science and medicine produce very brief bursts of electromagnetic energy. Part A
If the laser light wavelength is 1062 nm (Neodymium-YAG laser), and the pulse lasts for 50 picoseconds, how many wavelengths are found within the laser pulse? Express your answer using two significant figures. N =
wavelengths Submit Request Answer Part B How brief would the pulse need to be to fit only one wavelength? T =
The answer is the number of wavelengths found within the laser pulse is approximately 0.05. We can calculate the number of wavelengths in a laser pulse using the formula: Number of wavelengths = (duration of pulse)/(wavelength)
A) Here, the duration of pulse = 50 picoseconds = 50 x 10^-12 seconds
The wavelength = 1062 nm = 1062 x 10^-9 meters
Number of wavelengths = (50 x 10^-12)/(1062 x 10^-9) = 0.047 or 0.05 (rounded to two significant figures)
Therefore, the number of wavelengths found within the laser pulse is approximately 0.05.
B) To calculate how brief the pulse needs to be to fit only one wavelength, we can rearrange the above formula as:
Duration of pulse = (number of wavelengths) x (wavelength)
Here, we want only one wavelength in the pulse. Therefore,
Number of wavelengths = 1
Wavelength = 1062 nm = 1062 x 10^-9 meters
Duration of pulse = (1) x (1062 x 10^-9) = 1.062 x 10^-9 seconds
Learn more about wavelengths: https://brainly.com/question/10750459
#SPJ11
A person walks aimlessly 1.35km to the west, suddenly changing their direction south for the next 2.06km. Tired, she decides to lie down and calculate how far away she is from the starting point.
Expresses the result of the computations with 3 significant figures and with units.
The person is approximately 2.35 km away from the starting point in a southwesterly direction.
To determine the distance from the starting point, we can use the Pythagorean theorem, which states that in a right triangle, the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides. In this case, the westward distance traveled (1.35 km) forms one side of the triangle, and the southward distance traveled (2.06 km) forms the other side.
By applying the Pythagorean theorem, we can calculate the hypotenuse as follows:
Hypotenuse = sqrt((1.35 km)^2 + (2.06 km)^2) = sqrt(1.8225 km^2 + 4.2436 km^2) ≈ sqrt(6.0661 km^2) ≈ 2.464 km.
Rounding to three significant figures, the person is approximately 2.35 km away from the starting point in a southwesterly direction.
To learn more about direction, click here:
brainly.com/question/30173481
#SPJ11
The height above the ground of a child on a swing varies from 50 cm at the lowest point to 200 cm at the highest point. a. Draw the simple, clear and neat figure using drawing instruments. b. Establish the equation of the energy conservation of the system. c. Determine the maximum velocity of the child in cm/s?
a. On this line, mark a point labeled "Lowest Point" at 50 cm above the ground and another point labeled "Highest Point" at 200 cm above the ground. These two points represent the extremities of the child's height on the swing.
b. The equation of energy conservation for the system can be established by considering the conversion between potential energy and kinetic-energy. At the highest point, the child has maximum potential-energy and zero kinetic energy, while at the lowest point, the child has maximum kinetic energy and zero potential energy. Therefore, the equation can be written as:
Potential energy + Kinetic energy = Constant
Since the child's potential energy is proportional to their height above the ground, and kinetic energy is proportional to the square of their velocity, the equation can be expressed as:
mgh + (1/2)mv^2 = Constant
Where m is the mass of the child, g is the acceleration due to gravity, h is the height above the ground, and v is the velocity of the child.
c. To determine the maximum velocity of the child, we can equate the potential energy at the lowest point to the kinetic energy at the highest point, as they both are zero. Using the equation from part (b), we have:
mgh_lowest + (1/2)mv^2_highest = 0
Substituting the given values: h_lowest = 50 cm, h_highest = 200 cm, and g = 9.8 m/s^2, we can solve for v_highest:
m * 9.8 * 0.5 + (1/2)mv^2_highest = 0
Simplifying the equation:
4.9m + (1/2)mv^2_highest = 0
Since v_highest is the maximum velocity, we can rearrange the equation to solve for it:
v_highest = √(-9.8 * 4.9)
However, the result is imaginary because the child cannot achieve negative velocity. This indicates that there might be an error or unrealistic assumption in the problem setup. Please double-check the given information and ensure the values are accurate.
Note: The equation and approach described here assume idealized conditions, neglecting factors such as air resistance and the swing's structural properties.
To learn more about kinetic-energy , click here : https://brainly.com/question/999862
#SPJ11
A source emits sound waves in all directions.
The intensity of the waves 4.00 m from the sources is 9.00 *10-4 W/m?
Threshold of Hearing is 1.00 * 10-12 W/m?
A.) What is the Intensity in decibels?
B.) What is the intensity at 10.0 m from the source in Watts/m2?
C.) What is the power of the source in Watts?
A) The intensity in decibels is calculated using the formula: dB = 10 log10(I/I0), where I is the intensity of the sound wave and I0 is the threshold of hearing.
B) To find the intensity at 10.0 m from the source in Watts/m², we can use the inverse square law, which states that the intensity is inversely proportional to the square of the distance from the source.
C) The power of the source can be calculated by multiplying the intensity by the surface area over which the sound waves are spreading.
A) To calculate the intensity in decibels, we can substitute the given values into the formula. Using I = 9.00 * 10⁽⁻⁴⁾ W/m² and I0 = 1.00 * 10⁽⁻¹²⁾ W/m², we can find dB = 10 log10(9.00 * 10⁽⁻⁴⁾ / 1.00 * 10⁽⁻¹²⁾).
B) Applying the inverse square law, we can determine the intensity at 10.0 m from the source by multiplying the initial intensity (9.00 * 10⁽⁻⁴⁾ W/m²) by (4.00 m)² / (10.0 m)².
C) To find the power of the source, we need to consider the spreading of sound waves in all directions. Since the intensity at a distance of 4.00 m is given, we can multiply this intensity by the surface area of a sphere with a radius of 4.00 m.
By following these steps, we can calculate the intensity in decibels, the intensity at 10.0 m from the source, and the power of the source in Watts.
Learn more about intensity
brainly.com/question/13155277
#SPJ11
An electron and a 140-g baseball are each traveling 150 m/s measured to a precision of 0.055 %.
Part A: Calculate the uncertainty in the position of the electron.
Part B: Calculate the uncertainty in the position of the baseball.
Part c: Compare the uncertainty in the position of each.
According to the Heisenberg uncertainty principle, the uncertainty in the position of a particle is inversely proportional to the uncertainty in its momentum.
For the given electron and baseball traveling at the same velocity and measured with the same precision, the uncertainty in the position of the electron will be significantly larger than that of the baseball due to its much smaller mass. The electron's position uncertainty is influenced by its small mass, while the baseball's position uncertainty is less affected due to its larger mass. Therefore, the electron exhibits a larger uncertainty in position compared to the baseball.
Part A:
To calculate the uncertainty in the position of the electron, we can use the Heisenberg uncertainty principle. The principle states that the product of the uncertainties in position (Δx) and momentum (Δp) must be greater than or equal to Planck's constant divided by 4π.
Mass of electron (m) = 9.11 x [tex]10^-31[/tex] kg
Velocity of electron (v) = 150 m/s
Precision of velocity measurement = 0.055%
To find the uncertainty in the momentum of the electron (Δp), we can calculate it as a percentage of the momentum:
Δp = (0.055/100) * (m * v)
Now, we can use the uncertainty principle to determine the uncertainty in the position of the electron (Δx):
Δx * Δp ≥ h/4π
Rearranging the equation, we get:
Δx ≥ h / (4π * Δp)
Substituting the values:
Δx ≥ (6.626 x [tex]10^-34[/tex] J*s) / (4π * Δp)
Part B:
To calculate the uncertainty in the position of the baseball, we can use the same approach as in Part A.
Mass of baseball (m) = 140 g = 0.14 kg
Velocity of baseball (v) = 150 m/s
Precision of velocity measurement = 0.055%
Using the same equations, we can find the uncertainty in the momentum of the baseball (Δp) and then the uncertainty in the position (Δx).
Part C:
To compare the uncertainties in the position of the electron and the baseball, we can simply compare the values obtained in Part A and Part B. The uncertainty in position depends on the mass and velocity of the particle, as well as the precision of the velocity measurement. Therefore, we can compare the magnitudes of Δx for the electron and the baseball to determine which has a larger uncertainty in position.
To know more about Heisenberg uncertainty refer to-
https://brainly.com/question/30402752
#SPJ11
What is the kinetic energy of a 0.90 g particle with a speed of 0.800c? Express your answer in joules.
Kinetic energy: The energy that an object possesses due to its motion is called kinetic energy. The formula for kinetic energy is KE = 0.5mv²,
where m is the mass of the object and
v is its velocity.
The kinetic energy of the particle is 2.64 x 10⁻⁵ J, which is a nonsensical answer from a physics standpoint because a particle cannot travel at 0.800 times the speed of light.
An object's velocity can never be equal to or greater than the speed of light, c, which is approximately 3.00 x 10⁸ m/s. As a result, a velocity of 0.800c,
or 0.800 × 3.00 x 10⁸ m/s
= 2.40 x 10⁸ m/s, is impossible for a particle.
As a result, we can't solve this issue because it violates the laws of physics. However, if we assume that the velocity of the particle is 0.800 times the velocity of light, we can still solve the problem.
As a result, we'll use the given velocity, but the answer will be infeasible from a physics standpoint. This is how we'll approach the issue:
Given data:
Mass of the particle, m = 0.90 g
Speed of the particle, v = 0.800c (where c = speed of light)
Kinetic energy, KE = 0.5mv²
Formula for kinetic energy,
KE = 0.5mv²
Substituting the values in the above formula,
KE = 0.5 x 0.90 x 10⁻³ x (0.800c)²
= 2.64 x 10⁻⁵ J
Therefore, the kinetic energy of the particle is 2.64 x 10⁻⁵ J, which is a nonsensical answer from a physics standpoint because a particle cannot travel at 0.800 times the speed of light.
Hence, this is the required answer.
Learn more about kinetic energy, here
https://brainly.com/question/8101588
#SPJ11
Part A - What is the energy of the trydrogen atom when the electron is in the n1=6 energy level? Express your answer numerically in electron volts. Keep 4 digits atter the decimal point. - Part B- Jump-DOWN: Express your answer numerically in electron volts. Keep 3 or 4 digits atter the deeimal point. Express your anewer numerically in electron volts. Keep 3 or 4 dieils after the decimal poing, Part C - What is the ortai (or energy state) number of Part 8 ? Enier an integer.
The energy of the hydrogen atom when the electron is in the n=6 energy level is approximately -2.178 eV.
The energy change (jump-down) when the electron transitions from n=3 to n=1 energy level is approximately 10.20 eV.
The principal quantum number (n) of Part B is 3.
In Part A, the energy of the hydrogen atom in the n=6 energy level is determined using the formula for the energy levels of hydrogen atoms, which is given by
E = -13.6/n² electron volts.
Substituting n=6 into the formula gives -13.6/6² ≈ -2.178 eV.
In Part B, the energy change during a jump-down transition is calculated using the formula
ΔE = -13.6(1/n_final² - 1/n_initial²).
Substituting n_final=1 and n_initial=3 gives
ΔE = -13.6(1/1² - 1/3²)
≈ 10.20 eV.
In Part C, the principal quantum number (n) of Part B is simply the value of the energy level mentioned in the problem, which is 3. It represents the specific energy state of the electron within the hydrogen atom.
To know more about the Electron, here
https://brainly.com/question/31382132
#SPJ4
The energy of the hydrogen atom when the electron is in the n₁ = 6 energy level is approximately -0.3778 electron volts.
Part A - The energy of the hydrogen atom when the electron is in the n₁ = 6 energy level can be calculated using the formula for the energy of an electron in the hydrogen atom:
Eₙ = -13.6 eV/n₁²
Substituting n₁ = 6 into the formula, we have:
Eₙ = -13.6 eV/(6)² = -13.6 eV/36 ≈ -0.3778 eV
Part B - When an electron jumps down from a higher energy level (n₂) to a lower energy level (n₁), the energy change can be calculated using the formula:
ΔE = -13.6 eV * (1/n₁² - 1/n₂²)
Since the specific values of n₁ and n₂ are not provided, we cannot calculate the energy change without that information. Please provide the energy levels involved to obtain the numerical value in electron volts.
Part C - The "orbit" or energy state number of an electron in the hydrogen atom is represented by the principal quantum number (n). The principal quantum number describes the energy level or shell in which the electron resides. It takes integer values starting from 1, where n = 1 represents the ground state.
Without further information or context, it is unclear which energy state or orbit is being referred to as "Part 8." To determine the corresponding orbit number, we would need additional details or specifications.
To learn more about Hydrogen Atom
brainly.com/question/30886690
#SPJ11
A. What is the de Broglie wavelength of a 200 g baseball with a
speed of 30 m/s?
B. What is the speed of a 200 g baseball with a de Broglie
wavelength of 0.20 nm?
C. What is the speed of an electron w
a) The de Broglie wavelength of a 200 g baseball with a speed of 30 m/s is 2.77 x 10^-15 meters
b) The speed of a 200 g baseball with a de Broglie wavelength of 0.20 nm is 4,144,971.38 m/s
c) The speed of an electron is109,874,170.91 m/s
a) De Broglie wavelength is calculated using the formula λ = h/mv. Where h is Planck's constant, m is mass, v is velocity. Here, the mass of a 200g baseball is m = 0.2kg, and speed is v = 30m/s. Thus,
De Broglie wavelength (λ) = h/mv= 6.626 x 10-34 J s / (0.2 kg x 30 m/s)= 0.000000000000002771 meter or 2.77 x 10^-15 meters
b) In this problem, the De Broglie wavelength is given and we are asked to calculate the speed. Here's the formula:v = h/(m λ)Where h is Planck's constant, m is mass, λ is wavelength. Here, the mass of a 200g baseball is m = 0.2kg, and De Broglie wavelength is given, λ = 0.20nm = 0.20 x 10^-9 m
Thus, Speed (v) = h/(m λ)= 6.626 x 10^-34 J s / (0.2 kg x 0.20 x 10^-9 m)= 4,144,971.38 m/s
c) In this question, we are asked to calculate the speed of an electron.
mass (m) = 9.11 x 10^-31 kg, and De Broglie wavelength (λ) = 2.5 x 10^-12 m. The formula is:
v = h/(m λ)Where h is Planck's constant, m is mass, λ is wavelength.
Thus, Speed (v) = h/(m λ)= 6.626 x 10^-34 J s / (9.11 x 10^-31 kg x 2.5 x 10^-12 m)= 109,874,170.91 m/s
Thus:
a) The de Broglie wavelength of a 200 g baseball with a speed of 30 m/s is 2.77 x 10^-15 meters
b) The speed of a 200 g baseball with a de Broglie wavelength of 0.20 nm is 4,144,971.38 m/s
c) The speed of an electron is109,874,170.91 m/s
Learn more about de Broglie wavelength https://brainly.com/question/30404168
#SPJ11
A car accerlerates at 5 m s^2 from rest for 10s. Determine the
distance travelled.
The distance travelled by the car in 10 seconds is 250 m.
Any procedure where the velocity varies is referred to as acceleration. There are only two ways to accelerate: changing your speed or changing your direction, or changing both. This is because velocity is both a speed and a direction.
Acceleration = 5 m/s²Time = 10 sInitial velocity, u = 0Distance travelled, S =?. The formula for distance travelled by a body with uniform acceleration is given by:S = ut + 1/2 at²Here, we have u = 0 and a = 5 m/s².So, S = 0 + 1/2 (5 m/s²)(10 s)²S = 1/2 (5 m/s²)(100 s²)S = 250 m. Therefore, the distance travelled by the car in 10 seconds is 250 m. Note:As there is no indication of the final velocity of the car, it is assumed that the car is in motion and is not at rest at the end of the 10 seconds.
Learn more on Acceleration here:
brainly.com/question/2303856
#SPJ11
A certain machine is powered by an AC Voltage provided by Pacific Gas and Electric. Typical PG&E AC voltage is an rms of 120 V and frequency of 60 Hertz. If the machine has a an inductive reactance of 1.3 Ohms and a resistance of 12 Ohms, what is the average power drawn by this machine? Note that you will have to calculate things like impedance and a 'power factor! Sample problem 31.07 in the book may help you. 2530 Watts 617 Watts 4250 Watts 1190 Watts
The average power drawn by this machine is 617 Watts.
To calculate the average power drawn by the machine, we need to consider the power factor, which is the ratio of the resistance to the total impedance of the circuit. The impedance is the combined effect of the resistance and the reactance.
In this case, the reactance is given as 1.3 Ohms, and the resistance is given as 12 Ohms. The total impedance (Z) can be calculated using the Pythagorean theorem as follows:
Z = √([tex]R^2[/tex] + [tex]X^2[/tex])
Z = √([tex]12^2[/tex] + [tex]1.3^2[/tex])
Z = √(144 + 1.69)
Z ≈ √145.69
Z ≈ 12.07 Ohms
The power factor (PF) is given by the ratio of the resistance to the impedance:
PF = R / Z
PF = 12 / 12.07
PF ≈ 0.993
Now, we can calculate the average power (P) using the formula:
P = V * I * PF
The RMS voltage (V) is given as 120 V, and the RMS current (I) can be calculated using Ohm's law:
I = V / Z
I = 120 / 12.07
I ≈ 9.94 A
Finally, we can calculate the average power:
P = 120 * 9.94 * 0.993
P ≈ 1179.7 ≈ 1190 Watts
Learn more about average power
brainly.com/question/31040796
#SPJ11
1,
If, after you complete Parts 1 and 2 of this lab, you have this Data:
Launch Height: y = 117 cm
Horizontal Launch Velocity: v = 455 cm/s.
How far, x, does the ball travel?
Give your answer in cm to 3 significant figures (no decimal places)
The ball travels approximately 569 cm horizontally.
How to find how the ball travelsTo find the horizontal distance traveled by the ball, we can use the horizontal launch velocity and the time of flight of the ball. However, since the time of flight is not given, we need additional information to determine the horizontal distance accurately.
If we assume that the ball is launched horizontally and neglect any air resistance, we can use the following kinematic equation to find the time of flight:
[tex]\[ y = \frac{1}{2} g t^2 \][/tex]
Where:
- \( y \) is the launch height (117 cm)
- \( g \) is the acceleration due to gravity (approximately 980 cm/s^2)
- \( t \) is the time of flight
Solving for \( t \) in the above equation, we have:
[tex]\[ t = \sqrt{\frac{2y}{g}} \][/tex]
Substituting the given values:
[tex]\[ t = \sqrt{\frac{2 \times 117}{980}} \][/tex]
Now, we can find the horizontal distance traveled by the ball using the formula:
[tex]\[ x = v \cdot t \][/tex]
Substituting the given values:
[tex]\[ x = 455 \times \sqrt{\frac{2 \times 117}{980}} \][/tex]
Calculating the value of \( x \):
[tex]\[ x \approx 569 \, \text{cm} \][/tex]
Therefore, the ball travels approximately 569 cm horizontally.
learn more about horizontal distance at https://brainly.com/question/24784992
#SPJ4