POSSIBLE POINTS: 5
You play a game that requires rolling a six-sided die then randomly choosing a colored card from a deck containing 10 red cards, 6 blue cards, and 3
yellow cards. Find the probability that you will roll a 2 on the die and then choose a red card.

Answers

Answer 1

The probability of rolling a 2 on the die and then choosing a red card is approximately 0.0877, or 8.77%.

To find the probability of rolling a 2 on the die and then choosing a red card, we need to consider the probabilities of each event separately and then multiply them together.

Probability of rolling a 2 on the die:

Since the die has six sides, each with an equal probability of landing face up, the probability of rolling a 2 is 1/6. This is because there is only one outcome (rolling a 2) out of the six possible outcomes.

Probability of choosing a red card:

In the deck of cards, there are a total of 10 red cards out of a total of 10 red + 6 blue + 3 yellow = 19 cards. Therefore, the probability of randomly selecting a red card is 10/19. This is because there are 10 favorable outcomes (selecting a red card) out of the total 19 possible outcomes.

To find the probability of both events occurring, we multiply the probabilities:

Probability of rolling a 2 and choosing a red card = (1/6) * (10/19) = 10/114 ≈ 0.0877

Therefore, the probability of rolling a 2 on the die and then choosing a red card is approximately 0.0877, or 8.77%.

for such more question on probability

https://brainly.com/question/13604758

#SPJ8


Related Questions

\( \mathrm{m}_{1} \) and \( \mathrm{m}_{2} \) is \( 120 \mathrm{lbs} \) and 210 Ibs respectively. What is \( r_{2} \) if \( r_{1} \) \( =1.8 \mathrm{~m} \) ? \( 3.15 \mathrm{~m} \) \( 1.25 \mathrm{~m}

Answers

The value of \( r_{2} \) is approximately 1.028 m. The moment or torque is calculated by multiplying the force applied by the distance from the point of rotation.

To find the value of \( r_{2} \), we need to use the concept of moments or torques in a system. The moment or torque is calculated by multiplying the force applied by the distance from the point of rotation.

In this case, if we assume that \( r_{1} \) and \( r_{2} \) are the distances of masses \( m_{1} \) and \( m_{2} \) from the point of rotation respectively, then the torques exerted by \( m_{1} \) and \( m_{2} \) should be equal since the system is in equilibrium.

Using the equation for torque:

Torque = Force × Distance

The torque exerted by \( m_{1} \) is given by:

\( \text{Torque}_{1} = m_{1} \cdot g \cdot r_{1} \)

where \( g \) is the acceleration due to gravity.

The torque exerted by \( m_{2} \) is given by:

\( \text{Torque}_{2} = m_{2} \cdot g \cdot r_{2} \)

Since the system is in equilibrium, \( \text{Torque}_{1} = \text{Torque}_{2} \), we can equate the two equations:

\( m_{1} \cdot g \cdot r_{1} = m_{2} \cdot g \cdot r_{2} \)

Now, let's substitute the given values into the equation and solve for \( r_{2} \):

\( 120 \, \text{lbs} \cdot 9.8 \, \text{m/s}^{2} \cdot 1.8 \, \text{m} = 210 \, \text{lbs} \cdot 9.8 \, \text{m/s}^{2} \cdot r_{2} \)

Simplifying the equation:

\( 2116.8 \, \text{N} \cdot \text{m} = 2058 \, \text{N} \cdot r_{2} \)

Dividing both sides of the equation by 2058 N:

\( r_{2} = \frac{2116.8 \, \text{N} \cdot \text{m}}{2058 \, \text{N}} \)

\( r_{2} \approx 1.028 \, \text{m} \)

Therefore, the value of \( r_{2} \) is approximately 1.028 m.

Learn more about approximately here

https://brainly.com/question/28521601

#SPJ11

3i) Suppose that c (currency to deposit ratio)=0.05 , e=0 and r=0.01, calculate the value of multiplier.3ii)Suppose that the public’s preferences change that c falls to 0.04. Recalculate the multiplier

3iii) Recalculate the multiplier if banks increase their e by 0.001 (r and c remain same at 0.04 and 0.01)

Answers

The multiplier is a concept in economics that measures the change in the money supply resulting from a change in the monetary base. In this case, we are given the currency to deposit ratio (c), excess reserves (e), and the required reserve ratio (r) to calculate the multiplier. We then analyze how changes in these variables affect the multiplier.

3i) To calculate the multiplier, we use the formula: Multiplier = 1 / (c + e). Given that c = 0.05 and e = 0, substituting these values into the formula, we get Multiplier = 1 / (0.05 + 0) = 20.

3ii) If the public's preference changes and c falls to 0.04, we can recalculate the multiplier using the new value. Substituting c = 0.04 and e = 0 into the formula, we get Multiplier = 1 / (0.04 + 0) = 25.

3iii) If banks increase their excess reserves (e) by 0.001, while keeping r and c the same at 0.04 and 0.01 respectively, we can again recalculate the multiplier. Substituting the new value e = 0.001 into the formula, we get Multiplier = 1 / (0.04 + 0.001) ≈ 24.39.

These calculations demonstrate how changes in the currency to deposit ratio (c) and excess reserves (e) impact the multiplier. A lower c or higher e increases the value of the multiplier, indicating a larger potential increase in the money supply for a given change in the monetary base. Conversely, a higher c or lower e reduces the multiplier, limiting the impact on the money supply.

Learn more about multiplier here:

https://brainly.com/question/23536361

#SPJ11

Put 4 counters in a row going across.

Put 4 counters in a column going up and down

Answers

Main answer:

Row: ● ● ● ●

Column:

In the row going across, we place 4 counters side by side. Each counter is represented by the symbol "●". In the column going up and down, we stack 4 counters on top of each other to form a vertical column. Again, each counter is represented by "●".

Learn more about Column here;

https://brainly.com/question/29194379

#SPJ11

Find the Maclaurin series of f(x)=e2x. 2. Find the Taylor series for f(x)=sinx centered at a=π/2​.

Answers

1. To find the Maclaurin series of [tex]\(f(x) = e^{2x}\)[/tex], we can use the general formula for the Maclaurin series expansion of the exponential function:

[tex]$\[e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}\][/tex]

To find the Maclaurin series for [tex]\(f(x) = e^{2x}\)[/tex], we substitute (2x) for (x) in the above formula:

[tex]$\[f(x) = e^{2x} = \sum_{n=0}^{\infty} \frac{(2x)^n}{n!} \\\\= \sum_{n=0}^{\infty} \frac{2^n x^n}{n!}\][/tex]

So, the Maclaurin series for [tex]\(f(x) = e^{2x}\)[/tex] is [tex]$\(\sum_{n=0}^{\infty} \frac{2^n x^n}{n!}\)[/tex].

2. To find the Taylor series for[tex]\(f(x) = \sin(x)\)[/tex] centered at[tex]\(a = \frac{\pi}{2}\)[/tex], we can use the general formula for the Taylor series expansion of the sine function:

[tex]$\[\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{(x - a)^{2n+1}}{(2n+1)!}\][/tex]

Substituting [tex]\(a = \frac{\pi}{2}\)[/tex] into the above formula, we get:

[tex]$\[f(x) = \sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{\left(x - \frac{\pi}{2}\right)^{2n+1}}{(2n+1)!}\][/tex]

Therefore, the Taylor series for [tex]\(f(x) = \sin(x)\)[/tex] centered at [tex]$\(a = \frac{\pi}{2}\) is \(\sum_{n=0}^{\infty} (-1)^n \frac{\left(x - \frac{\pi}{2}\right)^{2n+1}}{(2n+1)!}\)[/tex].

To know more about equation click-

https://brainly.com/question/28324294

#SPJ11

Maclaurin series of f(x)=e2x

The Maclaurin series of f(x)=e2x is as follows:

$$
e^{2x}=\sum_{n=0}^\infty \frac{2^n}{n!}x^n
$$

The formula to generate the Maclaurin series is:

$$
f(x)=\sum_{n=0}^\infty\frac{f^{(n)}(0)}{n!}x^n
$$Taylor series for f(x)=sinx centered at a=π/2​The Taylor series for f(x)=sinx centered at a=π/2​ can be computed as:$$
\begin{aligned}
f(x) &= \sin(x) \\
f'(x) &= \cos(x) \\
f''(x) &= -\sin(x) \\
f'''(x) &= -\cos(x) \\
f^{(4)}(x) &= \sin(x) \\
\vdots &= \vdots \\
f^{(n)}(x) &= \begin{cases}
\sin(x) &\mbox{if }n \mbox{ is odd}\\
\cos(x) &\mbox{if }n \mbox{ is even}
\end{cases} \\
f^{(n)}(\pi/2) &= \begin{cases}
1 &\mbox{if }n \mbox{ is odd}\\
0 &\mbox{if }n \mbox{ is even}
\end{cases}
\end{aligned}
$$

The Taylor series can then be generated as follows:

$$
\begin{aligned}
\sin(x) &= \sum_{n=0}^\infty\frac{f^{(n)}(\pi/2)}{n!}(x-\pi/2)^n \\
&= \sum_{k=0}^\infty\frac{(-1)^k}{(2k+1)!}(x-\pi/2)^{2k+1}
\end{aligned}
$$

To know more about Taylor series, visit:

https://brainly.com/question/31396645

#SPJ11

Which equations are in standard form? Check all that apply
□ y = 2x+5
2x + 3y = -6
-4x + 3y = 12
Dy=2x-9
1x +3=6
□ x-y=5
Practice writing and graphing linear equations in standard
form.
5x + 3y = //
Intro
✔Done

Answers

The equations that are in standard forms are;

2x + 3y = -6

-4x + 3y = 12

Options B and C

How to determine the forms

An equation is simply defined in standard forms as;

Ax + By = C

Such that the parameters are expressed as;

A, B, and C are all constants and x and y are factors.

The condition is set out so that the constant term is on one side and the variable terms (x and y) are on the cleared out.

The coefficients A, B, and C are integers

Learn more about standard forms at: https://brainly.com/question/19169731

#SPJ1

Create a curve that uses a quadratic parametric
approach with three interpolated control points. The
equations which describe the curve are:
$$f_x(u) = c_0 u^2 + c_1 u + c_2 $$
and
$$f_y(u) = c_3 u^2

Answers

The curve described by the given equations is a quadratic parametric curve with three interpolated control points. The equations are:    $$f_x(u) = c_0 u^2 + c_1 u + c_2 $$   and    $$f_y(u) = c_3 u^2$$

These equations represent the parametric equations for the x and y coordinates of the curve, respectively. The parameter "u" represents the parameterization of the curve, and the coefficients c0, c1, c2, and c3 are the control points that determine the shape of the curve.

By varying the values of the control points c0, c1, c2, and c3, the curve can be manipulated to create different shapes. The quadratic term u^2 contributes to the curvature of the curve, while the linear terms c1u and c2 affect the slope and position of the curve. The coefficient c3 determines the height or vertical position of the curve.

To create a curve using this quadratic parametric approach with three interpolated control points, specific values need to be assigned to the coefficients c0, c1, c2, and c3. These values will determine the precise shape and position of the curve. By manipulating these control points, one can generate various types of curves, such as parabolas, ellipses, or even more complex curves.

Learn more about parametric curve here: brainly.com/question/33152314

#SPJ11

Find the volume of the solid generated by revolving the regions bounded by the lines and curves y=e^(-1/3)x, y=0, x=0 and x=3 about the x-axis.

Answers

The volume of the solid generated by revolving the region bounded by the lines and curves y = e^(-1/3)x, y = 0, x = 0, and x = 3 about the x-axis is 6π/e - 6π (cubic units).

To find the volume of the solid generated by revolving the given region about the x-axis, we can use the method of cylindrical shells.

The region bounded by the lines and curves y = e^(-1/3)x, y = 0, x = 0, and x = 3 forms a triangle. Let's denote this triangle as T.

To calculate the volume, we'll integrate the circumference of each cylindrical shell multiplied by its height.

The height of each shell will be the difference between the upper and lower boundaries of the region, which is given by the curve y = e^(-1/3)x.

The radius of each shell will be the distance from the x-axis to a given x-value.

Let's set up the integral to calculate the volume:

V = ∫[a,b] 2πx * (e^(-1/3)x - 0) dx,

where [a,b] represents the interval of x-values that bounds the region T (in this case, [0,3]).

V = 2π * ∫[0,3] x * e^(-1/3)x dx.

To solve this integral, we can use integration by substitution. Let u = -1/3x, which implies du = -1/3 dx.

When x = 0, u = -1/3(0) = 0, and when x = 3, u = -1/3(3) = -1.

Substituting the values, the integral becomes:

V = 2π * ∫[0,-1] (-(3u)) * e^u du.

V = -6π * ∫[0,-1] u * e^u du.

Now, we can integrate by parts. Let's set u = u and dv = e^u du, then du = du and v = e^u.

Using the formula for integration by parts, ∫u * dv = uv - ∫v * du, we get:

V = -6π * [(uv - ∫v * du)] evaluated from 0 to -1.

V = -6π * [(0 - 0) - ∫[0,-1] e^u du].

V = -6π * [-∫[0,-1] e^u du].

V = 6π * ∫[0,-1] e^u du.

V = 6π * (e^u) evaluated from 0 to -1.

V = 6π * (e^(-1) - e^0).

V = 6π * (1/e - 1).

Finally, we can simplify:

V = 6π/e - 6π.

Therefore, the volume of the solid generated by revolving the region bounded by the lines and curves y = e^(-1/3)x, y = 0, x = 0, and x = 3 about the x-axis is 6π/e - 6π (cubic units).

To learn more about volume visit:

brainly.com/question/28338582

#SPJ11

Y(k+3) + 7y(k+2) + 16y(k+1) + 12y = 2u(k+1) + u(k) find the state and output equation by using the controllable canonical form of the given model.

Answers

The state equations in the controllable canonical form for the given model are dx₁/dt = x₂, dx₂/dt = x₃, dx₃/dt = 2u(t+1) + u(t) - 7x₂ - 16x₃ and the output equation is y = x₃.

To derive the state and output equations using the controllable canonical form, we first rewrite the given difference equation:

y(k+3) + 7y(k+2) + 16y(k+1) + 12y(k) = 2u(k+1) + u(k)

Next, we introduce the state variables:

x₁ = y(k+2)

x₂ = y(k+1)

x₃ = y(k)

Now, let's express the difference equation in terms of the state variables:

x₁ + 7x₂ + 16x₃ + 12y(k) = 2u(k+1) + u(k)

From the given equation, we can deduce the output equation:

y(k) = x₃

To obtain the state equation, we differentiate the state variables with respect to k:

x₁ = y(k+2) → x₁ = x₂

x₂ = y(k+1) → x₂ = x₃

x₃ = y(k) → x₃ = y(k)

Now we have the state equation:

x₁ = x₂

x₂ = x₃

x₃ = 2u(k+1) + u(k) - 7x₂ - 16x₃

Therefore, the state equations in the controllable canonical form for the given model are:

dx₁/dt = x₂

dx₂/dt = x₃

dx₃/dt = 2u(t+1) + u(t) - 7x₂ - 16x₃

And the output equation is:

y = x₃

These equations represent the controllable canonical form of the given model.

Learn more about controllable canonical form here:

https://brainly.com/question/33184426

#SPJ11

\( \sum_{n=1}^{50} n^{2}=1^{2}+2^{2}+3^{2}+\cdots 50^{2} \) \( \sum_{n=1}^{20} n^{3}=1^{3}+2^{3}+3^{3}+\cdots 20^{3} \)

Answers

The value of the sum [tex]$$\sum_{n=1}^{50} n^{2}=42925$$[/tex]and the value of the sum [tex]$$\sum_{n=1}^{20} n^{3}=44100$$[/tex]

Given :

[tex]$$\sum_{n=1}^{50} n^{2}=1^{2}+2^{2}+3^{2}+\cdots 50^{2}$$[/tex]

We know that,

[tex]$$\sum_{n=1}^{n} n^{2} = \frac{n(n+1)(2n+1)}{6}$$[/tex]

Putting n=50, we get,

[tex]$$\sum_{n=1}^{50} n^{2}= \frac{50*51*101}{6} = 42925 $$[/tex]

Given,

[tex]$$\sum_{n=1}^{20} n^{3}=1^{3}+2^{3}+3^{3}+\cdots 20^{3}$$[/tex]

We know that

[tex],$$\sum_{n=1}^{n} n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$[/tex]

Putting n=20, we get,

[tex]$$\sum_{n=1}^{20} n^{3} = \frac{20^{2}*21^{2}}{4} = 44100$$[/tex]

Hence, the value of the sum [tex]$$\sum_{n=1}^{50} n^{2}=42925$$[/tex]

and the value of the sum [tex]$$\sum_{n=1}^{20} n^{3}=44100$$[/tex]

know more of Sum of squares:

https://brainly.com/question/32576144

#SPJ11

Verify that every member of the family of functions y= (lnx+C)/x is a solution of the differential equation x^2y′+xy=1. Answer the following questions.
1. Find a solution of the differential equation that satisfies the initial condition y(3)=6. Answer: y= ________
2. Find a solution of the differential equation that satisfies the initial condition y(6)=3. Answer: y=_________

Answers

Every member of the family of functions y = (lnx + C)/x is a solution of the differential equation x^2y' + xy = 1.

To verify that every member of the given family of functions is a solution to the differential equation, we need to substitute y = (lnx + C)/x into the differential equation and check if it satisfies the equation.

Substituting y = (lnx + C)/x into the differential equation x^2y' + xy = 1, we have:

x^2(dy/dx) + x(lnx + C)/x = 1.

Simplifying the expression, we get:

x(dy/dx) + ln x + C = 1.

We need to differentiate y = (lnx + C)/x with respect to x to find dy/dx.

Using the quotient rule, we have:

dy/dx = (1/x)(lnx + C) - (lnx + C)/x^2.

Substituting this expression for dy/dx back into the differential equation, we have:

x((1/x)(lnx + C) - (lnx + C)/x^2) + ln x + C = 1.

Simplifying further, we get:

ln x + C - (lnx + C)/x + ln x + C = 1.

Cancelling out the terms and simplifying, we obtain:

ln x/x = 1.

This equation holds true for all positive values of x, and since the given family of functions includes all positive values of x, we can conclude that every member of the family of functions y = (lnx + C)/x is indeed a solution to the differential equation x^2y' + xy = 1.

Let's address the specific questions:

A solution that satisfies the initial condition y(3) = 6, we substitute x = 3 and y = 6 into the family of functions:

6 = (ln 3 + C)/3.

Solving for C, we have:

ln 3 + C = 18.

C = 18 - ln 3.

Therefore, a solution to the differential equation with the initial condition y(3) = 6 is y = (ln x + (18 - ln 3))/x.

Similarly, to find a solution that satisfies the initial condition y(6) = 3, we substitute x = 6 and y = 3 into the family of functions:

3 = (ln 6 + C)/6.

Solving for C, we have:

ln 6 + C = 18.

C = 18 - ln 6.

Therefore, a solution to the differential equation with the initial condition y(6) = 3 is y = (ln x + (18 - ln 6))/x.

In summary, the solution to the differential equation with the initial condition y(3) = 6 is y = (ln x + (18 - ln 3))/x, and the solution with the initial condition y(6) = 3 is y = (ln x + (18 - ln 6))/x.

To learn more about differential equation

brainly.com/question/32645495

#SPJ11

i need help asap!!!!!!!!!!!!!!!!!!!!!!!

Answers

Answer:

hey, the answer is 1 1/7

Convert the mixed numbers to improper fractions, then find the LCD and combine them.

Exact Form:

8/7

Decimal Form:

1.142857

Mixed Number Form:

1 1/7

hope that was helpful :)

D(x) is the price, in dollars per unit, that consumers are willing to pay for x units of an item, and S(x) is the price, in dollass per unit, that producers are willing to accept for x units. Find (a) the equilibrium point, (b) the consumer surples at the equilibrium point, and (c) the producer surplus at the equilitium point D(x)=4000−20x,S(x)=850+25x (a) What are the coordinates of the equilibrium point? (Type an ordered pair)

Answers

The slope of the tangent line to the polar curve [tex]\(r = \sin(\theta)\) at \(\theta = 87\pi\) is 0[/tex].

To find the slope of the tangent line to the polar curve

[tex]\(r = \sin(\theta)\) at \(\theta = 87\pi\),[/tex]

we'll use the formula you provided:

[tex]\[\frac{{dx}}{{dy}} = \frac{{f(\theta)\cos(\theta) + f'(\theta)\sin(\theta)}}{{-f(\theta)\sin(\theta) + f'(\theta)\cos(\theta)}}\][/tex]

In this case,[tex]\(f(\theta) = \sin(\theta)\)[/tex].

We need to find [tex]\(f'(\theta)\)[/tex],

which is the derivative of[tex]\(\sin(\theta)\)[/tex] with respect to[tex]\(\theta\)[/tex].

Differentiating [tex]\(\sin(\theta)\)[/tex] with respect to [tex]\(\theta\)[/tex] using the chain rule, we get:

[tex]\[\frac{{d}}{{d\theta}}(\sin(\theta)) = \cos(\theta) \cdot \frac{{d\theta}}{{d\theta}} = \cos(\theta)\][/tex]

So,

[tex]\(f'(\theta) = \cos(\theta)\)[/tex]

Now, substituting

[tex]\(f(\theta) = \sin(\theta)\) and \(f'(\theta) = \cos(\theta)\)[/tex]

into the formula, we have:

[tex]\[\frac{{dx}}{{dy}} = \frac{{\sin(\theta)\cos(\theta) + \cos(\theta)\sin(\theta)}}{{-\sin(\theta)\sin(\theta) + \cos(\theta)\cos(\theta)}}\][/tex]

Simplifying the numerator and denominator, we get:

[tex]\[\frac{{dx}}{{dy}} = \frac{{2\sin(\theta)\cos(\theta)}}{{\cos^2(\theta) - \sin^2(\theta)}}\][/tex]

Using the trigonometric identity

[tex]\(\cos^2(\theta) - \sin^2(\theta) = \cos(2\theta)\),[/tex]

we can rewrite the equation as:

[tex]\[\frac{{dx}}{{dy}} = \frac{{2\sin(\theta)\cos(\theta)}}{{\cos(2\theta)}}\][/tex]

Now, substituting [tex]\(\theta = 87\pi\)[/tex] into the equation, we have:

[tex]\[\frac{{dx}}{{dy}} = \frac{{2\sin(87\pi)\cos(87\pi)}}{{\cos(2(87\pi))}}\][/tex]

Since[tex]\(\sin(87\pi) = 0\) and \(\cos(87\pi) = -1\)[/tex], we get:

[tex]\[\frac{{dx}}{{dy}} = \frac{{2 \cdot 0 \cdot (-1)}}{{\cos(2(87\pi))}} = 0\][/tex]

Therefore, the slope of the tangent line to the polar curve [tex]\(r = \sin(\theta)\) at \(\theta = 87\pi\) is 0.[/tex]

To know more about Equation click-

http://brainly.com/question/2972832

#SPJ11

What is the value of x?
X-11+x+37+78+76

Answers

The value of x is -90. To find the value of x, you need to simplify the given equation by combining like terms. Here's how you can do it: Given equation: X-11+x+37+78+ the x terms together: X + x = 2x

Combine the constant terms together:- 11 + 37 + 78 + 76 = 180

Substitute the simplified expressions in the original equation: 2x + 180 = 0

To solve for x, you need to isolate x on one side of the equation. Here's how you can do it: Subtract 180 from both sides of the equation: 2x + 180 - 180 = 0 - 180

Simplify:2x = -180

Divide both sides by 2:x = -90. Therefore, the value of x is -90.

For more question on equation

https://brainly.com/question/17145398

#SPJ8

for circle o, m CD=125 and m

Answers

In the circle the expression that have measures equal to 35° is <ABO and <BCO equal to 35

How can the circle be evaluated?

An "arc" in mathematics is a straight line that connects two endpoints. An arc is typically one of a circle's parts. In essence, it is a portion of a circle's circumference. A curve contains an arc.

A circle is the most common example of an arc, yet it can also be a section of other curved shapes like an ellipse. A section of a circle's or curve's boundary is referred to as an arc. It is additionally known as an open curve.

Measure of arc AD = 180

measure of arc CD= (180-125)

=55

m<AOB= 55 ( measure of central angle is equal to intercepted arc)

<OAB= 90 degrees

In triangle AOB ,

< AB0 = 180-(90+55)

= 35 degrees( angle sum property of triangle)

In triangle BOC

< BOC=125 ,

m<, BCO=35 degrees

Learn more about circle  at;

https://brainly.com/question/2684905

#SPJ1

The complete question is

For circle O, m CD=125 and m

In the figure<__ABO__, (AOB, ABO, BOA)

and <__OBC___ (BCO, OBC,BOC) which of them have measures equal to 35°?

Find the fluid force on the vertical plate submerged in water, where the dimensions are given in meters and the weight-density of water is 9800 newtons per cubic meter.

Answers

To calculate the fluid force on a vertical plate submerged in water, we need to consider the pressure exerted by the fluid on the plate. The fluid force is equal to the product of the pressure and the surface area of the plate.

The pressure exerted by a fluid at a certain depth is given by the formula P = ρgh, where ρ is the density of the fluid, g is the acceleration due to gravity, and h is the depth of the fluid. In this case, since the plate is vertical, the depth h is equal to the height of the plate.

To calculate the surface area of the plate, we multiply the length of the plate by its width.

Therefore, the fluid force on the vertical plate submerged in water is given by the formula Fluid Force = Pressure × Surface Area = ρgh × Length × Width.

To know more about fluid forces click here: brainly.com/question/28316980

#SPJ11

Find the relative maximum and minimum values. f(x,y)=x3+y3−15xy Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. A. The function has a relative maximum value of f(x,y)= at (x,y)= (Simplify your answers. Type exact answers. Type an ordered pair in the second answer box.) B. The function has no relative maximum value. Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. A. The function has a relative minimum value of f(x,y)= at (x,y)= (Simplify your answers. Type exact answers. Type an ordered pair in the second answer box.) B. The function has no relative minimum value.

Answers

The function has a relative maximum value of f(x, y) = 500 at (x, y) = (5, 5).B. The function has a relative minimum value of f(x, y) = 0 at (x, y) = (0, 0). so, correct option is A

The given function is f(x, y) = x³ + y³ - 15xy. To find the relative maximum and minimum values, we can use the second-order partial derivatives test. The second partial derivatives of the given function are,∂²f/∂x² = 6x, ∂²f/∂y² = 6y, and ∂²f/∂x∂y = -15.

At the critical point, fₓ = fᵧ = 0, and the second-order partial derivatives test is inconclusive. Therefore, we need to look for the other critical points on the plane. Solving fₓ = fᵧ = 0, we get two more critical points, (0, 0) and (5, 5). We need to evaluate f at each of these points and compare their values to find the relative maximum and minimum values. Therefore, f(0, 0) = 0, f(5, 5) = 500. Hence, the function has a relative minimum value of f(x, y) = 0 at (0, 0), and it has a relative maximum value of f(x, y) = 500 at (5, 5).

To know more about minimum value of function Visit:

https://brainly.com/question/29752390

#SPJ11

Some steps to construct an angle MNT congruent to angle PQR are listed below. Step 3 is not listed:

Step 1: Use a compass to draw an arc from point Q which intersects the side PQ at point A and the side QR at point B.
Step 2: Draw a segment NT and use the same width of the compass to draw an arc from point N which intersects the segment NT at a point X.
Step 3:
Step 4: Join points N and Y using a straightedge.

Which statement describes step 3 correctly?)


A. Adjust the width of the compass to AQ, and draw an arc from point X such that it intersects the arc drawn from N in a point Y.

B. Adjust the width of the compass to NX, and draw an arc from point X such that it intersects the arc drawn from N in a point Y.

C. Adjust the width of the compass to BQ, and draw an arc from point X such that it intersects the arc drawn from N in a point Y.

D. Adjust the width of the compass to AB, and draw an arc from point X such that it intersects the arc drawn from N in a point Y.

Answers

The correct statement describing step 3 is:

C. Adjust the width of the compass to BQ, and draw an arc from point X such that it intersects the arc drawn from N in a point Y.

Correct option is C.

In the given construction,

step 1 involves drawing an arc from point Q to intersect the sides PQ and QR at points A and B, respectively.

Step 2 involves drawing a segment NT and using the same width of the compass to draw an arc from point N to intersect the segment NT at point X.

To continue the construction and construct an angle MNT congruent to angle PQR,

step 3 requires adjusting the width of the compass to BQ. This means the compass should be set to the distance between points B and Q. Then, from point X, an arc is drawn that intersects the arc drawn from N at a point Y.

By completing this step, the construction creates an angle MNT that is congruent to the given angle PQR.

Correct option is C.

For more questions on intersects

https://brainly.com/question/28744045

#SPJ8

Calculate the flux of F=(2x,2y) across a unit circle oriented counterclockwise.

Answers

The flux through the unit circle is 4π.

Therefore, the correct option is (a) 170.

Let us find the flux of F = (2x, 2y) across the unit circle that is oriented counterclockwise.

Let's start by using the formula for flux. Consider the vector field F = (2x, 2y).

The unit circle that is oriented counterclockwise is given by  x² + y² = 1.

For the flux calculation, we need to first calculate the normal vector n at each point on the circle.

The outward-pointing normal vector is n = (dx/dt, dy/dt)/sqrt(dx/dt² + dy/dt²), where t is the angle parameter.

The normal vector to the circle is given by: n = (-sin(t), cos(t)).

The flux through the unit circle is given by the surface integral ∫∫F · dS, where dS is the surface element perpendicular to the normal vector n at each point on the circle.

∫∫F · dS = ∫∫(2x, 2y) · (-sin(t), cos(t)) dA.

Over the circle, x² + y² = 1, which implies y = ±sqrt(1 - x²).

So, we can re-write the integral as ∫(0 to 2π) ∫(0 to 1) (2x, 2y) · (-sin(t), cos(t)) dxdy.

The flux through the circle is given by the integral as follows.

∫(0 to 2π) ∫(0 to 1) (2x, 2y) · (-sin(t), cos(t)) dxdy= ∫(0 to 2π) ∫(-1 to 1) (2rcos(t), 2rsin(t)) · (-sin(t), cos(t)) rdrdt= ∫(0 to 2π) ∫(-1 to 1) -2rsin²(t) + 2rcos²(t) drdt= ∫(0 to 2π) 2 dt= 4π

Hence, the flux through the unit circle is 4π.

Therefore, the correct option is (a) 170.

To know more about flux, visit:

https://brainly.com/question/31607470

#SPJ11

Question 1: A group of bags contains different number of cookies per each. The bag number \( i \) has \( C_{i} \) of cookies. Assume you have \( n \) friends and \( n \) bags of cookies, so you decide

Answers

To distribute the cookies equally among \( n \) friends, you can divide the total number of cookies by the number of friends.

In order to distribute the cookies equally among \( n \) friends, you need to calculate the average number of cookies per friend. To do this, you sum up the total number of cookies in all the bags and divide it by the number of friends.

Let's assume you have \( n \) bags of cookies, and bag number \( i \) contains \( C_i \) cookies. To find the total number of cookies, you sum up all the cookies in each bag: \( \sum_{i=1}^{n} C_i \). Then, you divide this sum by the number of friends, \( n \), to calculate the average number of cookies per friend: \( \frac{{\sum_{i=1}^{n} C_i}}{n} \).

By distributing the cookies equally, each friend will receive the calculated average number of cookies. This approach ensures fairness and equal distribution among all the friends.

Learn more about average here: brainly.com/question/31087305

#SPJ11

The fundamental concepts of mathematics are all around us. Begin
this discussion by finding the natural geometry in your world. You
may be surprised what you can find in nature, art, and fashion.
Look

Answers

Mathematics is all around us. From nature to fashion, there is always something related to math that can be found. The fundamental concepts of mathematics are omnipresent, and we can see them all around us. The natural geometry found in our world.

Natural geometry in our world:The patterns and shapes that appear in nature are natural geometry. One of the first geometries recognized in nature was the symmetry of a hexagon in bee hives. Similarly, snowflakes are known for their hexagonal shapes. The phenomenon is due to the forces acting on the water molecules, which result in ice crystals having six-fold symmetry.

This geometry is just one example of how nature is replete with math.The sunflower also exhibits a mathematical principle. It has spirals in both directions, with the number of spirals being two consecutive Fibonacci numbers. It is an example of what is known as the Golden Ratio. The Golden Ratio is the ratio of two numbers in which the ratio of the larger number to the smaller number is the same as the ratio of the sum of the two numbers to the larger number.In nature, there are examples of fractals, which are infinitely complex patterns created by repeating a simple process multiple times.

This repeated process generates patterns that are similar but not identical to the original pattern. Ferns, trees, and the structure of leaves are all examples of fractals. Fashion and Natural Geometry: In fashion, the geometry of objects can be seen through different shapes of clothing, including circles, rectangles, and triangles. Some pieces of clothing have geometric designs that can be based on mathematical principles. For instance, a pattern on a shirt can have a simple mathematical concept like the tessellation of squares, a repeating pattern that fits without any gaps or overlaps. Math is all around us. We only need to be aware of it. From the shapes in nature to the patterns in fashion, math is everywhere.

Learn more about geometry from the given link

https://brainly.com/question/10719463

#SPJ11

Choose the correct answer.

(All workers/Employees) pay 7. 65% of their taxable income to Social Security

Answers

The correct answer is "All workers." This answer emphasizes that the statement applies to all individuals who work, regardless of their specific job titles or positions. It encompasses all employees, including both full-time and part-time workers, as well as self-employed individuals who are subject to Social Security taxes.

The statement "All workers pay 7.65% of their taxable income to Social Security" emphasizes that the requirement applies to individuals who are employed, regardless of their specific job titles or positions. It means that all employees, both full-time and part-time, are required to contribute 7.65% of their taxable income towards Social Security taxes.

This contribution is commonly referred to as the Social Security tax or the Federal Insurance Contributions Act (FICA) tax. It is a mandatory payroll deduction that funds the Social Security program, which provides retirement, disability, and survivor benefits to eligible individuals.

By stating "All workers," the answer clarifies that this requirement applies uniformly to all employees, without exceptions based on job titles or positions. It emphasizes the broad applicability of the Social Security tax among the workforce.

learn more about FICA here:

https://brainly.com/question/15183057

#SPJ11

minz=(y−x)
2
+xy+2x+3y
s.t.
x+y=10
3x+y≥16
−x−3y≤−20
x≥0
y≥0

a. Solve the upper NL problem using the Kuhn-Tucker Conditions. b. Solve the problem using GAMS.

Answers

a) To solve the upper nonlinear problem using the Kuhn-Tucker conditions, we apply the necessary conditions for optimality, which involve Lagrange multipliers and inequality constraints. b)To solve the problem using GAMS, code needs to be written that represents the objective function and constraints.

To solve the upper nonlinear problem using the Kuhn-Tucker conditions, we apply the necessary conditions for optimality, which involve Lagrange multipliers and inequality constraints. The Kuhn-Tucker conditions are a set of necessary conditions that must be satisfied for a point to be a local optimum of a constrained optimization problem. These conditions involve the gradient of the objective function, the gradients of the inequality constraints, and the values of the Lagrange multipliers associated with the constraints.

In this case, the objective function is given as minz = (y-x)^2 + xy + 2x + 3y, and we have several constraints: x + y = 103, x + y ≥ 16, -x - 3y ≤ -20, x ≥ 0, and y ≥ 0. By using the Kuhn-Tucker conditions, we can set up a system of equations involving the gradients and the Lagrange multipliers, and then solve it to find the optimal values of x and y that minimize the objective function while satisfying the constraints. This method allows us to incorporate both equality and inequality constraints into the optimization problem.

Regarding the second part of the question, to solve the problem using GAMS (General Algebraic Modeling System), GAMS code needs to be written that represents the objective function and constraints. GAMS is a high-level modeling language and optimization solver that allows for efficient modeling and solution of mathematical optimization problems. By inputting the objective function and the constraints into GAMS, the software will solve the problem and provide the optimal values of x and y that minimize the objective function while satisfying the given constraints. GAMS provides a convenient and efficient way to solve complex optimization problems using a variety of optimization algorithms and techniques.

Learn more about optimal values here: brainly.com/question/30575901

#SPJ11

In rectangle RECT, diagonals RC and TE intersect at A. If RC=12y−8 and RA=4y+16. Solve for y.

Answers

We have two possible values for y, y = 4 or y = 5/3

Given that in rectangle RECT,

diagonals RC and TE intersect at A.

If RC = 12y - 8 and RA = 4y + 16.

We need to find the value of y.

To solve this problem, we will use the property that in a rectangle, the diagonals are of equal length.

So we can write:

RC = TE   --------(1)

We know,

RA + AC = RC  (as RC = RA + AC)

4y + 16 + AC = 12y - 8AC

                     = 12y - 8 - 4y - 16AC

                     = 8y - 24

Now, in triangle AEC,AC² + EC² = AE² (By Pythagoras theorem)

Substituting values,

we get:

(8y - 24)² + EC² = (4y + 16)²64y² - 384y + 576 + EC²

                         = 16y² + 128y + 25648y² - 512y + 320

                         = 0

Dividing by 16, we get

3y² - 32y + 20 = 0

Dividing each term by 3,

y² - (32/3)y + (20/3) = 0

Using the quadratic formula, we get:

y = 4 or y = 5/3

Thus, we have two possible values for y.

Learn more about Pythagoras theorem from the given link;

https://brainly.com/question/343682

#SPJ11

Consider the function
f(x, y, z) = xe^y + y lnz.
i. Find ∇f.
ii. Find the divergence of ∇f.
iii. Find the curl of ∇f.

Answers

The required solution for the function [tex]f(x, y, z) = xe^y + y lnz[/tex].

i. [tex]∇f = e^y i + (xe^y + lnz) j + (y/z) k[/tex]. ii. Divergence of [tex]∇f[/tex]= [tex]2e^y[/tex]. iii. Curl of ∇f = [tex](y/z)i + (-ze^y)j + (e^y)k[/tex]

[tex]∂f/∂x = e^y[/tex] [tex]∂f/∂y = xe^y + lnz[/tex] [tex]∂f/∂z = y/z[/tex]. So,[tex]∇f = i ∂f/∂x + j ∂f/∂y + k ∂f/∂z = e^y i + (xe^y + lnz) j + (y/z) k[/tex].

ii. Divergence of ∇f = [tex]2e^y[/tex].

Divergence of a vector field [tex]A = ∇ · A[/tex]. So,[tex]∇·∇f = (∂^2f)/(∂x^2 )+ (∂^2f)/(∂y^2 )+ (∂^2f)/(∂z^2 ) = e^y + e^y + 0 = 2e^y[/tex]

iii. Curl of ∇f = [tex](y/z)i + (-ze^y)j + (e^y)k[/tex]

Curl of a vector field [tex]A = ∇ × A[/tex].

So,∇ × [tex]∇f = | i j k || ∂/∂x ∂/∂y ∂/∂z || e^y (xe^y + lnz) (y/z) |= (y/z)i + (-ze^y)j + (e^y)k[/tex]. Therefore, [tex]∇ × ∇f = (y/z)i + (-ze^y)j + (e^y)k[/tex] is the curl of [tex]∇f[/tex].

learn more about divergence

https://brainly.com/question/30726405

#SPJ11

Assume the derivatives of f and g exist. How do you find the derivative of the sum of two functions, f+g?
Choose the correct answer below.
A. Find g' and add it to f.
B. Find f' and add it to g.
c. Find f' and g' and add them together.

Answers

The correct answer is option C, derivatives f' and g' and add them together.

find the derivative of the sum of two functions, f+g, which assume the derivatives of f and g exist, we need to find f' and g' and add them together.

Hence, the correct option is C.

To elaborate more on the concept of finding the derivative of the sum of two functions:

When we have two functions, f(x) and g(x), and assume that their derivatives exist, we can find the derivative of the sum of two functions f(x) + g(x).To do so, we add the derivatives of the two functions f'(x) and g'(x).

It is not correct to add f'(x) to g(x) or g'(x) to f(x) because we only have the derivatives of these functions to work with.

Therefore, we need to add the derivatives of the two functions. This method is known as the Sum Rule of Differentiation. Mathematically, it is written as follows:(f + g)' = f' + g'.

To know more about derivatives visit:-

https://brainly.com/question/25324584

#SPJ11

Numbered disks are placed in a box and one disk is selected at random. If there are 5 red disks
numbered 1 through 5, and 4 yellow disks numbered 6 through 9, find the probability of selecting a
disk numbered 3, given that a red disk is selected. Enter a decimal rounded to the nearest tenth

Answers

The probability of selecting a disk numbered 3, given that a red disk is selected, is approximately 0.2.

To find the probability of selecting a disk numbered 3, given that a red disk is selected, we need to consider the conditional probability.

There are a total of 5 red disks numbered 1 through 5, and since we know that a red disk is selected, the sample space is reduced to only the red disks. So, the sample space consists of the 5 red disks.

Out of these 5 red disks, only 1 disk is numbered 3. Therefore, the favorable outcomes (selecting a disk numbered 3) is 1.

Th probability of selecting a disk numbered 3, given that a red disk is selected, can be calculated as:

P(disk numbered 3 | red disk) = favorable outcomes / sample space

P(disk numbered 3 | red disk) = 1 / 5

P(disk numbered 3 | red disk) ≈ 0.2 (rounded to the nearest tenth)

Therefore, the probability of selecting a disk numbered 3, given that a red disk is selected, is approximately 0.2.

Learn more about probability here

https://brainly.com/question/30034780

#SPJ11

(1 point) In this problem we will crack RSA. Suppose the parameters for an instance of the RSA cryptosystem are \( N=13589, e=5 . \) We have obtained some ciphertext \( y=5183 . \) a) Factor \( N=1358

Answers

The task is to factorize the given number N = 13589. By finding the prime factors of N, we can break the RSA encryption.

To factorize N = 13589, we can try to divide it by prime numbers starting from 2 and check if any division results in a whole number. By using a prime factorization algorithm or a computer program, we can determine the prime factors of N. Dividing 13589 by 2, we get 13589 ÷ 2 = 6794.5, which is not a whole number. Continuing with the division, we can try the next prime number, 3. However, 13589 ÷ 3 is also not a whole number. We need to continue dividing by prime numbers until we find a factor or reach the square root of N. In this case, we find that N is not divisible by any prime number smaller than its square root, which is approximately 116.6. Since we cannot find a factor of N by division, it suggests that N is a prime number itself. Therefore, we cannot factorize N = 13589 using simple division. It means that the RSA encryption with this particular N value is secure against factorization using basic methods. Please note that factorizing large prime numbers is computationally intensive and requires advanced algorithms and significant computational resources.

Learn more about prime factorization here:

https://brainly.com/question/29763746

#SPJ11




Signal y(t) is a convolution product of r(t) and s(t). Find the y(t) if r(t) and s(t) are: r(t)=u(t)-u(t-1) s(t)=2u(t+3)-2u(t-3) (15 markah /marks)

Answers

The convolution product of r(t) and s(t) is y(t) = 2(t+3)u(t+3) - 2(t-3)u(t-3) - 2(t+2)u(t+2) + 2(t-2)u(t-2) - 2(t+1)u(t+1) + 2(t-1)u(t-1) - 2tu(t) + 2(t-1)u(t-1) - 2(t-2)u(t-2) + 2(t-3)u(t-3).

To find the convolution product of r(t) and s(t), we need to evaluate the integral of the product of r(t) and s(t) over the appropriate range. In this case, r(t) = u(t) - u(t-1) and s(t) = 2u(t+3) - 2u(t-3).

To perform the convolution, we substitute the expression for r(t) and s(t) into the integral:

y(t) = ∫[u(τ) - u(τ-1)][2u(t+3-τ) - 2u(t-3-τ)] dτ.

Simplifying this expression, we obtain:

y(t) = 2∫[u(τ) - u(τ-1)][u(t+3-τ) - u(t-3-τ)] dτ.

The next step is to evaluate the integral over the appropriate range. Since the limits of integration depend on the variables involved, we need to consider different cases.

Case 1: t+3 ≥ τ ≥ t-3

In this case, both u(t+3-τ) and u(t-3-τ) are equal to 1, and the integral becomes:

y(t) = 2∫[u(τ) - u(τ-1)] dτ.

Case 2: t+3 ≥ τ > t

In this case, u(t+3-τ) = 1, and u(t-3-τ) = 0, so the integral becomes:

y(t) = 2∫[u(τ) - u(τ-1)] dτ + 2∫u(τ-3) dτ.

Case 3: t > τ ≥ t-3

In this case, u(t+3-τ) = 0, and u(t-3-τ) = 1, so the integral becomes:

y(t) = 2∫[u(τ) - u(τ-1)] dτ - 2∫u(τ-3) dτ.

By evaluating the integrals in each case, we can obtain the expression for y(t) as shown in the main answer.

Learn more about Convolving signals

brainly.com/question/13486643

#SPJ11

Looking at some travel magazines, you read that the CPI in Turkey in 2008 was 434 and in Iran, it was 312. You do some further investigating and discover that the reference base period in Turkey is 2000 and in Iran it is 2001 . The CPl in Iran in 2000 was 67 By what percentage did the CPI in Turkey rise between 2000 and 2008? By what percentage did the CPI in Iran rise between 2000 and 2008? The CPl in Turkey rose percent between 2000 and 2008 → Answer to 1 decimal place The CPI in Iran rose percent between 2000 and 2008 ≫ Answer to 1 decimal place.

Answers

Increases in CPI for both Turkey and Iran between 2000/2001 and 2008.The CPI in Turkey rose by Percentage increase = ((434 - CPI in 2000) / CPI in 2000) * 100 ,The CPI in Iran rose by Percentage increase = ((CPI in 2008 - 67) / 67) * 100

The CPI in Turkey rose by x% between 2000 and 2008 (x represents the calculated percentage, rounded to one decimal place).

The CPI in Iran rose by y% between 2000 and 2008 (y represents the calculated percentage, rounded to one decimal place).

To calculate the percentage increase in CPI, we need to compare the CPI values in the respective base years with the CPI values in 2008.

For Turkey:

The CPI in Turkey in 2000 was 434 (base year), and in 2008, it was given as the reference. To calculate the percentage increase, we can use the following formula:

Percentage increase = ((CPI in 2008 - CPI in 2000) / CPI in 2000) * 100

Substituting the alues, we have:

Percentage increase = ((434 - CPI in 2000) / CPI in 2000) * 100

For Iran:

The CPI in Iran in 2001 was 312 (base year), and in 2008, it was given as the reference. To calculate the percentage increase, we can use the same formula as above:

Percentage increase = ((CPI in 2008 - CPI in 2001) / CPI in 2001) * 100

Substituting the values, we have:

Percentage increase = ((CPI in 2008 - 67) / 67) * 100

By calculating these expressions, we can find the specific percentage increases in CPI for both Turkey and Iran between 2000/2001 and 2008

Learn more about Percentage here:

brainly.com/question/32197511

#SPJ11

List the first five terms of the sequence. a_n = (−1)^(n−1)/ n^2
a_1=
a_2=
a_3=
a_4=
a_5=

Answers

The first five terms of the sequence are a1 = 1, a2 = -1/4, a3 = 1/9, a4 = 1/16, a5 = -1/25. The first five terms of the sequence are as follows;

[tex]a1 = -1/1^2 = -1a2 = 1/2^2 = 1/4a3 = -1/3^2 = -1/9a4 = 1/4^2 = 1/16a5 = -1/5^2 = -1/25[/tex]

Explanation: The given sequence is [tex]a_n = (-1)^{(n-1)}/ n^2[/tex].

The first term is given as;

[tex]a_1 = (-1)^{(1-1)}/ 1^2= (-1)^0/1= 1/1^2= 1/1= 1[/tex]

The second term is given as;

[tex]a_2 = (-1)^{(2-1)}/ 2^2[/tex]= (-1)/4= -1/4

The third term is given as;

[tex]a_3 = (-1)^{(3-1)}/ 3^2= 1/9[/tex]

The fourth term is given as;

[tex]a_4 = (-1)^{(4-1)}/ 4^2= 1/16[/tex]

The fifth term is given as;

[tex]a_5 = (-1)^{(5-1)}/ 5^2= -1/25[/tex]

Thus, the first five terms of the sequence are a1 = 1, a2 = -1/4, a3 = 1/9, a4 = 1/16, a5 = -1/25.

To know more about sequence visit:

https://brainly.com/question/30262438

#SPJ11

Other Questions
a. Describe the roles of: 1) Top of Stack Pointer, 2) Current Frame Pointer, 3) Return Pointerb. Describe how an while loop can be translatedc. What are Exceptions? Shortly describe how exception handling can be implemented Exactly 31 months ago, a financial institution entered a four-year plain-vanilla interest rate swap to receive 3.5% per annum fixed rate and pay six-month Australian dollar (AUD) libor based on a principal of AUD10 million. However, the counterparty has declared bankruptcy, and the financial institution wishes to calculate the size of its potential loss. The next floating rate payment would have been at the rate of 2.9% p.a. For all maturities, the continuously compounded AUD interest rate is 2.5% per annum. How does the Danimal project reflect the ideas set forth inthe background reading by Prahalad and Hart (The Fortune at theBottom of the Pyramid)? The equation for calculating how much energy (E in units of Joules) is required to heat an object is E=CmT. If we are heating water, the value for C (the specific heat content) is 4100 Joules per kg per Kelvin (or "J/kg/K"). If the water we are heating is 0.1 kg and we heat it 100 degrees, how much energy (E) does it require? 41000410.414100000000000 Problem 2: Find the unit step response, y(t), for the LTI with Transfer Function H(s). H(s)=(s+4)(s+5)(s+2)X(s)=s1,Y(s)=X(s)H(s) Given that g(x) = x^2 - 9x + 7, Find g(r + h) = ______________ You have been asked to use a proportional controller to make a stable closed-loop system. The transfer function of the plant is: C(s) = s +1 / s(s + 4s + 4) (s + 2s + 1) Write the characteristic equation of the closed-loop system as a function of both K and s. Suppose risk-free rate is 6% and the expected return of the risky portfolio is 12% with 0.25 standard deviation. Your complete portfolio has 0.05 as the return variance. What is the risk premium of your complete portfolio? (Equation 5.20) Please enter the answer as a percent with two decimal places for instance 55.55 for 55.55% Which type of bank account is best for everyday transactions? a. savings account b. Money market account c. certificate of deposit d. checking account. can you answer this question Federal estate tax would be paid by the beneficiary of the estate. True False At the school store, two notebooks and five pencils cost $2.25. Four notebooks and four pencils cost $3.60. How much does one pencil cost? How was sound captured (not stored) for radio and recording after the mid-1920s?a) Electric microphonesb) Acoustic hornc) Magnetic tape Evaluate the volume of the object asdetermined by water displacement.Measurement 1 (water only) = 9.15 mLMeasurement 2 (water + object) = 19.20 mLVolume = [?] mL I need some help for those questions, thankyou!!!You have two tables, where table 1 is a list of students and the courses they're taking, where the course code is a foreign key for table 2 , and table 2 is the course codes with their description. If What does the command prompt look like in the \( R \) console? ?) [1] please give me clear answerSuppose you have a riskless security at 5% and a marketportfolio with a return of 10% and a standard deviation of 5%.a) You invest in the riskless security and the market FILL THE BLANK.__________ is a technical safeguard that ensures that if stored or transmitted data is stolen it cannot be understood. The uninsured motorist feeOptions: provides you with insurance coverage in the event of a crash allows you to drive an uninsured vehicle pays when you are the victim of a crash involving an uninsured vehicle none of the above Semiconductor materials have 5 valence electrons Select one: True False