PLEASE SOLVE ASAP TQ
\( 1 . \) (a) A discrete system is given by the following difference equation: \[ y(n)=x(n)-2 x(n-1)+x(n-2) \] Where \( x(n) \) is the input and \( y(n) \) is the output. Compute its magnitude and pha

Answers

Answer 1

The phase response is given by -[tex]θ = arg(H(e^(jω))) = arg(1 - 2e^(-jω) + e^(-j2ω))[/tex] . Compute the 4-point Discrete Fourier Transform X[0]  = -5 - 4j, X[1] = = -1 - j, X[2] = -5 + 4j,  X[3] = -1 + j'.

(a) To compute the magnitude and phase response of the given difference equation, we can first express it in the Z-domain. Let's denote Z as the Z-transform variable.

The difference equation is: [tex]y(n) = x(n) - 2x(n-1) + x(n-2)[/tex]

Taking the Z-transform of both sides, we get:

[tex]Y(Z) = X(Z) - 2Z^(-1)X(Z) + Z^(-2)X(Z)[/tex]

Now, let's solve for the transfer function H(Z) = Y(Z)/X(Z):

[tex]H(Z) = (1 - 2Z^(-1) + Z^(-2))[/tex]

To find the magnitude response, substitute Z = e^(jω), where ω is the angular frequency:

[tex]|H(e^(jω))| = |1 - 2e^(-jω) + e^(-j2ω)|[/tex]

To find the phase response, we can express H(Z) in polar form:

[tex]H(Z) = |H(Z)|e^(jθ)[/tex]

The phase response is given by:

[tex]θ = arg(H(e^(jω))) = arg(1 - 2e^(-jω) + e^(-j2ω))[/tex]

(b) To compute the 4-point Discrete Fourier Transform (DFT) of the given discrete-time signal X[n] = {1, -2, 3, 2}, we can directly apply the DFT formula: [tex]X[k] = ∑[n=0 to N-1] (x[n] * e^(-j2πnk/N))[/tex]

where N is the length of the sequence (4 in this case).

Substituting the values:

[tex]X[0] = 1 * e^(-j2π(0)(0)/4) + (-2) * e^(-j2π(0)(1)/4) + 3 * e^(-j2π(0)(2)/4) + 2 * e^(-j2π(0)(3)/4)[/tex]

[tex]X[0] = 1 * e^(0) + (-2) * e^(-jπ/2) + 3 * e^(-jπ) + 2 * e^(-3jπ/2)[/tex]

X[0]  = 1 - 2j - 3 - 2j

X[0]  = -5 - 4j

[tex]X[1] = 1 * e^(-j2π(1)(0)/4) + (-2) * e^(-j2π(1)(1)/4) + 3 * e^(-j2π(1)(2)/4) + 2 * e^(-j2π(1)(3)/4)[/tex]

= [tex]1 * e^(-jπ/2) + (-2) * e^(-jπ) + 3 * e^(-3jπ/2) + 2 * e^(-2jπ)[/tex]

= -1 - j

[tex]X[2] = 1 * e^(-j2π(2)(0)/4) + (-2) * e^(-j2π(2)(1)/4) + 3 * e^(-j2π(2)(2)/4) + 2 * e^(-j2π(2)(3)/4)\\[/tex]

[tex]X[2] = 1 * e^(-jπ) + (-2) * e^(-3jπ/2) + 3 * e^(-jπ/2) + 2 * e^(0)[/tex]

X[2] = -5 + 4j

[tex]X[3] = 1 * e^(-j2π(3)(0)/4) + (-2) * e^(-j2π(3)(1)/4) + 3 * e^(-j2π(3)(2)/4) + 2 * e^(-j2π(3)(3)/4)[/tex]

= [tex]1 * e^(-3jπ/2) + (-2) * e^(-2jπ) + 3 * e^(-jπ/2) + 2 * e^(-jπ)[/tex]

= -1 + j

Calculating these values will give us the 4-point DFT of the given sequence X[n].

LEARN MORE ABOUT Discrete Fourier Transform here: brainly.com/question/33222515

#SPJ11

COMPLETE QUESTION- 1. (a) A discrete system is given by the following difference equation: y(n)=x(n)−2x(n−1)+x(n−2) Where x(n) is the input and y(n) is the output. Compute its magnitude and phase response. (b) Compute the 4-point Discrete Fourier Transform (DFT), when the corresponding discrete-time signal is given by: X[n]={1,−2,3,2}


Related Questions

If an area has a fence all around including down the middle with
all sides being equal, what is the length of the fence given an
area of 216 square feet?

Answers

The length of the fence will be 4 x 6√6 = 24√6 square feet.The area is given as 216 sq.ft. Since all sides of the fence are equal, we need to find the square root of the given area. Once we get the side length, we can multiply it by 4 to find the length of the fence.

Given area = 216 sq.ft.All sides of the fence are equal.Let the length of one side be x sq.ft.Then the area of the square will be x² sq.ft.x² = 216⇒ x = 6 × 6 = 6(√6)

Total length of fence = 4 × x = 4 × 6(√6) = 24(√6) sq.ft.

Given that an area has a fence all around, including down the middle with all sides being equal. And the area of the fence is 216 square feet.

We need to find the length of the fence.The first thing to be done here is to find the length of one side. Since the area of the square is given, we need to find the square root of the area to find the length of one side of the fence.

Hence we can say that x² = 216 square feet.

So the value of x will be equal to the square root of 216.

x² = 216

=> x = √216 = √(2 x 2 x 2 x 3 x 3 x 3 x 3) = 6√6 (by grouping the same factors together)

Therefore the length of one side of the fence is 6√6 square feet. To find the length of the fence, we need to multiply this by 4 since all sides of the fence are equal. Hence the length of the fence will be 4 x 6√6 = 24√6 square feet.

To learn more about length

https://brainly.com/question/2497593

#SPJ11

Between 2015 and 2021. Faimont Chateau Lake Louise has reduced water consurnption by 20,000 m3. To ensure our water quality, surface water quality samples are collected from Lake Louise and Louise Creek on an annual basis, as part of an ongoing water chemistry monitoring program. Based on the materials of the course, water quality concems involve analyzing the presence of trace minerals and__
a. vitamins b. oxygen c. nutrients d. nitrates

Answers

Water quality concerns, as part of the water chemistry monitoring program, involve analyzing the presence of trace minerals and nutrients in surface water samples collected from Lake Louise and Louise Creek. Correct option is C.

To ensure water quality, it is crucial to assess the presence of various substances in the water samples. While trace minerals are essential to understand the composition of the water and detect any potential contaminants or harmful elements, nutrients also play a significant role.

Nutrients in water refer to substances such as nitrogen and phosphorus, which are essential for the growth and survival of aquatic organisms. However, excessive nutrient levels can lead to water quality issues such as eutrophication, harmful algal blooms, and oxygen depletion. Monitoring and analyzing nutrient levels in surface water samples help identify any imbalances and potential ecological impacts.

The ongoing water chemistry monitoring program at Faimont Chateau Lake Louise collects annual surface water samples from Lake Louise and Louise Creek to ensure the continued evaluation of trace minerals and nutrients. This proactive approach allows for the early detection of any deviations from desired water quality standards, enabling appropriate actions to maintain the ecological health of the water resources.

Learn more about  water resources here:

https://brainly.com/question/28161871

#SPJ11

Q2 (30 pts). Generate a vector of 50 positive random integers from 1 to 1000 . Then, using a loop (without using built-in functions or vectorized operations): - Count how many of those numbers are div

Answers

We can generate a vector of 50 positive random integers and use a loop to iterate through the vector and check each number for divisibility by 3.

Here's an example code snippet in MATLAB that generates a vector of 50 positive random integers and counts how many of those numbers are divisible by 3:

% Set the parameters

n = 50;  % Number of random integers to generate

lower = 1;  % Lower bound

upper = 1000;  % Upper bound

% Generate the vector of random integers

rand_integers = randi([lower, upper], 1, n);

% Count the numbers divisible by 3

count = 0;  % Initialize the count variable

for i = 1:n

   if mod(rand_integers(i), 3) == 0

       count = count + 1;

   end

end

disp(count);  % Display the count of numbers divisible by 3

In this code, we use the randi function to generate a vector of n random integers between lower and upper. We then initialize the count variable to 0 and iterate through the vector using a loop. For each number, we use the mod function to check if it is divisible by 3 (i.e., the remainder of the division is 0). If it is, we increment the count variable. Finally, we display the count of numbers divisible by 3 using disp(count).

Learn more about loop here:

https://brainly.com/question/14390367

#SPJ11

In this exercise, you’ll create a form that accepts one or more
scores from the user. Each time a score is added, the score total,
score count, and average score are calculated and displayed.
I ne

Answers

In this exercise, you’ll create a form that accepts one or more scores from the user. Each time a score is added, the score total, score count, and average score are calculated and displayed.

In order to achieve this, you will need to utilize HTML and JavaScript. First, create an HTML form that contains a text input field for the user to input a score and a button to add the score to a list. Then, create a JavaScript function that is triggered when the button is clicked.

To update these values, you will need to loop through the array of scores and calculate the total and count, and then divide the total by the count to get the average.

Finally, the function should display the updated values to the user. You can use HTML elements such as `` or `

To know more about calculated  visit:

brainly.com/question/30781060

#SPJ11

Evaluate the line integral ∫c​F⋅dr where c is given by the vector r(t). F(x,y)=yzi+xzj+xyk,r(t)=ti+t2j+t3k,0≤t≤2

Answers

Therefore, the line integral ∫c F⋅dr along the curve c is equal to 64.

To evaluate the line integral ∫c F⋅dr, we need to calculate the dot product F⋅dr along the given curve c.

First, let's find the parameterization of the curve c:

[tex]r(t) = ti + t^2j + t^3k[/tex]

Next, let's calculate the derivative of r(t) with respect to t:

[tex]dr/dt = i + 2tj + 3t^2k[/tex]

Now, let's find F⋅dr:

F⋅dr = (yz)i + (xz)j + (xy)k ⋅ (dr/dt)

[tex]= (t^3)(t^2)(1) + (t)(t^3)(2t) + (t)(t^2)(t^2)[/tex]

[tex]= t^5 + 2t^5 + t^5[/tex]

[tex]= 4t^5[/tex]

Finally, we can calculate the line integral:

∫c F⋅dr = ∫[0,2] [tex]4t^5 dt[/tex]

[tex]= [t^6][/tex] evaluated from 0 to 2

[tex]= (2^6) - (0^6)[/tex]

= 64

To know more about line integral,

https://brainly.com/question/31396911

#SPJ11

Suppose that y1(t) is solution of L(y1)=0 and y2(t) is solution of L(y2)=b(t)=0, where
L(y)=2y′′+3y′+4y.

Answers

The function y(t) = C₁y₁(t) + y₂(t), where C₁ is an arbitrary constant, is a general solution of the linear homogeneous differential equation L(y) = 0, and y₂(t) is a particular solution of the non-homogeneous equation L(y) = b(t) ≠ 0.

We are given a linear homogeneous differential equation L(y) = 2y′′ + 3y′ + 4y = 0. The function y₁(t) is a solution of this equation, meaning it satisfies L(y₁) = 0.

We are also given a non-homogeneous differential equation L(y) = 2y′′ + 3y′ + 4y = b(t), where b(t) is a function that is not equal to zero. The function y₂(t) is a solution of this non-homogeneous equation, meaning it satisfies L(y₂) = b(t) ≠ 0.

To find the general solution of the linear homogeneous equation, we introduce an arbitrary constant C₁ and construct the linear combination C₁y₁(t) + y₂(t). This general solution incorporates both the homogeneous solution y₁(t) and the particular solution y₂(t) of the non-homogeneous equation.

The constant C₁ allows for different values and can be determined using initial conditions or additional information about the problem.

Therefore, the function y(t) = C₁y₁(t) + y₂(t), where C₁ is an arbitrary constant, is a general solution of the linear homogeneous differential equation L(y) = 0, and y₂(t) is a particular solution of the non-homogeneous equation L(y) = b(t) ≠ 0.

Learn more about differential equation here:

https://brainly.com/question/32645495

#SPJ11

3. A planter box in the shape of a quadrilateral has the given vertices: \( Q(-2,-1) \), \( R(5,-1), S(5,5) \) and \( T(-2,3) \). The planter box is rotated \( 90^{\circ} \) in a clockwise direction t

Answers

The rotated planter box is a new quadrilateral with vertices [tex]\(Q'(2, 4)\), \(R'(2, -3)\), \(S'(-4, -3)\)[/tex], and [tex]\(T'(-4, 4)\)[/tex]. The planter box described is a quadrilateral with vertices [tex]\(Q(-2,-1)\)[/tex], [tex]\(R(5,-1)\), \(S(5,5)\)[/tex], and [tex]\(T(-2,3)\)[/tex].

When rotated [tex]\(90^\circ\)[/tex] in a clockwise direction about its centroid, the resulting shape will be a new quadrilateral with different vertex coordinates.

To find the centroid of the original quadrilateral, we calculate the average of the x-coordinates and the average of the y-coordinates of its vertices. The x-coordinate of the centroid is [tex]\((-2+5+5-2)/4 = 1.5\)[/tex], and the y-coordinate is [tex]\((-1-1+5+3)/4 = 1.5\)[/tex]. Therefore, the centroid is located at [tex]\(C(1.5, 1.5)\)[/tex].

Next, we rotate each vertex of the original quadrilateral [tex]\(90^\circ\)[/tex] in a clockwise direction around the centroid. The formula for a [tex]\(90^\circ\)[/tex] clockwise rotation is [tex]\((x_ c + y - y_ c, y_ c - x + x_ c)\)[/tex], where \((x, y)\) represents the coordinates of a vertex and [tex]\((x_ c, y_ c)\)[/tex] represents the coordinates of the centroid.

Applying the rotation formula to each vertex, we get the new coordinates for the rotated quadrilateral:

[tex]\(Q' = (1.5 - (-1) - 1.5, 1.5 - (-2) + 1.5) = (2, 4)\)[/tex]

[tex]\(R' = (1.5 - (-1) - 1.5, 1.5 - (5) + 1.5) = (2, -3)\)[/tex]

[tex]\(S' = (1.5 - (5) - 1.5, 1.5 - (5) + 1.5) = (-4, -3)\)[/tex]

[tex]\(T' = (1.5 - (-2) - 1.5, 1.5 - (3) + 1.5) = (-4, 4)\)[/tex]

Therefore, the rotated planter box is a new quadrilateral with vertices [tex]\(Q'(2, 4)\), \(R'(2, -3)\), \(S'(-4, -3)\)[/tex], and [tex]\(T'(-4, 4)\)[/tex].

Learn more quadrilateral about click here: brainly.com/question/3642328

#SPJ11

The product of two imaginary values is an imaginary value. True False

Answers

False : The product of two imaginary values can include both real and imaginary parts, depending on the specific values involved in the multiplication. It is important to note that if either of the values being multiplied is zero, the product will be entirely real, with no imaginary component.

False. The product of two imaginary values is not necessarily an imaginary value. Imaginary numbers are expressed in the form of "bi," where "b" is a real number and "i" represents the imaginary unit (√-1). When multiplying two imaginary numbers, the result can be a combination of real and imaginary components.

Consider the multiplication of two imaginary numbers, such as (a + bi) * (c + di), where "a," "b," "c," and "d" are real numbers. Expanding this expression, we get ac + adi + bci + bdi^2. Simplifying further, we have ac + (ad + bc)i - bd. The resulting expression consists of a real component (ac - bd) and an imaginary component (ad + bc)i.

Therefore, the product of two imaginary values can include both real and imaginary parts, depending on the specific values involved in the multiplication. It is important to note that if either of the values being multiplied is zero, the product will be entirely real, with no imaginary component.

Learn more about imaginary parts

https://brainly.com/question/5564133

#SPJ11

Determine the value of x

Answers

The correct answer is A bc you add the area of the triangle

Let y = 3√F and y = x^3, draw the region bounded by the curves. Then, use the washer method to find the volume when the region is revolved around the y-axis.

Answers

Step-by-step explanation:

To find the region bounded by the curves and use the washer method to calculate the volume, we need to solve the given equations and identify the bounds for the region. Let's go through the steps:

Step 1: Solve the equations to find the bounds.

From the first equation, y = 3√F, we can rewrite it as F = (y/3)^3.

From the second equation, y = x^3, we can rewrite it as x = y^(1/3).

To find the bounds, we need to equate F and x:

(y/3)^3 = y^(1/3)

To solve this equation, let's raise both sides to the power of 3:

(y/3)^9 = y

Simplifying further:

y^9 / 3^9 = y

y^9 = 3^9 * y

y^9 - 3^9 * y = 0

Factoring out y, we get:

y(y^8 - 3^9) = 0

Setting each factor equal to zero, we have two possible solutions:

y = 0 and y^8 - 3^9 = 0

Solving the second equation:

y^8 = 3^9

Taking the 8th root of both sides:

y = (3^9)^(1/8)

y = 3^(9/8)

Therefore, the bounds for the region are y = 0 and y = 3^(9/8).

Step 2: Draw the region bounded by the curves.

Now that we have the bounds, we can plot the region on a graph using these limits for the y-values. The region is bound by the curves y = 3√F and y = x^3. However, we solved the equations for y, so we will be plotting y = 3√F and y = (x^3)^(1/3) or y = x.

The graph of the region should resemble a curved shape extending from y = 0 to y = 3^(9/8). However, without specific values for F or x, we cannot provide an exact graph. I encourage you to plot it on graph paper or using graphing software to visualize the region.

Step 3: Use the washer method to find the volume.

To find the volume of the region when revolved around the y-axis using the washer method, we integrate the difference of the outer and inner radii of each washer.

The outer radius, R, is given by R = x (since we revolve around the y-axis, x is the distance from the axis to the outer edge).

The inner radius, r, is given by r = 3√F.

The differential volume of each washer, dV, is then given by dV = π(R^2 - r^2) dy.

Integrating this expression from y = 0 to y = 3^(9/8), we can find the total volume:

V = ∫[0 to 3^(9/8)] π(x^2 - (3√F)^2) dy

As F and x are related by the equations given, we can express F in terms of y: F = (y/3)^3.

Substituting this into the equation, we have:

V = ∫[0 to 3^(9/8)] π(x^2 - (3√((y/3)^3))^2) dy

Simplifying further and evaluating the integral will give you the final volume.

Please note that without specific values or bounds for F or x, we cannot provide the exact numerical value of the volume.

Find the volume of the solid generated by revolving the region bounded by the graphs of the equations about the line x = 8. y = x, y = 0, y = 7, x = 8
___________

Answers

The volume of the solid generated by revolving the region bounded by the graphs y = x, y = 0, y = 7, and x = 8 about the line x = 8 is 350π cubic units.

To solve the integral V = ∫[0,7] 2π(8 - y)(dy), we can follow the steps below:

Step 1: Expand the integral:

V = 2π ∫[0,7] (16 - 2y) dy

Step 2: Integrate the terms:

V = 2π [16y - y^2/2] evaluated from 0 to 7

Step 3: Evaluate the integral at the upper and lower limits:

V = 2π [(16(7) - (7)^2/2) - (16(0) - (0)^2/2)]

Step 4: Simplify the expression:

V = 2π [(112 - 49/2) - (0 - 0/2)]

V = 2π [(112 - 49/2)]

Step 5: Compute the final result:

V = 2π [(224/2 - 49/2)]

V = 2π (175/2)

V = 350π

Therefore, the volume of the solid generated by revolving the region bounded by the graphs y = x, y = 0, y = 7, and x = 8 about the line x = 8 is 350π cubic units.

Learn more about lower limits here:

brainly.com/question/1999705

#SPJ11

Find the volume of the following composite object. Enter your answer as an integer in the box.

Please help due today!!

Answers

Answer:

please

Step-by-step explanation:

mark me brainliest 545


find the form of extra stress for the motion Newtoinion and stokes
Find the form of the extrastress for the motion Newtoinian and stokes \[ v_{1}=\frac{2 x}{1}, \frac{v_{2}}{2}=\frac{3 x}{3}, \quad v_{3}=\frac{4 x}{2} \]

Answers

The extra stress for the motion described by Newtonian and Stokes equations can be determined based on the given velocity components [tex]v_{1}=\frac{2x}{1}[/tex], [tex]\frac{v_{2} }{2}=\frac{3x}{3}[/tex], [tex]v_{3}=\frac{4x}{2}[/tex].

In fluid mechanics, the extra stress or viscous stress in a fluid is related to the velocity gradients within the fluid. Newtonian and Stokes's equations are two mathematical models used to describe fluid motion. Newtonian fluid follows Newton's law of viscosity, while Stokes flow refers to the flow of very viscous fluids at low Reynolds numbers.

To determine the complete form of the extra stress for the given velocity components, additional information such as the fluid's viscosity, the governing equations, and the specific problem setup would be required. These details are necessary to derive the equations that relate the velocity gradients to the extra stress components. Without this information, a specific form of the extra stress cannot be determined.

Learn more about equations here:

brainly.com/question/29538993

#SPJ11

PM End Date: 5/31/2022 11:59:00 PM (7%) Problem 11: There is approximately 1033 J of energy available from the fusion of hydrogen in the world's oceans. 50% Part (a) If 0.15 1033 J of this energy were utilized, what would be the decrease in the mass of the oceans? Express your answer in kilograms. Grade Summary Am= 0% Deductions Potential Late Work 100% 50% 50% sin() Late Potential cos() tan() I ( 7 89 asin() acos() E14 5 6 Submissions cotan() atan) acotan() sinh() cosh() 1 2 3 Attempts remaining: 40 (0% per attempt) detailed view . tinh) cotanh) Degrees O Radians + 0 VO SAK Submit Hint I give up! Hints: 0% deduction per hint. Hints remaining 2 Feedback: 3% deduction per feedback 50% Part (b) How great a volume of water does this correspond to in cubic meters?

Answers

a. The decrease in the mass of the oceans would be approximately 1.67 * 10^15 kg.

b.  The volume of water corresponding to this mass would be approximately 1.67 * 10^12 cubic meters.

To calculate the decrease in the mass of the oceans (part a) and the corresponding volume of water (part b), we need to use the equation relating energy to mass and the density of water.

Part (a):

The equation relating energy (E) to mass (m) is given by Einstein's mass-energy equivalence formula:

E = mc^2

Where:

E = energy

m = mass

c = speed of light (approximately 3.00 x 10^8 m/s)

We can rearrange the equation to solve for mass:

m = E / c^2

Given:

E = 0.15 * 10^33 J (energy utilized)

c = 3.00 * 10^8 m/s

Substituting the values into the equation:

m = (0.15 * 10^33 J) / (3.00 * 10^8 m/s)^2

m ≈ 0.15 * 10^33 / (9.00 * 10^16) kg

m ≈ 1.67 * 10^15 kg

Therefore, the decrease in the mass of the oceans would be approximately 1.67 * 10^15 kg.

Part (b):

To find the volume of water corresponding to this mass, we need to divide the mass by the density of water.

The density of water (ρ) is approximately 1000 kg/m^3.

Volume (V) = mass (m) / density (ρ)

V ≈ (1.67 * 10^16 kg) / (1000 kg/m^3)

V ≈ 1.67 * 10^12 m^3

Therefore, the volume of water corresponding to this mass would be approximately 1.67 * 10^12 cubic meters.

Learn more about density at https://brainly.com/question/14697097

#SPJ11

Find the value of each variable using sine and cosine. Round your answers to the nearest tenth.s = 31.3, t = 13.3

Answers

The value of sin(θ) is approximately 0.921 and the value of cos(θ) is approximately 0.391.

To find the value of each variable using sine and cosine, we need to set up a right triangle with the given information. Let's label the sides of the triangle as follows:

s = 31.3 (opposite side)t = 13.3 (adjacent side)h (hypotenuse)

Using the Pythagorean theorem, we can find the length of the hypotenuse:

h2 = s2 + t2

h2 = 31.32 + 13.32

h2 = 979.69 + 176.89

h2 = 1156.58

h = √1156.58

h ≈ 34.0

Now that we know the length of the hypotenuse, we can use sine and cosine to find the values of the variables:

sin(θ) = s / h

sin(θ) = 31.3 / 34.0

sin(θ) ≈ 0.921

cos(θ) = t / h

cos(θ) = 13.3 / 34.0

cos(θ) ≈ 0.391

Learn more:

About value here:

https://brainly.com/question/30145972

#SPJ11

Let X[k], k = 0, ..., M-1 be the DFT of M points of a real sequence x[n]. If we know the DFT value for a certain index k (0 < k < M-1), for what other index k2 ( 0< k2< M-1) can we determine the DFT value? What is the value of the DFT for k2?

Answers

If we know the DFT value for a certain index k (0 < k < M-1) of a real sequence x[n], we can determine the DFT value for another index k2 (0 < k2 < M-1) if k2 is related to k through complex conjugation. In other words, if k2 is the conjugate of k, then we can determine the DFT value for k2.

For a real sequence, the DFT values follow a symmetry property. If X[k] is the DFT value at index k, then X[M - k] is the DFT value at index k2, where k2 = M - k. The value of the DFT for k2 would be the complex conjugate of the DFT value for k, denoted as X[M - k] = X[k]*. The asterisk (*) represents complex conjugation.

In summary, if we know the DFT value for a certain index k in a real sequence, we can determine the DFT value for the index k2 = M - k, and the value of the DFT for k2 would be the complex conjugate of the DFT value for k.

Learn more about DFT value  here: brainly.com/question/31473582

#SPJ11

A 25-foot ladder is placed against the side of a building. It begins to slide down the side at a rate of 0.5 feet per second. Find the rate at which the base of the ladder is moving away from the building at the moment that the top of the ladder is 7 feet from the ground. Include units in your answer.

a^2 + b^2 = c^2

A. Find the slope of the line tangent to the function 2y^4 + 2x^2y = -5x at the point (-2, 1).
B. Find the equation of the line tangent to the above function at the given point. Write equation in slope-intercept form.

Answers

Part A:

The given equation is: 2y^4 + 2x^2y = -5x. We are tasked with finding the slope of the tangent at the point (-2, 1).

Differentiating the given equation with respect to x on both sides, we obtain:

8y^3(dy/dx) + 4xy(dy/dx) + 2x^2(dy/dx) = -5(dy/dx) - 5.

Simplifying, we have:

(dy/dx)(8y^3 + 4xy + 2x^2 + 5) = -5(dy/dx) - 5.

Rearranging the equation, we get:

(dy/dx)(8y^3 + 4xy + 2x^2 + 5) + 5(dy/dx) = -5.

Further simplification yields:

(dy/dx) = -(5 + 8y^3 + 4xy + 2x^2) / [5(8y^3 + 4xy + 2x^2 + 5)].

At the point (-2, 1), we have y = 1 and x = -2. Substituting these values into the equation, we can calculate the slope of the tangent at this point:

Slope of the tangent = -(5 + 8(1)^3 + 4(-2)(1) + 2(-2)^2) / [5(8(1)^3 + 4(-2)(1) + 2(-2)^2 + 5)]

= -9/41.

Hence, the slope of the line tangent to the function 2y^4 + 2x^2y = -5x at the point (-2, 1) is -9/41.

Part B:

To find the equation of the tangent line of the given curve at the point (-2, 1), we use the slope-intercept form.

Using the previously calculated slope of -9/41, we can apply the point-slope form:

(y - y1) = m(x - x1).

Substituting the values of (x1, y1) = (-2, 1) and m = -9/41, we can determine the equation of the tangent line:

y - 1 = (-9/41)(x + 2) => y = (-9/41)x + 83/41.

Therefore, the equation of the tangent line is y = (-9/41)x + 83/41 in slope-intercept form.

Learn more about coordinate from the given link:

brainly.com/question/149775

#SPJ11

Use the limit definition to compute the derivative of the function f(x)=4x³ at x=1. (Give your answer as a whole or exact number.)

Answers

Using the limit definition of a derivative, the derivative of the function f(x) = 4x³ at x = 1 is 12.

The derivative of a function represents its instantaneous rate of change at a specific point. To compute the derivative of f(x) = 4x³ at x = 1 using the limit definition, we start by finding the slope of the tangent line to the curve at that point.

The limit definition of a derivative states that the derivative of a function f(x) at a point x is equal to the limit of the difference quotient as h approaches zero:

f'(x) = lim(h→0) [(f(x + h) - f(x)) / h]

Applying this definition to the given function, we have:

f'(1) = lim(h→0) [(4(1 + h)³ - 4(1)³) / h]

Expanding and simplifying the numerator:

f'(1) = lim(h→0) [(4 + 12h + 12h² + 4h³ - 4) / h]

Cancelling out the common terms and factoring out an h:

f'(1) = lim(h→0) [12 + 12h + 4h²]

As h approaches zero, all the terms containing h vanish, except for the constant term 12. Therefore, the derivative of f(x) = 4x³ at x = 1 is 12.

Learn more about derivative here:

https://brainly.com/question/32606369

#SPJ11

The PolyU plans to enter a two-person team in a relay race to raise money for charity. The relay consists of two 15K segments, run consecutively, and each run by a different person. George will run the first segment and Jean will run the second. Times for both runners are normally distributed as follows: George with mean 70 minutes and standard deviation 15 minutes; Jean with mean 65 minutes and standard deviation 10 minutes. Assume that their times are independent.

Assuming that the "time to beat" (competitor team from another school) is 120 minutes, what is the probability the PolyU team wins?

Answers

The probability that the PolyU team wins the relay race can be determined by calculating the cumulative probability that their combined time is less than or equal to the "time to beat" of 120 minutes.

Let's denote the time taken by George as X and the time taken by Jean as Y. Both X and Y are normally distributed with means and standard deviations given as follows:

George: X ~ N(70, 15^2)

Jean: Y ~ N(65, 10^2)

Since the times taken by George and Jean are independent, we can use the properties of normal distributions to calculate the probability of their combined time being less than or equal to 120 minutes.

To find the probability that X + Y ≤ 120, we need to find the joint distribution of X and Y and then calculate the probability of the combined time being less than or equal to 120. Since X and Y are normally distributed, their sum X + Y will also follow a normal distribution.

The mean of the sum X + Y is given by the sum of the individual means:

Mean(X + Y) = Mean(X) + Mean(Y) = 70 + 65 = 135 minutes.

The variance of the sum X + Y is given by the sum of the individual variances:

Var(X + Y) = Var(X) + Var(Y) = 15^2 + 10^2 = 325 minutes^2.

The standard deviation of the sum X + Y is the square root of the variance:

SD(X + Y) = √(Var(X + Y)) = √325 ≈ 18.03 minutes.

Now, we can use the properties of the normal distribution to calculate the probability P(X + Y ≤ 120) by standardizing the value:

Z = (120 - 135) / 18.03 ≈ -0.8313

Using a standard normal distribution table or a calculator, we can find the cumulative probability for Z = -0.8313, which represents the probability of the combined time being less than or equal to 120 minutes. Let's assume this probability is P(Z ≤ -0.8313) = p.

Therefore, the probability that the PolyU team wins the relay race can be given as 1 - p, as the team wins when their combined time is less than or equal to 120 minutes.

In summary, to find the probability of the PolyU team winning the relay race, we need to calculate the cumulative probability P(Z ≤ -0.8313) and subtract it from 1.

Learn more about probability here

https://brainly.com/question/30390037

#SPJ11

For the function, locate any absolute extreme points over the given interval. (Round your answers to three decimal places.
f(x) = 0.3x^3+1.1x^2−7x+5, −8 ⩽ x ⩽ 4
absolute maximam (x,y)= _____
absolute minimum (x,y)= _____

Answers

We need additional information about the power consumption of the microcontroller in each mode. The power consumption of a microcontroller varies depending on the operational mode.

In LPM4, the power consumption is typically very low, whereas in active mode, the power consumption is higher. To calculate the runtime in LPM4, we need to know the average power consumption in that mode. Similarly, for active mode, we need the average power consumption during that time. Once we have the power consumption values, we can use the battery capacity (usually measured in milliampere-hours, or mAh) to calculate the runtime. Unfortunately, the specific power consumption values for the MSP430F5529 microcontroller in LPM4 and active mode are not provided. To accurately determine the runtime, you would need to consult the microcontroller's datasheet or specifications, which should provide detailed power consumption information for different operational modes. Without the power consumption values, it is not possible to provide an accurate calculation of the runtime in LPM4 for 76.22% of the time and active mode for 23.8% of the time.

To learn more about power

brainly.com/question/29896893

#SPJ11

chai says 8cm^2 is the same as 80mm^2. explain why chai is wrong

Answers

Chai's statement that[tex]8cm^2[/tex] is the same as[tex]80mm^2[/tex] is incorrect due to the different conversion factors between centimeters and millimeters.

Chai's statement that [tex]8cm^2[/tex]is the same as 80mm^2 is incorrect. The reason for this is that square centimeters (cm^2) and square millimeters (mm^2) represent different units of measurement for area, and they do not convert directly in a 1:1 ratio.

To understand why Chai's assertion is incorrect, let's examine the relationship between centimeters and millimeters. There are 10 millimeters (mm) in 1 centimeter (cm). When we calculate the area of a shape, such as a square, we square the length of its side.

Let's consider a square with sides measuring 1 centimeter. The area of this square is calculated as 1cm * 1[tex]cm = 1cm^2.[/tex] Now, let's convert the area to square millimeters. Since 1cm is equal to 10mm, we can substitute this value into the area calculation:

(1cm * 10mm) * (1cm * 10mm) = 10mm * 10mm = 100mm^2.

From this calculation, we can see that 1cm^2 is equivalent to 100mm^2, not 80mm^2 as claimed by Chai.

To further illustrate the discrepancy, let's consider a practical example. Imagine a square sheet of paper with an area of 8cm^2. If we were to convert this area to square millimeters, using the conversion factor of 1cm = 10mm, the equivalent area in square millimeters would be:

[tex](8cm^2) * (10mm/cm) * (10mm/cm)[/tex] =[tex]800mm^2.[/tex]

So, an area of [tex]8cm^2[/tex] corresponds to 8[tex]00mm^2, not 80mm^2[/tex] as suggested by Chai.

In conclusion, Chai's statement that 8cm^2 is the same as [tex]80mm^2 is[/tex] is incorrect due to the different conversion factors between centimeters and millimeters. It is crucial to use the appropriate conversion factors when converting between different units of measurement.

for more such question on conversion visit

https://brainly.c om/question/97386

#SPJ8

Use the Product Rule or Quotient Rule to find the derivative.
f(x)= x⁻²/³(2x² +3x⁻²/³)

Answers

We are asked to find the derivative of the function f(x) = x^(-2/3) * (2x^2 + 3x^(-2/3)) using either the Product Rule or the Quotient Rule.

To find the derivative of the function, we can use the Product Rule since we have a product of two functions.

The Product Rule states that if we have two functions u(x) and v(x), then the derivative of their product u(x) * v(x) with respect to x is given by:

(u(x) * v(x))' = u'(x) * v(x) + u(x) * v'(x)

In our case, let's define u(x) = x^(-2/3) and v(x) = 2x^2 + 3x^(-2/3). Now we can find the derivatives of u(x) and v(x) separately.

Using the power rule, the derivative of x^n is given by nx^(n-1). Applying this rule, we find:

u'(x) = (-2/3)x^((-2/3)-1) = (-2/3)x^(-5/3)

For v(x), we can use the sum rule and the power rule:

v'(x) = (2 * 2x) + (3 * (-2/3)x^((-2/3)-1)) = 4x - 2x^(-5/3)

Now we can apply the Product Rule:

f'(x) = u'(x) * v(x) + u(x) * v'(x)

      = (-2/3)x^(-5/3) * (2x^2 + 3x^(-2/3)) + x^(-2/3) * (4x - 2x^(-5/3))

Simplifying the expression further gives the derivative of f(x):

f'(x) = (-4/3)x^(-5/3) + (2/3)x^(-1/3) + 4x^(-2/3) - 2x^(-10/3)

Learn more about function  here:

https://brainly.com/question/30721594

#SPJ11

Point \( C \) represents a centroid of \( R S T \). If \( R E=27 \), find \( R S \).

Answers

The value of RS is 54 + 2x. Given that point C represents the centroid of triangle RST and RE = 27, we can find the value of RS as follows:

1. The centroid of a triangle is the point of intersection of all the medians of the triangle.

2. The medians of a triangle are the line segments joining the vertices of a triangle to the midpoint of the opposite sides.

3. Considering triangle RST, the median from vertex R passes through the midpoint of ST (let it be M), the median from vertex S passes through the midpoint of RT (let it be N), and the median from vertex T passes through the midpoint of RS (let it be P).

4. We know that the centroid C lies on all the medians, so RC, TS, and SP pass through C, giving us three equations representing the medians of the triangle.

5. The first median, PM, passes through the midpoint of RS, which we'll call Q. Therefore, we can say that PQ = 0.5 RS or RS = 2PQ.

6. Substituting PQ as (27 + x), where x represents QG, we get RS = 2(27 + x).

7. Therefore, the value of RS is 54 + 2x.

Learn more about centroid from the given link

https://brainly.com/question/31238804

#SPJ11

Find the length, L, of the curve given below. y=∫1x √3t^4−1dt, 1≤x≤2

Answers

The length, L, of the curve y = ∫(1 to x) √(3t^4 - 1) dt, where x ranges from 1 to 2, is approximately 5.625 units.

To find the length of the curve, we can use the arc length formula. For a function y = f(x) defined on the interval [a, b], the arc length is given by the integral of √(1 + (f'(x))^2) with respect to x, integrated over the interval [a, b].

In this case, the curve is defined by y = ∫(1 to x) √(3t^4 - 1) dt. To find the length, we need to find the derivative of the integrand, which is √(3t^4 - 1).

Taking the derivative, we get:

dy/dx = √(3x^4 - 1)

Now, we can substitute this derivative into the arc length formula and evaluate the integral over the interval [1, 2]:

L = ∫(1 to 2) √(1 + (√(3x^4 - 1))^2) dx

Evaluating this integral numerically, we find that the length of the curve is approximately 5.625 units.

Therefore, the length, L, of the curve y = ∫(1 to x) √(3t^4 - 1) dt, where x ranges from 1 to 2, is approximately 5.625 units.

Learn more about integral here:

https://brainly.com/question/31109342

#SPJ11


Add 1039 g and 36.7 kg and express your answer in milligrams
(mg) to the correct number of significant figures.

Answers

The sum of 1039 g and 36.7 kg expressed in milligrams (mg) to the correct number of significant figures is 37,739,000 mg.

To perform the addition, we need to convert 36.7 kg to grams before adding it to 1039 g. There are 1000 grams in 1 kilogram, so we multiply 36.7 kg by 1000:

36.7 kg * 1000 g/kg = 36,700 g

Now, we can add 1039 g and 36,700 g:

1039 g + 36,700 g = 37,739 g

To convert grams to milligrams, we multiply by 1000 because there are 1000 milligrams in 1 gram:

37,739 g * 1000 mg/g = 37,739,000 mg

The final result, expressed in milligrams with the correct number of significant figures, is 37,739,000 mg.

The sum of 1039 g and 36.7 kg, expressed in milligrams (mg) with the correct number of significant figures, is 37,739,000 mg. Remember to consider unit conversions and maintain the appropriate number of significant figures throughout the calculation.

To know more about significant figures visit:

https://brainly.com/question/24491627

#SPJ11

Place in order, from beginning to end, the steps to calculate the mean absolute deviation.
- Calculate the arithmetic mean for the data set.
- Divide by the sample (or the population) size.
- Find the absolute difference between each value and the mean.
- Sum the absolute differences.

Answers

To calculate the mean absolute deviation (MAD), the steps are as follows:

Calculate the arithmetic mean for the data set.Find the absolute difference between each value and the mean.Sum the absolute differences.Divide the sum of absolute differences by the sample (or the population) size.

The first step is to find the average of the data set by summing all the values and dividing by the total number of values. The arithmetic mean represents the central tendency of the data set.

After calculating the mean, you need to find the absolute difference between each data point and the mean. To do this, subtract the mean from each individual value and take the absolute value (ignoring the sign). This step measures the deviation of each data point from the mean, regardless of whether the value is above or below the mean.

Once you have obtained the absolute differences for each data point, add them all together. This step involves summing the absolute values of the deviations calculated in the previous step. The result is a single value that represents the total deviation from the mean for the entire data set.

Finally, divide the sum of absolute differences by the number of data points in the sample (if it's a sample MAD) or the population (if it's a population MAD).

This step computes the average deviation by dividing the total deviation by the number of data points. It gives you the mean absolute deviation, which represents the average amount by which each data point deviates from the mean.

To know more about Mean visit :

brainly.com/question/30112112

#SPJ11

Find the absolute extrema of the function on the closed interval. g(x)=x−29x2​,[−2,1]  minimum  minimum  maximum (x,y)=(​(x,y)=((x,y)=( smaller x-value ))( larger x-value )​

Answers

Therefore, the absolute extrema of the function [tex]g(x) = x - 29x^2[/tex] on the closed interval [-2, 1] are: Minimum: (-2, -118) and Maximum: (1/58, -0.986).

To find the absolute extrema of the function [tex]g(x) = x - 29x^2[/tex] on the closed interval [-2, 1], we need to evaluate the function at the critical points and endpoints within the interval.

Critical Points:

To find the critical points, we need to find where the derivative of g(x) is equal to zero or does not exist.

g'(x) = 1 - 58x.

Setting g'(x) = 0, we have:

1 - 58x = 0,

58x = 1,

x = 1/58.

Since x = 1/58 lies within the interval [-2, 1], we consider it as a critical point.

Endpoints:

We evaluate g(x) at the endpoints of the interval:

[tex]g(-2) = (-2) - 29(-2)^2[/tex]

= -2 - 116

= -118

[tex]g(1) = (1) - 29(1)^2[/tex]

= 1 - 29

= -28

Comparing Values:

Now, we compare the values of g(x) at the critical point and endpoints to determine the absolute extrema.

g(1/58) ≈ -0.986.

g(-2) = -118.

g(1) = -28.

The absolute minimum occurs at x = -2 with a value of -118, and the absolute maximum occurs at x = 1/58 with a value of approximately -0.986.

To know more about absolute extrema,

https://brainly.com/question/31501503

#SPJ11

3. Solve the ff: a.) An FM receiver has an input S/N of 4. If the modulating frequency is 2.8 kHz and the output S/N is 8, what is the maximum allowable deviation? b.) Using the Bessel functions table as a guide, what should be the maximum fre- quency deviation caused by a modulating signal of 5 kHz to a carrier of 280-MHz if you want to achieve a narrowband FM?

Answers

a) Given that an FM receiver has an input S/N of 4 and the modulating frequency is 2.8 kHz and the output S/N is 8. Therefore, the maximum allowable deviation can be calculated using the following formula:`(S/N)o / (S/N)i = (1 + D^2) / 3D^2` .

Where,(S/N)i = input signal-to-noise ratio = 4(S/N)o = output signal-to-noise ratio = 8D = maximum allowable deviation

Putting the given values in the formula, we get:`8/4 = (1 + D^2) / 3D^2`Simplifying this equation,

we get:

`D = 0.33`Therefore, the maximum allowable deviation is 0.33.b) Using the Bessel functions table as a guide, the modulation index β can be calculated using the following formula:`

β = fm / Δf`Where,Δf = frequency deviation

fm = modulating frequency

Using the given values in the formula, we get:

`β = 5 kHz / Δf`For narrowband FM, the maximum deviation is approximately given by the first zero of the Bessel function of the first kind, which is at J1(2.405).

Therefore, the maximum frequency deviation can be calculated as follows:`Δf

= fm / β

= fm / (fm / Δf)

= Δf * 5 kHz / 2.405`

Putting the given values in the above equation, we get:Δf = 1.035 kHz

Therefore, the maximum frequency deviation caused by a modulating signal of 5 kHz to a carrier of 280 MHz should be 1.035 kHz to achieve a narrowband FM.

To know more about deviation visit :

https://brainly.com/question/31835352

#SPJ11

A function is defined as f(x) = x^m. Explain in details how the m th derivative of this function, which is f^(m) (x) is equal to m!

Answers

This can be proven by taking the first, second, and m th derivatives of f(x) and observing the pattern of the coefficient of x.This can be explained in the following steps

:Step 1:Find the first derivative of f(x):

[tex]f'(x) = m * x^(m-1)[/tex]

Step 2:Find the second derivative of[tex]f(x):f''(x) = m(m-1) * x^(m-2)[/tex]

Step 3:Find the mth derivative of [tex]f(x):f^(m)(x) = m(m-1)(m-2)...(3)(2)(1) * x^(m-m)f^(m)(x)[/tex]

= [tex]m! * x^0f^(m)(x)[/tex]

= [tex]m! * 1f^(m)(x)[/tex]

= m!

Therefore, the m th derivative of the function [tex]f(x) = x^m[/tex] is equal to m! for any positive integer m. This means that the m th derivative of f(x) will always be a constant multiple of m!, which is the product of all positive integers from 1 to m, inclusive.

In summary, the m th derivative of the function[tex]f(x) = x^m[/tex] is equal to m!, which is the product of all positive integers from 1 to m, inclusive. This can be proven by taking the first, second, and m th derivatives of f(x) and observing the pattern of the coefficient of x.

To know more about derivative visit:

https://brainly.com/question/32963989

#SPJ11

What is the value of x?

Answers

The measure of side length x in the smaller triangle is 27.

What is the value of the side length x?

The figure in the image is two similar triangle.

From the diagram:

Leg 1 of smaller triangle DQ = 39

Leg 2 of the smaller triangle DC = x

Leg 1 of larger triangle DB = 26 + 39 = 65

Leg 2 of the larger triangle DR = ( x + 18 )

To determine the value of x, we take the ratio of the sides of the two triangle since they similar:

Hence:

Leg 1 of smaller triangle DQ : Leg 2 of the smaller triangle DC = Leg 1 of larger triangle DB + Leg 2 of the larger triangle DR

DQ : DC = DB : DR

Plug in the values

39 : x = 65 : ( x + 18 )

39/x = 65/( x + 18 )

Cross multiplying, we get:

39( x + 18 ) = x × 65

39x + 702 = 65x

65x - 39x = 702

26x = 702

x = 702/26

x = 27

Therefore, the value of is 27.

Learn more about ratios and proportions at :brainly.com/question/29774220

#SPJ1

Other Questions
define these termsContainment-as in the Cold WarDetentGlasnostMarshall PlanPerestroikaWarsaw PactFascismMein KampfFourteen PointsKristallnachtWeimar RepublicGreat Purges (in USSR)JihadNew Economic PoliciesWar CommunismApartheidImperialism of Free TradeNew Imperialism Help Question 11 of 20 worth 10 points Choose the expression that best represents the phrase below.16 times as many books...wwwA b-16OB. 16-bOC. 16-bOD. b 16OE. 16+ bOF. 16+ b when discussing death in conjunction with religious beliefs, parents should The university should be implementing a Human Resource Information System as well as using technology-enhanced processes to better serve the employees. There are other topical issues such as Data Protection, Sexual Harassment, Occupation Health, and Safety laws. The university wants to have high staff retention and attract the best talents. what are the HR strategy for the above All of the following are sources of strain that may lead to deviance according to Agnew EXCEPT:The removal of intensive negative stimuli. What is the first 4 terms of the expansion for (1+x)15 ? A. 115x+105x2455x3 B. 1+15x+105x2+455x3 C. 1+15x2+105x3+445x4 D. None of the above 2024 Nov. 1 Nov. 15 Recorded World Express credit card sales of $ 145,000, net of processor fee of 1%. Ignore Cost of Goods Sold. Recorded Explorer credit card sales of $100,000. Processor charges a 3% fee. Explorer charges the fee at the end of the month, therefore Flash uses the gross method for these credit card sales. Ignore Cost of Goods Sold. Explorer collected the fees for the month of November. Assume the November 15 transaction is the only Explorer credit card sale. Apr. 4, 2024: Recorded credit card sales of $140,000, net of processor fee of 1%. Ignore Cost of Goods Sold. Describe & provide an example for each of the 3 types ofstore brands covered in chapter 12: Premium, Exclusive, &Copycat. events and are mutually exclusive. suppose event occurs with probability and event occurs with probability . An analog low-pass filter will be made as a Butterworth filter with specifications in the form of cutoff frequency wc-1000 rad/s, passband frequency op-760 rad/s, frequency topband os=1445 rad/s, and the tolerance parameter in the passband frequency region &-0.1, and in the stopband frequency area 8=0.05 a) Determine the order of the Butterworth filter that can meet the requested technical specifications. b) Determine the transfer function of the Butterworth filter H(s), the location of the poles and zeros of the filter, and plot all the H(s) and H(-s) poles in the s-plane, c) Sketch the frequency response of the Butterworth H2(jo) filter, and determine the value of magnitude of the frequency response at the wc cutoff frequency, op passband frequency, and stopband frequency.os. d) Draw a schematic of the Butterworth filter circuit using reactive components. answer everything in detailPre-Laboratory Task 2 : Using the results in lecture 1, page 28 (the buffer circuit is the same as that shown on this slide with \( R_{1}=\infty \) and \( R_{2}=0 \) ), calculate the closed loop gain A 1.50 V battery supplies 0.303 W of power to a small flashlight for 21.7 min. (a) How much charge does it move? How is charge related to the electric potential energy and potential? C (b) How many electrons must move to carry this charge? What is the charge carried by one electron? Find all the local maxima, local minima, and saddle points of the function. f(x,y) = x^3 +y^3 +9x^2 -6y^2 - 9 Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. O A local maximum occurs at _______ (Type an ordered pair. Use a comma to separate answers as needed.) The local maximum value(s) is/are _________ (Type an exact answer. Use a comma to separate answers as needed.) O There are no local maxima. A bird flies from her nest at 8:15 AM and flies 8.4 km toward the WEST to point A. She arrives at point A at 2:00 PM. She then flies from point A 4.5 km toward the WEST to point B and arrives at point B at 6:30 PM. The bird's average velocity for the entire trip isA. 2.6km/h towards westb. 0.02km/h towards the westc. 0.02km/h towards the eastd. 1.3km/h towards the easte. 1.3km/h towards the west da Company produces a handcrafted musical instrument called a gamelan that is similar to a xylophone. The gamelans are sold for $990. Selected data for the company's operations last year follow: The absorption costing income statement prepared by the company's accountant for last year appears below: Required: 1. Under absorption costing, how much fixed manufacturing overhead cost is included in the company's inventory at the end of iast year? 2. Prepare an income statement for last year using variable costing. Required: 1. Under absorption costing, how much fixed manufacturing overhead cost is included in the company's inventory at the end of las year? 2. Prepare an income statement for last year using variable costing. Complete this question by entering your answers in the tabs below. Under absorption costing, how much fixed manufacturing overhead cost is included in the company's inventory at the end of last year? Prepare an income statement for last year using variable costing. Kubin Company's relevant range of production is 13,000 to 18,000 units. When it produces and sells 15,500 units, its average costs perunit are as follows:Direct materialsDirect laborVariable manufacturing overheadFixed manufacturing overheadFixed selling expenseFixed administrative expenseSales commissionsVariable administrative expenseAverageCost perUnit$7.40$ 4.40$ 1.90$ 5.40$ 3.90$ 2.90$ 1.40$0.90Required:1 Assume the cost object is units of production:a. What is the total direct manufacturing cost incurred to make 15,500 units?b. What is the total indirect manufacturing cost incurred to make 15,500 units?2. Assume the cost object is the Manufacturing Department and that its total output is 15,500 units.a. How much total manufacturing cost is directly traceable to the Manufacturing Department?b. How much total manufacturing cost is an indirect cost that cannot be easily traced to the Manufacturing Department?3. Assume the cost object is the company's various sales representatives. Furthermore, assume that the company spent $44,950 ofits total fixed selling expense on advertising and the remainder of the total fixed selling expense comprised the fixed portion of thecompany's sales representatives' compensation.a. When the company sells 15,500 units, what is the total direct selling expense that can be readily traced to individual salesrepresentatives?b. When the company sells 15,500 units, what is the total indirect selling expense that cannot be readily traced to individual salesrepresentatives? find the value of w, need help quick pleaseeee Make a program in C language, that solves an engineering problem, about cars.The developed software MUST include the following programming structures:- Repetition structures- User-created functions- ArraysThanks Deduce the the filter function H (z) from the flter coefficients.Reverse coefficients forward coefficients-3,5 0,0001074,86 0,00042-2,98 0,000640,69 0,000420,000107 1. Convert the following: a. Hair is approximately 50 micrometers in diameter. Express this in kilometers. b. A hydrogen atom has a diameter of about 10 nanometers. Express this in meters. c. A hydrog