Present a brief explanation of how electrical activity in the human body interacts with electromagnetic waves outside the human body to either your eyesight or your sense of touch.

Answers

Answer 1

Electrical activity in the human body interacts with electromagnetic waves outside the human body to either your eyesight or your sense of touch. Electromagnetic waves are essentially variations in electric and magnetic fields that can move through space, even in a vacuum. Electrical signals generated by the human body's nervous system are responsible for controlling and coordinating a wide range of physiological processes. These electrical signals are generated by the movement of charged ions through specialized channels in the cell membrane. These signals can be detected by sensors outside the body that can measure the electrical changes produced by these ions moving across the membrane.

One such example is the use of electroencephalography (EEG) to measure the electrical activity of the brain. The EEG is a non-invasive method of measuring brain activity by placing electrodes on the scalp. Electromagnetic waves can also affect our sense of touch. Some forms of electromagnetic radiation, such as ultraviolet light, can cause damage to the skin, resulting in sensations such as burning, itching, and pain. Similarly, electromagnetic waves in the form of infrared radiation can be detected by the skin, resulting in a sensation of warmth. The sensation of touch is ultimately the result of mechanical and thermal stimuli acting on specialized receptors in the skin. These receptors generate electrical signals that are sent to the brain via the nervous system.

Learn more about em waves here: https://brainly.com/question/14953576

#SPJ11


Related Questions

A block of ice (m = 20.0 kg) with an attached rope is at rest on a frictionless surface. You pull the block with a horizontal force of 93.0 N for 1:55 s. (a) Determine the magnitude of each force

Answers

the magnitude of the force is 93.0 N and the magnitude of the acceleration is 4.65 m/s².

The magnitude of the force and acceleration that results from pulling a block of ice with a rope can be calculated by using Newton's second law of motion.

mass of block, m = 20.0 kg

horizontal force, F = 93.0 N

time, t = 1.55 s

The acceleration of the block can be calculated by using the following formula:

a = F / ma = 93.0 / 20.0a = 4.65 m/s²

The magnitude of the force, F, can be calculated by using the following formula:

F = maF = 20.0 × 4.65F

= 93.0 N

Thus, the magnitude of the force is 93.0 N and the magnitude of the acceleration is 4.65 m/s².

learn more about force here

https://brainly.com/question/12785175

#SPJ11

A force of 60 Newtons is applied upward at angle of 45 degrees
with the end of a wrench 12 centimeters long. How much torque is
produced?

Answers

Answer:

the torque produced by the force of 60 Newtons applied at an angle of 45 degrees with the 12-centimeter wrench is approximately 5.0916 Nm.

Torque is a measure of the rotational force or moment applied to an object. It depends on the magnitude of the force and the distance from the axis of rotation. To calculate the torque produced by the force applied at an angle, we need to consider both the magnitude of the force and the lever arm.

In this case, a force of 60 Newtons is applied upward at an angle of 45 degrees with the end of a wrench that is 12 centimeters long.

To calculate the torque, we can use the formula:

Torque = Force * Lever Arm * sin(θ)

where θ is the angle between the force vector and the lever arm.

Given:

Force = 60 Newtons

Lever Arm = 12 centimeters = 0.12 meters (converting to SI units)

Angle (θ) = 45 degrees = π/4 radians (converting to radians)

Plugging in the values into the formula, we get:

Torque = 60 N * 0.12 m * sin(π/4)

= 60 N * 0.12 m * 0.7071

Calculating this expression, we find that the torque produced is approximately 5.0916 Nm (Newton-meters).

Therefore, the torque produced by the force of 60 Newtons applied at an angle of 45 degrees with the 12-centimeter wrench is approximately 5.0916 Nm.

Learn more about Newtons from below link

https://brainly.com/question/28171613

#SPJ11

The torque produced by the force of 60 Newtons applied at an angle of 45 degrees with the 12-centimeter wrench is approximately 5.0916 Nm.

Torque is a measure of the rotational force or moment applied to an object. It depends on the magnitude of the force and the distance from the axis of rotation. To calculate the torque produced by the force applied at an angle, we need to consider both the magnitude of the force and the lever arm.

In this case, a force of 60 Newtons is applied upward at an angle of 45 degrees with the end of a wrench that is 12 centimeters long.

To calculate the torque, we can use the formula:

Torque = Force * Lever Arm * sin(θ)

where θ is the angle between the force vector and the lever arm.

Given:

Force = 60 Newtons

Lever Arm = 12 centimeters = 0.12 meters (converting to SI units)

Angle (θ) = 45 degrees = π/4 radians (converting to radians)

Plugging in the values into the formula, we get:

Torque = 60 N * 0.12 m * sin(π/4)

= 60 N * 0.12 m * 0.7071

Calculating this expression, we find that the torque produced is approximately 5.0916 Nm (Newton-meters).

Therefore, the torque produced by the force of 60 Newtons applied at an angle of 45 degrees with the 12-centimeter wrench is approximately 5.0916 Nm.

Learn more about Newtons from below link

brainly.com/question/28171613

#SPJ11

2. On the Season Finale of Keeping Up With The Gretta Bears: Gretta decides that she wants to go skiing in Aspen. When she gets there, she decides that snow is cold, her legs are short, and that skiing is so last year. With no need for her 10-kg skis anymore, she pushes them away at a speed of 12-m/s. The skis collide with 20-kg Buster and catch in his leash. Buster and the skis proceed to slide down a 30° slope of length 100-m. At the bottom of the slope, Buster is caught by a net attached to a spring with an effective spring constant of 500N/m. How far does the spring stretch before Buster momentarily comes to rest?

Answers

The spring stretches to  1.69 meters before Buster momentarily comes to rest.

How do we calculate?

We find  the initial kinetic energy of the skis before they collide with Buster:

Kinetic energy of skis = (1/2) * mass * velocity²

= (1/2) * 10 kg * (12 m/s)²

= 720 J

Change in height = height * sin(angle)

= 100 m * sin(30°)

= 50 m

The total initial gravitational potential energy is equal to the kinetic energy of the skis, since that Buster starts from rest = Initial potential energy = 720 J

The potential energy stored in the stretched spring :

= (1/2) * k * x²

720 J = (1/2) * 500 N/m * x²

1440 J = 500 N/m * x²

x² = (1440 J) / (500 N/m)

x² = 2.88 m

x =  1.69 m

Learn more about potential energy at:

https://brainly.com/question/14427111

#SPJ4

A home run is hit such a way that the baseball just clears a wall 18 m high located 110 m from home plate. The ball is hit at an angle of 38° to the horizontal, and air resistance is negligible. Assume the ball is hit at a height of 1 m above the ground. The acceleration of gravity is 9.8 m/s2. What is the initial speed of the ball? Answer in units of m/s. Answer in units of m/s

Answers

The given parameters for a baseball that is hit over a wall are:Wall height (h) = 18 m, Distance from home plate (x) = 110 mAngle to the horizontal (θ) = 38°, Initial vertical position (y0) = 1 m. We need to find the initial velocity (v0).Let's first split the initial velocity into horizontal and vertical components such that:v0 = v0x + v0y.

Let's write down the formulas for the horizontal and vertical components of initial velocity as:vx = v0 cos θvy = v0 sin θ. Now we need to find the initial velocity of the baseball:vy = v0 sin θ ⇒ v0 = vy / sin θvy can be found as the height above the ground at the wall height:voy² = v0² sin² θ + 2ghvoy = sqrt(2gh)vy = sqrt(2 × 9.8 m/s² × 17 m)vy = 15.44 m/sv0 = 15.44 / sin 38° = 24.28 m/sSo, the initial speed of the ball is 24.28 m/s.

Learn more about velocity:

brainly.com/question/80295

#SPJ11

Task 1:
Conduct, and describe how you carried out, 2 experiments, one for a solid fuel (e.g. wood) and one for a liquid fuel (petrol), providing annotated photographs and drawings and recording the following values:
- mass of fuel,
- mass of water heated,
- water equivalent of the calorimeter and
- temperature versus time data.
Determine the following:
a) The net calorific value of both petrol and wood
b) The gross calorific value of both petrol and wood
c) Themassofairrequiredforthecompletecombustionof either the wood or petrol sample
d) How safety and the accuracy of results were ensured during the experiment
Task 2:
Having recorded your results from the experiments, use the experimental results (readings, values...etc) and theoretical calculations (using relevant formulae) to:
a) Explain the combustion process
b) Explain the calculation of the calorific values for each fuel type
c) Explaintheenvironmentalimpactofcombustionofeach fuel type given the results obtained from the experiment (e.g. any by-products/incombustible fuels)
d) Analyse each of the above steps a (in terms of efficiency of the combustion process), b (gross and net values) & c (impact of combustion on the environment and the sustainability of the fuel) above.
Task 3:
Having safely conducted the two experiments, obtained accurate results and calculated values for the calorific values, evaluate:
- The experimental results and combustion process in comparison to results from theoretical calculations (with reference to the laws of thermodynamics)
- The efficiency of combustion (amount of thermal energy released upon combustion) in mechanical systems
- Impact of the combustion process on the environment (by-products of combustion)
- Sustainability of each fuel type (wood and petrol) in terms of the quantity of incombustible fuel resulting from the experiments
- The potential for the use of alternative fuels (to wood and petrol)
- How the suggested alternative fuels may impact the environment

Answers

Wood pieces Crucible Water Measuring Cylinder, thermometer, Bunsen burner, calorimeter, etc. Take the crucible's mass. Take some wood and record its mass. Take a calorimeter and add some water, record the calorimeter's mass. Light the wood pieces, and keep it below the crucible.

Note the time to start and stop the heating. Keep the crucible with wood over the flame and heat it for a while. Use the thermometer to note the temperature of the water before and after the experiment. Record the data for mass of fuel, mass of water heated, water equivalent of the calorimeter and temperature versus time data. Repeat the same procedure for liquid fuel (petrol).

The sustainability of each fuel type can be evaluated based on the amount of incombustible fuel resulting from the experiments. Alternative fuels such as hydrogen or biofuels may have less impact on the environment than wood or petrol, but they may also have other drawbacks such as lower energy density or higher production costs. Overall, the choice of fuel should be based on a balance between energy efficiency, environmental impact, and sustainability.

To know more about thermometer Visit;

https://brainly.com/question/32916463

#SPJ11

It is important not to undercook chicken, otherwise you might get very sick. The inside of the chicken has to be at a certain temperature (75 C or 165 F) to make sure it is safe. Why can't you just wait until the outside of the chicken is at this temperature? Why isn't the entire chicken at the same temperature
while it is being cooked?

Answers

When cooking chicken, it is crucial to ensure that the internal temperature reaches a certain level, typically 75°C (165°F), to eliminate harmful bacteria and reduce the risk of foodborne illnesses such as salmonella or campylobacter :

1) Heat transfer:

Heat transfer in cooking occurs primarily through conduction, where heat travels from a hotter region to a cooler one. The outside of the chicken is in direct contact with the cooking surface (e.g., a grill, pan, or oven), which provides the heat source.

2) Insulation and thickness:

The chicken's outer layers act as insulation, which slows down the heat transfer to the inner parts. Additionally, the thickness of the chicken can vary, with the thickest parts taking longer to reach the desired temperature.

3) Moisture content:

The moisture content of chicken affects the cooking process. Moisture inside the chicken evaporates as the temperature increases, cooling the interior.

4) Heat diffusion:

Heat diffuses through food unevenly, meaning that it takes time for the heat to penetrate the center of the chicken. The temperature gradient gradually decreases as the heat spreads inward.

Learn more about temperature here : brainly.com/question/7510619
#SPJ11

This chart shows four atoms, labeled W, X, Y, and Z. These atoms can combine with each other to form molecules.



Which combination of atoms will form a molecule, but not a compound?

W and X
X and Y
W and Z
Y and Z

Answers

Answer:

Where is the picture?

All molecules that contain carbon (C) and at least hydrogen (H) atoms is one example until I see what that missing diagram says.

You fire a cannon horizontally off a 50 meter tall wall. The cannon ball lands 1000 m away. What was the initial velocity?

Answers

To determine the initial velocity of the cannonball, we can use the equations of motion under constant acceleration. The initial velocity of the cannonball is approximately 313.48 m/s.

Since the cannonball is fired horizontally, the initial vertical velocity is zero. The only force acting on the cannonball in the vertical direction is gravity.

The vertical motion of the cannonball can be described by the equation h = (1/2)gt^2, where h is the height, g is the acceleration due to gravity (approximately 9.8 m/s^2), and t is the time of flight.

Given that the cannonball is fired from a 50-meter-tall wall and lands 1000 m away, we can set up two equations: one for the vertical motion and one for the horizontal motion.

For the vertical motion: h = (1/2)gt^2

Substituting h = 50 m and solving for t, we find t ≈ 3.19 s.

For the horizontal motion: d = vt, where d is the horizontal distance and v is the initial velocity.

Substituting d = 1000 m and t = 3.19 s, we can solve for v: v = d/t ≈ 313.48 m/s.

Therefore, the initial velocity of the cannonball is approximately 313.48 m/s.

Learn more about initial velocity here; brainly.com/question/31023940

#SPJ11

7. Calculate the centripetal force (in N) of a 2 kg object revolving in a circle with a radius of 0.5 m at a velocity of 6 m/s?

Answers

The centripetal force of the object is 144 Newtons.

The centripetal force (Fc) can be calculated using the following equation:

Fc = (m * v^2) / r

where:

- Fc is the centripetal force,

- m is the mass of the object (2 kg),

- v is the velocity of the object (6 m/s), and

- r is the radius of the circle (0.5 m).

Substituting the given values into the equation, we have:

Fc = (2 kg * (6 m/s)^2) / 0.5 m

Simplifying the equation further, we get:

Fc = (2 kg * 36 m^2/s^2) / 0.5 m

  = (72 kg * m * m/s^2) / 0.5 m

  = 144 N

Therefore, the centripetal force of the object is 144 Newtons.

To know more about centripetal force, refer here:

https://brainly.com/question/14021112#

#SPJ11

This time the pendulum is 2.05 m'long. Suppose you start with the pendulum hanging vertically, at rest. You then give it a push so that it starts swinging with a speed of 2.04 m/s. What maximum angle (in degrees) will it reach, with respect to the vertical, before falling back down? 18.4 degrees 34.2 degrees 30.3 degrees 26.3 degrees This time, the pendulum is 1.25 m long and has a mass of 3.75 kg. You give it a push away from vertical so that it starts swinging with a speed of 1.39 m/s. Due to friction at the pivot point, 1.00 Joule of the pendulum s initial kinetic energy is lost as heat during the upward swing. What maximum angle will it reach, with respect to the vertical, before falling back down? 22.9 degrees 33.0 degrees 28.0 degrees 19.4 degrees

Answers

In the first scenario, where the pendulum is 2.05 m long and starts swinging with a speed of 2.04 m/s, the maximum angle it will reach with respect to the vertical can be determined using the conservation of mechanical energy.

By equating the initial kinetic energy to the change in potential energy, we can calculate the maximum height reached by the pendulum. Using this height and the length of the pendulum, we can find the maximum angle it will reach, which is approximately 18.4 degrees.

In the second scenario, with a pendulum length of 1.25 m, mass of 3.75 kg, and 1.00 Joule of initial kinetic energy lost as heat, we again consider the conservation of mechanical energy. By subtracting the energy lost as heat from the initial mechanical energy and equating it to the change in potential energy, we can find the maximum height reached by the pendulum. Using this height and the length of the pendulum, we can determine the maximum angle it will reach, which is approximately 33.0 degrees.

In both scenarios, the conservation of mechanical energy is used to analyze the pendulum's motion. The principle of conservation states that the total mechanical energy (kinetic energy + potential energy) remains constant in the absence of external forces or energy losses. At the highest point of the pendulum's swing, all the initial kinetic energy is converted into potential energy.

For the first scenario, we equate the initial kinetic energy (1/2 * m * v²) to the potential energy (m * g * h) at the highest point. Rearranging the equation allows us to solve for the maximum height (h). From the height and the length of the pendulum, we calculate the maximum angle reached using the inverse cosine function.

In the second scenario, we take into account the energy loss as heat during the upward swing. By subtracting the energy loss from the initial mechanical energy and equating it to the potential energy change, we can determine the maximum height. Again, using the height and the length of the pendulum, we find the maximum angle reached.

In summary, the length, initial speed, and energy losses determine the maximum angle reached by the pendulum. By applying the conservation of mechanical energy and using the appropriate equations, we can calculate the maximum angle for each scenario.

Learn more about kinetic energy here:
brainly.com/question/999862

#SPJ11

ta B If released from rest, the current loop will O rotate counterclockwise O rotate clockwise move upward move downward

Answers

If released from rest, the current loop will rotate counterclockwise. The direction of the rotation of the current loop can be determined using the right-hand rule for magnetic fields.

According to the right-hand rule, if you point your right thumb in the direction of the current flow in the loop, the fingers of your right hand will curl in the direction of the magnetic field created by the loop.

In this scenario, as the current flows in the loop, it creates a magnetic field around it. The interaction between this magnetic field and the external magnetic field (due to another source, for example) leads to a torque on the loop. The torque causes the loop to rotate.

To determine the direction of rotation, if we imagine the loop initially at rest and facing the mirror (with the mirror in front), the external magnetic field will create a torque on the loop in a counterclockwise direction. This torque will cause the loop to rotate counterclockwise.

Therefore, if released from rest, the current loop will rotate counterclockwise.

Learn more about right-hand rule here; brainly.com/question/30641867

#SPJ11

A small asteroid keeps a circular orbit with radius
1.00×106 km around a star with a mass of
9.00×1030 kg. What is the period of the orbit of the
asteroid around the star?

Answers

Answer:

The period of the asteroid's orbit around the star is 2.19 hours.

Explanation:

The period of the asteroid's orbit can be calculated using Kepler's third law:

T^2 = (4 * pi^2 * a^3) / GM

where:

T is the period of the orbit

a is the radius of the orbit

M is the mass of the star

G is the gravitational constant

T^2 = (4 * pi^2 * (1.00×10^6 km)^3) / (6.67×10^-11 N * m^2 / kg^2) * (9.00×10^30 kg)

T^2 = 6.38×10^12 s^2

T = 7.98×10^5 s = 2.19 hours

Therefore, the period of the asteroid's orbit around the star is 2.19 hours.

Learn more about Kepler's Law.

https://brainly.com/question/33261239

#SPJ11

During a certain time interval, the angular position of a swinging door is described by 0 = 4.96 + 10.10 + 2.01t2, where is in radians and t is in seconds. Determine the angular position, angular speed, and angular acceleration of the door at the following times. (a) t = 0 rad w = rad/s Trad/s2 a = (b) t = 2.92 s 0 = rad W= rad/s a = rad/s2

Answers

The  given times:

(a) t = 0: θ = 4.96 radians, ω = 10.10 rad/s, α = 4.02 rad/s^2

(b) t = 2.92 s: θ ≈ 46.04 radians, ω ≈ 22.80 rad/s, α = 4.02 rad/s^2

To determine the angular position, angular speed, and angular acceleration of the door at different times, we need to take derivatives of the given equation.

The given equation is:

θ = 4.96 + 10.10t + 2.01t^2

Taking the derivative with respect to time (t), we get:

ω = dθ/dt = d/dt(4.96 + 10.10t + 2.01t^2)

Differentiating each term separately, we have:

ω = 0 + 10.10 + 2 * 2.01t

Simplifying, we get:

ω = 10.10 + 4.02t rad/s

Now, taking the derivative of angular speed (ω) with respect to time (t), we get:

α = dω/dt = d/dt(10.10 + 4.02t)

The derivative of a constant term is zero, so we have:

α = 0 + 4.02

Simplifying, we get:

α = 4.02 rad/s^2

Now, we can substitute the given values of time (t) to find the angular position, angular speed, and angular acceleration at those times.

(a) For t = 0:

θ = 4.96 + 10.10(0) + 2.01(0)^2

θ = 4.96 radians

ω = 10.10 + 4.02(0)

ω = 10.10 rad/s

α = 4.02 rad/s^2

(b) For t = 2.92 s:

θ = 4.96 + 10.10(2.92) + 2.01(2.92)^2

Calculating this value gives us:

θ ≈ 46.04 radians

ω = 10.10 + 4.02(2.92)

Calculating this value gives us:

ω ≈ 22.80 rad/s

α = 4.02 rad/s^2

To know more about Angular acceleration:

brainly.com/question/14769426

#SPJ11

3/4 Points (a) Atanar show at tes directly toward the stands at a speed of 1130 kn, emitting a frequency of 60 H on a day when the speed of sound is 342 m/s. What frequency in Ha) is received by the observers (b) What tregunty (in ) do they receives the planetes directly away from them?

Answers

The frequency received by the observers is 55.78 Hz. The frequency the observers receive from the planetes directly away from them is 91.43 Hz.

(a) Here is the formula to determine the received frequency:f' = f (v±v₀) / (v±vs), wherev₀ is the speed of the observer,v is the speed of sound,f is the frequency of the source, andvs is the speed of the source. Here is the solution to part (a): The speed of sound is given as 342 m/s. Atanar is moving directly towards the stands, so we have to add the speed of Atanar to the speed of sound. The speed of Atanar is 1130 km/h, which is 313.8889 m/s when converted to m/s.v = 342 m/s + 313.8889 m/s = 655.8889 m/sUsing the formula,f' = f (v±v₀) / (v±vs),we get:f' = 60 Hz (655.8889 m/s) / (655.8889 m/s + 0 m/s)f' = 55.78 HzSo, the frequency received by the observers is 55.78 Hz.

(b) If Atanar is moving directly away from the stands, then we subtract the speed of Atanar from the speed of sound. Using the formula:f' = f (v±v₀) / (v±vs),we get:f' = 60 Hz (655.8889 m/s) / (655.8889 m/s - 0 m/s)f' = 91.43 Hz.Therefore, the frequency the observers receive from the planetes directly away from them is 91.43 Hz.

Learn more on frequency here:

brainly.com/question/33270290

#SPJ11

ydro Electrical Funda COURSES SCHOOL OF ACCESS AND CONTINUING EDUCA PHYSICS: A REVIEW OF THE PHYSICS YOU WILL NEED TO CO Calculate the capacitive reactance of a capacitor through which 6A flows when 12VAC is applied. Select one: a. 2 ohms b. 0.7 ohms of is page nit 3 Oc. 4 ohms d. 2.7 ohms Jump to... · Next page Unit 4 ► : 7

Answers

Calculating the capacitive reactance of a capacitor through which 6A flows when 12VAC is applied.

The capacitive reactance can be calculated as follows: XC = V / I

Where, V = Voltage applied

I = Current flowing

XC = Capacitive reactance

Therefore, substituting the given values,V = 12VACI = 6AXC = V / IXC = 12VAC / 6A = 2 Ω

Thus, the capacitive reactance of a capacitor through which 6A flows when 12VAC is applied is 2 Ω.

The capacitive reactance of a capacitor can be calculated using the formula XC = V / I, where V is the voltage applied, I is the current flowing, and XC is the capacitive reactance. When 12VAC is applied to a capacitor through which 6A flows, the capacitive reactance is 2 Ω.

To know more about capacitive reactance, visit:

https://brainly.com/question/31871398

#SPJ11

Man has the capability of changing the half life of a radioactive material. True or False?
Which type of force is very short range? electric force magnetic force strong force gravitational force

Answers

Correct answer : True

The term

“radioactive decay”

refers to the process in which an unstable atomic nucleus loses energy by emitting radiation such as alpha particles, beta particles, gamma rays, or positrons.

These particles are released until the nucleus becomes stable again by releasing energy.

The decay rate of an unstable substance is measured by the half-life, which is the time it takes for half of the original substance to decay.The half-life of a

radioactive element

cannot be altered. However, the rate at which radioactive decay occurs can be influenced by a variety of factors, including external conditions and the use of certain procedures and techniques to treat the radioactive element. This is accomplished by modifying the atoms of the substance or through manipulation of its physical surroundings.

In the case of

short-range forces

, the strong force is the one that is primarily involved. The strong force holds atomic nuclei together by binding the protons and neutrons within the nucleus. The range of the strong force is restricted to only a few femtometers, which is a very short distance. When two nucleons are near each other, this force is quite strong, but it rapidly weakens as the distance between the particles grows.In summary, Man does have the ability to influence the rate of radioactive decay but not the half-life of a radioactive element. The strong force is a type of force that has a very short range.

to know more about

“radioactive decay”

pls visit-

https://brainly.com/question/1770619

#SPJ11

A proton moves along the x axis with V x =−2.0×10 ^7
m/s. As it passes the origin, what is the strength and direction of the magnetic field at the x,y,z position (−1 cm,2 cm,0 cm)

Answers

The strength and direction of the magnetic field at the x,y,z position (−1 cm,2 cm,0 cm) when a proton moves along the x-axis with Vx = −2.0 × 10^7 m/s are given below. Solution: Given Vx = −2.0 × 10^7 m/s

The distance of proton from origin along x-axis, x = -1 cm = -10^-2 m the distance of proton from origin along y-axis, y = 2 cm = 2 × 10^-2 mThe distance of proton from origin along z-axis, z = 0 cm = 0 mMagnitude of the velocity of the proton, V = |Vx| = 2.0 × 10^7 m/sCharge of a proton, q = 1.6 × 10^-19 CB = magnetic field at the point (-1 cm, 2 cm, 0 cm)The formula to calculate the magnetic field, B, at a distance r from a wire carrying current I is given by:B = [μ₀/4π] [(2I/ r)]Where,μ₀ = magnetic constant = 4π × 10^-7 T m/A, andI = current r = distance from the wire

The current can be determined as,Current, I = qV/LWhere,q = charge of the proton = 1.6 × 10^-19 C,V = velocity of the proton = -2.0 × 10^7 m/s, andL = length of the proton = more than 100 mWe assume the length of the proton to be more than 100m because the field is to be determined at a point that is located more than 100m from the source. Thus, the distance of the point from the source is much larger than the length of the proton. Therefore, we assume the length of the proton to be very small as compared to the distance of the point from the source.

To know more about magnetic visit:

https://brainly.com/question/3617233

#SPJ11

A 2570 - resistor and a 1.1 - µF capacitor are connected in series across a generator (60.0 Hz, 120 V). Determine the power delivered to the circuit.

Answers

The power delivered to the circuit is 5.11 W.

To determine the power delivered to the circuit of a 2570-resistor and a 1.1-µF capacitor connected in series across a generator with a frequency of 60.0 Hz and 120 V, we can use the following steps:

Step 1: Calculate the reactance of the capacitor. Xc = 1 / (2πfC)

Where: Xc is the reactance of the capacitor, f is the frequency of the generator,C is the capacitance of the capacitor Plugging in the given values: Xc = 1 / (2π × 60 × 1.1 × 10⁻⁶)Xc = 240.5 Ω

Step 2: Calculate the total resistance of the circuit.Rt = R + Xc

Where:Rt is the total resistance of the circuit,R is the resistance of the resistorXc is the reactance of the capacitorPlugging in the given values:Rt = 2570 + 240.5Rt = 2810.5 Ω

Step 3: Calculate the current flowing through the circuit.I = V / RtWhere:I is the current flowing through the circuit,V is the voltage of the generatorRt is the total resistance of the circuit Plugging in the given values:I = 120 / 2810.5I = 0.0426 A

Step 4: Calculate the power delivered to the circuit.P = VI

Where:P is the power delivered to the circuit,V is the voltage of the generator

I is the current flowing through the circuitPlugging in the given values:P = 120 × 0.0426P = 5.11 W

Learn more about power

https://brainly.com/question/30176228

#SPJ11

Please help with the following questions based off the table DO NOT JUST COPY SOMEONES ELSES ANSWER **** **** Color Wavelength Frequency Stopping Voltage * m variable Hz variable units 1 Yellow 5.78e-7 5.19e+14 0.72 Stopping Voltage Curve: 2 Green 5.46074e-7 5.49e+14 0.82 y = Ax + B A: 3.80 x 10-15 units B: -1.25 units 3 Blue 4.35835e-7 6.88e+14 1.42 RMSE: 0.0437 units 4 Violet 4.04656e-7 7.41e+14 1.60 r: 0.997 5 Ultraviolet 3.65483e-7 8.21e+14 1.83 • Using the results of your linear model, what is the work function of the metal inside the photodiode? • What is the cutoff wavelength for an incident photon for this work function? • Which regime in the EM spectrum does the cutoff wavelength belong in? Hint: The cutoff wavelength is the minimum wavelength necessary to produce a photoelectron when an incident photon interacts with a metal. variable

Answers

(a) The work function of the metal inside the photodiode is approximately 4.21 x 10¹⁴ Hz. (b) The cutoff wavelength for an incident photon with this work function is approximately 713 nm. (c) The cutoff wavelength belongs to the visible light regime in the electromagnetic spectrum.

(a) To determine the work function of the metal inside the photodiode, we can use the equation of the stopping voltage curve:

Stopping Voltage = Ax + B

From the given information, we know that A = 3.80 x 10⁻¹⁵ units and B = -1.25 units.

For the Yellow light, the stopping voltage is given as 0.72 units. Substituting the values into the equation:

0.72 = (3.80 x 10⁻¹⁵)x + (-1.25)

Solving for x, we find:

x = (0.72 + 1.25) / (3.80 x 10⁻¹⁵)

x ≈ 4.21 x 10¹⁴ Hz

(b) The cutoff wavelength for an incident photon can be calculated using the equation:

Cutoff wavelength = c / cutoff frequency

where c is the speed of light (approximately 3 x 10^8 m/s).

Using the cutoff frequency for the Yellow light, which is 4.21 x 10¹⁴ Hz, we have:

Cutoff wavelength = (3 x 10⁸) / (4.21 x 10¹⁴)

Cutoff wavelength ≈ 7.13 x 10⁻⁷ m or 713 nm

(c) The cutoff wavelength belongs to the regime of visible light in the electromagnetic spectrum.

To know more about the electromagnetic spectrum refer here,

https://brainly.com/question/29070958#

#SPJ11

The occupancy probability function can be applied to semiconductors as well as to metals. In semiconductors the Fermi energy is close to the midpoint of the gap between the valence band and the conduction band. Consider a semiconductor with an energy gap of 0.75eV, at T = 320 K. What is the probability that (a) a state at the bottom of the conduction band is occupied and (b) a state at the top of the valence band is not occupied? (Note: In a pure semiconductor, the Fermi energy lies symmetrically between the population of conduction electrons and the population of holes and thus is at the center of the gap. There need not be an available state at the location of the Fermi energy.)

Answers

The probability that a state at the bottom of the conduction band is occupied is 0.203. The probability that a state at the top of the valence band is not occupied is 0.060.

The occupancy probability function is applicable to both semiconductors and metals. In semiconductors, the Fermi energy is located near the midpoint of the band gap, separating the valence band from the conduction band. Let us consider a semiconductor with a band gap of 0.75 eV at 320 K to determine the probabilities that a state at the bottom of the conduction band is occupied and that a state at the top of the valence band is unoccupied.

a) To determine the probability of an occupied state at the bottom of the conduction band, use the occupancy probability function:

P(occ) = 1/ [1 + exp((E – Ef) / kT)]P(occ)

= 1/ [1 + exp((E – Ef) / kT)]

where E = energy of the state in the conduction band, Ef = Fermi energy, k = Boltzmann constant, and T = temperature.

Substituting the given values:

E = 0, Ef = 0.375 eV, k = 8.617 x 10-5 eV/K, and T = 320 K,

we have:

P(occ) = 1/ [1 + exp((0 - 0.375) / (8.617 x 10-5 x 320))]P(occ)

= 1/ [1 + exp(-1.36)]P(occ)

= 0.203

Thus, the probability that a state at the bottom of the conduction band is occupied is 0.203.

b) To determine the probability of an unoccupied state at the top of the valence band, use the same formula:

P(unocc) = 1 – 1/ [1 + exp((E – Ef) / kT)]P(unocc)

= 1 – 1/ [1 + exp((E – Ef) / kT)]

where E = energy of the state in the valence band,

Ef = Fermi energy, k = Boltzmann constant, and T = temperature.

Substituting the given values:

E = 0.75 eV, Ef = 0.375 eV, k = 8.617 x 10-5 eV/K, and T = 320 K, we have:

P(unocc) = 1 – 1/ [1 + exp((0.75 - 0.375) / (8.617 x 10-5 x 320))]P(unocc)

= 1 – 1/ [1 + exp(2.73)]P(unocc) = 0.060

Thus, the probability that a state at the top of the valence band is not occupied is 0.060.The above calculation reveals that the probability of an occupied state at the bottom of the conduction band is 0.203 and that the probability of an unoccupied state at the top of the valence band is 0.060.

To know more about semiconductors visit:-

https://brainly.com/question/32767150

#SPJ11

You are driving your car uphill along a straight road. Suddenly,You see a car run through a red light and enter the intersection, just ahead of you. From
You immediately apply your brakes and skid straight to a stop, leaving a skid mark.
100ft long per slide. A policeman observes the whole incident, gives him a ticket
the driver of the car for running a red light. He also gives you a ticket for
exceed the speed limit of 30 mph. When you get home, you read your book
and you can notice that the coefficient of kinetic friction between the tires and the
road was 0.60, and the coefficient of static friction was 0.80. You estimate that the
hill makes an angle of about 10° with the horizontal. Check the manual
owner and find that your car weighs 2,050 lbs. Are you going to claim the traffic ticket
in the court? support your argument

Answers

Since the initial velocity is 0, it means the car was not exceeding the speed limit before applying the brakes.

To determine if the car exceeded the speed limit before applying the brakes, we can use the concept of skid distance. The skid distance can be calculated using the equation:

Skid Distance = (Initial Velocity^2) / (2 * Coefficient of Friction * Acceleration due to Gravity)

Since the car came to a stop, the final velocity is 0. We can assume that the initial velocity is the velocity at which the car was traveling before applying the brakes.

Given that the skid distance is 100 feet, the coefficient of kinetic friction is 0.60, and the angle of the hill is 10°, we can rearrange the equation to solve for the initial velocity.

0 = (Initial Velocity^2) / (2 * 0.60 * 32.2 * sin(10°))

Simplifying the equation, we have:

0 = Initial Velocity^2 / (38.648 * 0.1736)

0 = Initial Velocity^2 / 6.7031

This equation indicates that the initial velocity was 0. To determine if the car exceeded the speed limit, we compare the initial velocity (0) with the speed limit of 30 mph.

To learn more about straight road -

brainly.com/question/31215633

#SPJ11

Nearsightedness is usually corrected with O A. convex mirrors. O B. converging lenses. C. diverging lenses. OD. cylindrical lenses. O E.concave mirrors.

Answers

C. diverging lenses.

Nearsightedness, or myopia, is a condition in which a person has difficulty seeing distant objects clearly. This occurs because the focal point of the light entering the eye falls in front of the retina instead of directly on it. To correct nearsightedness, a diverging lens is used.

A diverging lens is thinner at the center and thicker at the edges. When light passes through a diverging lens, it spreads out or diverges. This causes the light rays to appear as if they are coming from a farther distance, effectively shifting the focal point back onto the retina.

By using a diverging lens, the nearsighted person can see distant objects more clearly because the lens helps to focus the light properly onto the retina, allowing for clear vision at a distance.

Learn more about diverging lenses:

https://brainly.com/question/29459725

#SPJ11

1.8kg of water at about room temperature (22ºC) is mixed with 240 g of steam at 120°C. Determine the final temperature of the water. The specific heat capacity of water is 4186 J/kg/°C

Answers

By heat transfer the final temperature of water is 27.85⁰C.

The heat transfer to raise the temperature by ΔT of mass m is given by the formula:

Q = m× C × ΔT

Where C is the specific heat of the material.

Given information:

Mass of water, m₁ = 1.8kg

The temperature of the water, T₁ =22°C

Mass of steam, m₂ = 240g or 0.24kg

The temperature of the steam, T₂ =  120⁰C

Specific heat of water, C₁ = 4186 J/kg/°C

Let the final temperature of the mixture be T.

Heat given by steam + Heat absorbed by water = 0

m₂C₂(T-T₂) + m₁C₁(T-T₁) =0

0.24×1996×(T-120) + 1.8×4186×(T-22) = 0

479.04T -57484.8 + 7534.8T - 165765.6 =0

8013.84T =223250.4

T= 27.85⁰C

Therefore, by heat transfer the final temperature of water is 27.85⁰C.

To know more about heat transfer, click here:

https://brainly.com/question/31065010

#SPJ4

The isotope, Cobalt 57, decays by electron capture to Iron 57 with a half life of 272 days. The Iron 57 nucleus is produced in an excited state and it almost instantaneously emits gamma rays that we can detect. Find the mean lifetime and decay constant for Cobalt 57. . 1st, convert half life from days to seconds. T1/2 = 272 days (in seconds) Tmean = T1/2/In2 (in days) X = 1/Tmean (decay constant) . . O 682 days, 2.05 x 10-6-1 O 392 days, 2.95 x 108 1 O 216 days, 4.12 x 10-851 O No answer text provided. Which scan has the most dangerous levels of radiation exposure? O No answer text provided. OCT MRI OPET

Answers

The question asks for the mean lifetime and decay constant of Cobalt 57, which decays by electron capture to Iron 57 with a half-life of 272 days. To find the mean lifetime, we can convert the half-life from days to seconds by multiplying it by 24 (hours), 60 (minutes), 60 (seconds) to get the half-life in seconds. The mean lifetime (Tmean) can be calculated by dividing the half-life (in seconds) by the natural logarithm of 2. The decay constant (X) is the reciprocal of the mean lifetime (1/Tmean).

The most dangerous levels of radiation exposure can be determined by comparing the decay constants of different isotopes. A higher decay constant implies a higher rate of decay and, consequently, a greater amount of radiation being emitted. Therefore, the scan with the highest decay constant would have the most dangerous levels of radiation exposure.

Unfortunately, the options provided in the question are incomplete and do not include the values for the decay constant or the mean lifetime. Without this information, it is not possible to determine which scan has the most dangerous levels of radiation exposure.

Learn more about electron :

https://brainly.com/question/12001116

#SPJ11

Currently, nine nonhuman species of animals pass the mirror self-recognition test (MSR), which means they demonstrate the ability of self-recognition when they look at their reflection. Some of the animals on this list include the great apes, Asian elephants, bottlenose dolphins, and orca whales. In the figure, an Asian elephant is standing 3.5 m from a vertical wall. Given the dimensions shown in the drawing, what should be the minimum length of the mirror (L) in meters, such that the elephant can see the entire height of its body—from the top of its head to the bottom of its feet?

Answers

To allow an Asian elephant to see its entire height in the mirror, the minimum length of the mirror (L) should be at least 7 meters.

In order for the Asian elephant to see its entire height in the mirror, the mirror's height (H) must be equal to or greater than the height of the elephant. From the drawing, the height of the elephant is shown as 3.5 meters.

However, when the elephant looks at its reflection in the mirror, the distance between the elephant and the mirror effectively doubles the perceived height. This is due to the reflection angle being equal to the incident angle. So, if the elephant is 3.5 meters away from the mirror, its perceived height in the mirror will be 7 meters.

Therefore, the minimum length of the mirror (L) should be at least 7 meters to allow the Asian elephant to see its entire height—from the top of its head to the bottom of its feet.

To learn more about reflection.

Click here:brainly.com/question/29788343

#SPJ11

A color television tube also generates some x rays when its electron beam strikes the screen. What is the shortest wavelength in m of these x rays, if a 24.7-KV potential is used to accelerate the electrons? (Note that TVs have shielding to prevent these x rays from exposing viewers.)

Answers

The shortest wavelength of x-rays generated by the color television tube, when a 24.7-kV potential is used to accelerate the electrons, is approximately 5.03 × 10⁻⁷ meters.

To find the shortest wavelength of x-rays generated by the television tube, we can use the equation that relates wavelength to the accelerating potential:

λ = hc / (eV)

where λ is the wavelength, h is the Planck's constant (6.626 × 10⁻³⁴ J·s), c is the speed of light (3.0 × 10⁸ m/s), e is the elementary charge (1.6 × 10⁻¹⁹ C), and V is the accelerating potential (24.7 kV = 24.7 × 10^3 V).

Plugging in the values, we have:

λ = (6.626 × 10⁻³⁴ J·s × 3.0 × 10⁸ m/s) / (1.6 ×  10⁻¹⁹ C × 24.7 × 10³ V)

Simplifying the expression, we get:

λ = (1.988 × 10⁻²⁵) J·m) / (39.52 × 10⁻¹⁹ C·V)

Calculating further, we have:

λ = 5.03 × 10⁻⁷ m

To learn more about electron  beam -

brainly.com/question/32727468

#SPJ11

The current through the resistor is, if its value is 4.5 Ω: Give your answer to one decimal place. -- Ω 9 VΞ + 6V V

Answers

The current flowing through the resistor, with a value of 4.5 Ω, is approximately 3.33 A, rounded to one decimal place.

According to Ohm's law, the current (I) through a resistor is given by the equation

I = V / R, where

V is the voltage across the resistor and

R is the resistance.

In this case, we are given two voltage values:

V1 = 9 V

V2 = 6 V

To find the current through the resistor, we need to determine the total voltage across the resistor. Since the two voltage values are in series, we can add them to find the total voltage:

V_total = V1 + V2

Substituting the given values:

V_total = 9 V + 6 V

V_total = 15 V

Now, we can calculate the current using Ohm's law:

I = V_total / R

I = 15 V / 4.5 Ω

Calculating the current:

I ≈ 3.33 A

Therefore, the current flowing through the resistor, with a value of 4.5 Ω, is approximately 3.33 A, rounded to one decimal place.

To know more about Ohm's law, click here-

brainly.com/question/1247379

#SPJ11

You may want to review (Page). Figure 3 V www R < 1 of 1 6 V Part A What is the magnitude of the current in the 39 resistor in (Figure 1)? Express your answer with the appropriate units. HA ? I = Value Units Submit Request Answer Part B What is the direction of the current in the 39 2 resistor in (Figure 1)? O from left to right through the resistor O from right to left through the resistor

Answers

The magnitude of the current in the 39 Ω resistor in Figure 1 is 0.51 A (from left to right or from right to left).

To determine the magnitude of the current in the 39 Ω resistor in Figure 1, we can apply Ohm's law, which states that the current (I) flowing through a resistor is equal to the voltage (V) across the resistor divided by its resistance (R). Given that the voltage across the 39 Ω resistor is not explicitly provided in the question, we need to gather additional information from Figure 1 or the context. Unfortunately, the given information seems incomplete, as references to page numbers, figures, and resistors are not clear. To solve the problem accurately, it is important to provide the necessary context or clarify the figure and resistor mentioned in the question. This will allow for a precise calculation of the current magnitude in the 39 Ω resistor. Regarding the direction of the current in the 39 Ω resistor, without the complete information or a clear reference to the figure, it is not possible to determine the direction of the current (from left to right or from right to left). Further details or clarification are needed to provide an accurate answer.

To learn more about current , click here : https://brainly.com/question/23323183

#SPJ11

3. (8pts) Two charged particles are arranged as shown. a. (5pts) Find the electric potential at P1 and P2. Use q=3nC and a=1 m

Answers

The electric potential at point P1 is 54 Nm/C, and the electric potential at point P2 is 27 Nm/C.

To find the electric potential at points P1 and P2, we need to calculate the contributions from each charged particle using the formula for electric potential.

Let's start with point P1. The electric potential at P1 is the sum of the contributions from both charged particles. The formula for electric potential due to a point charge is V = k * (q / r), where V is the electric potential, k is Coulomb's constant (k = 9 x 10^9 Nm^2/C^2), q is the charge of the particle, and r is the distance between the particle and the point where we want to find the electric potential.

For the first particle, with charge q = 3nC, the distance from P1 is a = 1m. Plugging these values into the formula, we have:

V1 = k * (q / r) = (9 x 10^9 Nm^2/C^2) * (3 x 10^-9 C / 1m) = 27 Nm/C

Now, for the second particle, also with charge q = 3nC, the distance from P1 is also a = 1m. Therefore, the electric potential due to the second particle is also V2 = 27 Nm/C.

To find the total electric potential at P1, we need to sum up the contributions from both particles:

V_total_P1 = V1 + V2 = 27 Nm/C + 27 Nm/C = 54 Nm/C

Moving on to point P2, the procedure is similar. The electric potential at P2 is the sum of the contributions from both charged particles.

For the first particle, the distance from P2 is 2m (since P2 is twice as far from the particle compared to P1). Plugging in the values into the formula, we have:

V1 = (9 x 10^9 Nm^2/C^2) * (3 x 10^-9 C / 2m) = 13.5 Nm/C

For the second particle, the distance from P2 is also 2m. Hence, the electric potential due to the second particle is also V2 = 13.5 Nm/C.

To find the total electric potential at P2, we add up the contributions from both particles:

V_total_P2 = V1 + V2 = 13.5 Nm/C + 13.5 Nm/C = 27 Nm/C

To learn more about charge -

brainly.com/question/14946388

#SPJ11

Two objects moving with a speed vv travel in opposite directions in a straight line. The objects stick together when they collide, and move with a speed of v/6v/6 after the collision.
1) What is the ratio of the final kinetic energy of the system to the initial kinetic energy? 2)What is the ratio of the mass of the more massive object to the mass of the less massive object?

Answers

Let m1 and m2 be the masses of the two objects moving with speed v in opposite directions in a straight line. The total initial kinetic energy of the system is given byKinitial = 1/2 m1v² + 1/2 m2v²Kfinal = 1/2(m1 + m2)(v/6)²Kfinal = 1/2(m1 + m2)(v²/36)

The ratio of the final kinetic energy to the initial kinetic energy is:Kfinal/Kinitial = 1/2(m1 + m2)(v²/36) / 1/2 m1v² + 1/2 m2v²We can simplify by dividing the top and bottom of the fraction by 1/2 v²Kfinal/Kinitial = (1/2)(m1 + m2)/m1 + m2/1 × (1/6)²Kfinal/Kinitial = (1/2)(1/36)Kfinal/Kinitial = 1/72The ratio of the final kinetic energy of the system to the initial kinetic energy is 1/72.The momentum before the collision is given by: momentum = m1v - m2vAfter the collision, the velocity of the objects is v/6, so the momentum is:(m1 + m2)(v/6)Since momentum is conserved,

we have:m1v - m2v = (m1 + m2)(v/6)m1 - m2 = m1 + m2/6m1 - m1/6 = m2/6m1 = 6m2The ratio of the mass of the more massive object to the mass of the less massive object is 6:1.

To know more about speed visit:

https://brainly.com/question/17661499

#SPJ11

Other Questions
A rabbit is moving in the positive x-direction at 2.70 m/s when it spots a predator and accelerates to a velocity of 13.3 m/s along the positive y-axis, all in 1.60 s. Determine the x-component and the y-component of the rabbit's acceleration. (Enter your answers in m/s2. Indicate the direction with the signs of your answers.) For a joint contracture, what would be more useful brief intense stretching or low-load prolong stretching? Explain your choice of answer. Good afternoon, can you help me with a VISION of an onlinecompany that distributes streaming accounts (Netflix, disney, hbomax, etc) that is a minimum of 80 words. the resident believes he is being harassed andmistreated daily. This belief is called Has anyone ever made an incorrect assumption about who you are based on yourcharacteristics? Have you ever made an incorrect assumption about someone elsescharacteristics? Discuss how person perception and stereotypes impact this process. I walk into a waiting room where you are sitting, and go over to a coffee machine you had not noticed and get a cup of coffee. You then go and get a cup of coffee also. This is an example of:A. stimulus controlB. contagious behaviorC. a fixed action patternD. stimulus enhancement A solid wooden sphere rotates in place about its central axis. The radius of the sphere is 0.65 m and its mass is 3300 kg.A. What is the rotational inertia I of this sphere?B. If the sphere has 13,000 J of rotational kinetic energy, what is the angular velocity of the sphere? An object is standing in front of a convex mirror. The image is reflected 12 feet behind the mirror which has a focal length of 1 feet. The image is 4 ft tall. How tall is the object? Express your answer with at least two decimal places Note: When entering your final answer in the input box, include the sign if the answer involves a negative sign e.g.-14.22. If positive, there's no need to include the sign. What is the nursing home's responsibility when a special dietregimen has been ordered by a physician but the patient refuses tofollow it? A ball is rolled twice across the same level laboratory table and allowed to roll offthe table and strike the floor. In each trial, the time it takes the ball to travel from theedge of the table to the floor is accurately measured. [Neglect friction.]a) In trial A, the ball is traveling at 2.50 meters per second when it reachesthe edge of the table. The ball strikes the floor 0.391 second after rollingoff the edge of the table. Calculate the height of the table. (Organize yourgiven variables. Do not mix x-variables with the y-variables) A nurse is caring for a client who is receiving haloperidol. the nurse should identify? A 112 kg astronaut is tethered to the International Space Station (ISS) and is 26 m from the center of massof the ISS. The gravitational force between the astronaut and the ISS is 4.64 10^-6 N.Calculate the mass of the ISS.Write your answer using two significant figures. Present one case sample (actual or hypothetical) under each ethical standard,1. Ethical Standard 1 (Resolving Ethical Issues)2. Ethical Standard 2 (Competence)3. Ethical Standard 3 (Research and Publication) After 12 years in business, Syed Aiman has determined that it is time for company expansion. As the founder and president of Medical Equipment Suppliers Sdn Bhd, Syed Aiman believes that the expansion is in line with the market growth for medical equipment.Medical Equipment Suppliers Sdn Bhd is the distributor of medical equipment and devices in Malaysia. The customers include hospitals, clinics, and medical laboratories in Malaysia. Currently the company has four competitors in the country. Meanwhile two companies have started to provide maintenance services of the medical equipment supplied to hospitals.While the company has a strong hold on the market, he believes that the company should also provide services of maintaining and servicing the medical equipment, as the hospitals and clinics only wishes to focus on providing health services to their patients. Hence, they need companies to help them maintain and calibrate their medical equipment. for optimal performance.The companys business is supported by service advisors. Their job is to process orders on equipment and communicate work progress with customers. Leads on potential new customers for the company have come primarily from referrals from current customers. Syed Aiman would personally call on the leads to secure sales. Once a target is established as a customer, he hands over the customer account. to a service advisor. In line with business expansion Syed Aiman wants the service advisor to actively looks for customer and generate new sales from current customers by suggesting new model for medical equipment and suggests add-on services of maintaining the medical equipment.Syed Aimans expansion plan includes planning to hire five biomedical engineers and three new sales advisors. Sarah, the Human Resource Manager is not worried about finding candidates for sales advisor but hiring a biomedical engineer would post a challenge as the labor market is scarce with such talent.Explain TWO (2) roles of compensation system for Medical Equipment Suppliers Sdn Bhd. Analyzing Wages-Plus-Commission PayMaybelle works in the shoe department for a high-endstore. She earns $15 per hour for at least 40 hours perweek. On top of that, she earns 10% commission for eachpair of shoes she sells. She is expected to sell $2,500worth of shoes every week.What will Maybelle earn in wages in a typical week?How much commission will Maybelle earn if she sells$3,000 of shoes in one week?vThe next week, customers return $1,000 worth ofshoes. How much money will be deducted fromMaybelle's paycheck?With an economic downturn, sales slump. As a result,Maybelle will likely 1. ABC Corp and MMM Corp are identical in every way except their capital structures. ABC Corp., an all-equity firm, has 20,000 shares of stock outstanding, and it's cost of capital is 6.45%. MMM Corp. uses leverage in its capital structure. The market value of MMM's debt is $85,000, and it's cost of debt is 9%. Each firm is expected to have earnings before interest (EBIT) of $93,000 in perpetuity. Assume that the marginal tax rate for each firm is 22%. How much will it cost to purchase 20% of MMM's equity?a. $175,432.31b. $237,652.81c. $198,478.26d. $228,670.23e. None of the above now imagine that the zebrafish had a null deletion in slit instead. in terms of what you know about slit, explain what you think the mauthner cell axons would look like. Each student has to submit the solution how to find the ROR in the note using the method you taught about the interation and linear interpolation.the cash flow:FC= -200,000A=-20,000S= 600,000n=12 A 70 kg crate is dragged across a floor by pulling on a rope attached to the crate and inclined 16 above the horizontal. (a) If the coefficient of static friction is 0.44, what minimum force magnitude is required from the rope to start the crate moving? N (b) If = 0.29, what is the magnitude of the initial acceleration of the crate? Make a 5 step plan to find a mentor or preceptor. This planshould describe what you will do next.