Answer:
B
Step-by-step explanation:
B is a point, the other choices have two points.
Find f(1), (2), (3) and f(4) if f(n) is defined recursively by f(0) = 2 and for n = 0,1,2,... by: (a) f(n+1)=3f(n) (b) f(n+1)=3f(n)+7 (c) f(n+1) = f(n)²-2f(n)-4
(a) For the recursive definition f(n+1) = -3f(n), f(1) = -9, f(2) = 27, f(3) = -81, f(4) = 243.(b) For the recursive definition f(n+1) = 3f(n) + 4, f(1) = 13, f(2) = 43, f(3) = 133, f(4) = 403.(c) For the recursive definition f(n+1) = f(n)^2 - 3f(n) - 4, f(1) = -2, f(2) = 8, f(3) = 40, f(4) = 1556.
What are the main factors that contribute to climate change?(a) For f(n+1) = 3f(n):
f(0) = 2
f(1) = 3f(0) = 3 * 2 = 6
f(2) = 3f(1) = 3 * 6 = 18
f(3) = 3f(2) = 3 * 18 = 54
f(4) = 3f(3) = 3 * 54 = 162
(b) For f(n+1) = 3f(n) + 7:
f(0) = 2
f(1) = 3f(0) + 7 = 3 * 2 + 7 = 13
f(2) = 3f(1) + 7 = 3 * 13 + 7 = 46
f(3) = 3f(2) + 7 = 3 * 46 + 7 = 145
f(4) = 3f(3) + 7 = 3 * 145 + 7 = 442
(c) For f(n+1) = f(n)² - 2f(n) - 4:
f(0) = 2
f(1) = f(0)² - 2f(0) - 4 = 2² - 2 * 2 - 4 = 0
f(2) = f(1)² - 2f(1) - 4 = 0² - 2 * 0 - 4 = -4
f(3) = f(2)² - 2f(2) - 4 = (-4)² - 2 * (-4) - 4 = 12
f(4) = f(3)² - 2f(3) - 4 = 12² - 2 * 12 - 4 = 116
Therefore, for each function:
(a) f(1) = 6, f(2) = 18, f(3) = 54, f(4) = 162
(b) f(1) = 13, f(2) = 46, f(3) = 145, f(4) = 442
(c) f(1) = 0, f(2) = -4, f(3) = 12, f(4) = 116
Learn more about recursive definition
brainly.com/question/28105916
#SPJ11
Monia wants to cover her patio with 1 foot brick tiles. The perimeter of the patio is 34 feet with a length of 8 feet. What is the width of her patio? How many bricks will Monia need to cover the patio? (ill give thanks and brainliest to best answer)
The width of Monia's patio is 9 feet, and she will need 72 bricks to cover it.
To find the width of Monia's patio, we can use the formula for the perimeter of a rectangle:
Perimeter = 2 * (Length + Width)
Given that the perimeter of the patio is 34 feet and the length is 8 feet, we can substitute these values into the equation and solve for the width:
34 = 2 * (8 + Width)
Dividing both sides of the equation by 2 gives us:
17 = 8 + Width
Subtracting 8 from both sides, we find:
Width = 17 - 8 = 9 feet
Therefore, the width of Monia's patio is 9 feet.
To calculate the number of bricks Monia will need to cover the patio, we need to find the area of the patio. The area of a rectangle is given by the formula:
Area = Length * Width
In this case, the length is 8 feet and the width is 9 feet. Substituting these values into the formula, we have:
Area = 8 * 9 = 72 square feet
Since Monia wants to cover the patio with 1-foot brick tiles, each tile will cover an area of 1 square foot. Therefore, the number of bricks she will need is equal to the area of the patio:
Number of bricks = Area = 72
Monia will need 72 bricks to cover her patio.
For more such questions on width visit:
https://brainly.com/question/25292087
#SPJ8
Select the block function that can be used to get the result of simulation work. * (2 Points) (a) Scope To (b) Workspace (c) Display (d) Mux
The block function that can be used to get the result of simulation work is Workspace. The correct answer is (b)
In MATLAB/Simulink, the Workspace block is a block function that is used to store and access the results of simulation work. It provides a way to save the simulation output to the MATLAB workspace, allowing you to access and manipulate the data for further analysis or visualization.
When you add a Workspace block to your Simulink model, it provides an interface between the simulation and the MATLAB workspace. The block can be connected to any signal in your model, and it will save the values of that signal to the workspace during the simulation.
The Workspace block is particularly useful when you want to examine the simulation results or perform additional calculations using MATLAB functions or scripts. By saving the simulation data to the workspace, you can easily access the variables and arrays containing the simulation results and use them in subsequent MATLAB code.
You can customize the settings of the Workspace block to specify the name of the variable in the workspace, the format of the data, and other properties. This allows you to control how the simulation output is stored and organized in the workspace.
Overall, the Workspace block is a valuable tool in MATLAB/Simulink for capturing and utilizing the results of simulation work, enabling further analysis, plotting, or post-processing of the simulation data.
Learn more about Learn more about Simulink
brainly.com/question/32198727
#SPJ11
What is the sum of the solutions of |5 x-4|=x-8 ?
The sum of the solutions of the equation |5x - 4| = x - 8 is 1.
To find the sum of the solutions of the equation |5x - 4| = x - 8, we need to solve the equation and then sum the solutions.
Let's consider the two cases when the expression inside the absolute value is positive and negative.
Case 1: (5x - 4) is positive
In this case, the equation simplifies to:
5x - 4 = x - 8
Solving for x:
5x - x = -8 + 4
4x = -4
x = -4/4
x = -1
Case 2: (5x - 4) is negative
In this case, we change the sign of the expression inside the absolute value, and the equation becomes:
-(5x - 4) = x - 8
Simplifying and solving for x:
-5x + 4 = x - 8
-5x - x = -8 - 4
-6x = -12
x = -12 / -6
x = 2
So the two solutions are x = -1 and x = 2.
To find the sum of the solutions:
Sum = (-1) + 2
Sum = 1
Therefore, the sum of the solutions of the equation |5x - 4| = x - 8 is 1.
Learn more about linear equations from the given link!
https://brainly.com/question/28307569
#SPJ11
Are the vectors
[2] [5] [23]
[-2] [-5] [-23]
[1] [1] [1]
linearly independent?
If they are linearly dependent, find scalars that are not all zero such that the equation below is true. If they are linearly independent, find the only scalars that will make the equation below true.
[2] [5] [23] [0]
[-2] [-5] [-23] = [0]
[1] [1] [1] [0]
The non-zero scalars that satisfy the equation are:
c1 = 1/2
c2 = 1
c3 = 0
To determine if the vectors [2, 5, 23], [-2, -5, -23], and [1, 1, 1] are linearly independent, we can set up the following equation:
c1 * [2] + c2 * [5] + c3 * [23] = [0]
[-2] [-5] [-23]
[1] [1] [1]
Where c1, c2, and c3 are scalar coefficients.
Expanding the equation, we get the following system of equations:
2c1 - 2c2 + c3 = 0
5c1 - 5c2 + c3 = 0
23c1 - 23c2 + c3 = 0
To determine if these vectors are linearly independent, we need to solve this system of equations. We can express it in matrix form as:
| 2 -2 1 | | c1 | | 0 |
| 5 -5 1 | | c2 | = | 0 |
| 23 -23 1 | | c3 | | 0 |
To find the solution, we can row-reduce the augmented matrix:
| 2 -2 1 0 |
| 5 -5 1 0 |
| 23 -23 1 0 |
After row-reduction, the matrix becomes:
| 1 -1/2 0 0 |
| 0 0 1 0 |
| 0 0 0 0 |
From this row-reduced form, we can see that there are infinitely many solutions. The parameterization of the solution is:
c1 = 1/2t
c2 = t
c3 = 0
Where t is a free parameter.
Since there are infinitely many solutions, the vectors [2, 5, 23], [-2, -5, -23], and [1, 1, 1] are linearly dependent.
To find non-zero scalars that satisfy the equation, we can choose any non-zero value for t and substitute it into the parameterized solution. For example, let's choose t = 1:
c1 = 1/2(1) = 1/2
c2 = (1) = 1
c3 = 0
Therefore, the non-zero scalars that satisfy the equation are:
c1 = 1/2
c2 = 1
c3 = 0
Learn more about linearly independent here
https://brainly.com/question/14351372
#SPJ11
Listen Maybelline recently introduced a high-end lip balm called Baby Lips. The national target market is female, age 24 - 34, income $45,000 and higher. The current price is $4.90. Fixed costs are estimated at $8,775,000. Variable costs are currently $2.35. Maybelline believes that it can reduce cost of goods sold, due to favorable contract negotiations with ingredient suppliers for shea butter, centella and anti-oxidants. As a result, variable costs are predicted to decline by $0.50. Maybelline is debating whether to pass the cost savings on to the consumer or to maintain the current price. What would be the change in Maybelline's breakeven volume (in tubes, +/-) if the company maintains the current price? Round your answer to the nearest whole number. Your Answer: Answer Question 6 Listen ► Maybelline is contemplating the introduction of a high-end lip balm, tentatively called Baby Lips. The national target market would be female, age 24 - 34, income $45,000 and higher. The anticipated price would be $4.85. Fixed costs are estimated at $7,250,000. Variable costs will be $2.05. The market for this product category is estimated to be 22,500,000 tubes. What market share would Maybelline need to capture in order for Baby Lips to breakeven? Report your answer as a percent, rounded to one decimal place.
If Maybelline maintains the current price for the high-end lip balm Baby Lips, there would be no change in the breakeven volume.
Breakeven volume refers to the number of units a company needs to sell in order to cover all of its costs and reach a point where there is no profit or loss. In this case, Maybelline is considering whether to pass the cost savings on to the consumer or maintain the current price of $4.90 for the lip balm.
If Maybelline decides to maintain the current price, the variable cost per unit will decrease by $0.50 due to the favorable contract negotiations with ingredient suppliers. However, since the price remains unchanged, the contribution margin per unit (price minus variable cost) will also remain the same.
The breakeven volume is calculated by dividing the fixed costs by the contribution margin per unit. Since the contribution margin per unit does not change when the price is maintained, the breakeven volume will also remain the same.
Therefore, if Maybelline decides to keep the price of Baby Lips at $4.90, there will be no change in the breakeven volume, and the company would still need to sell the same number of tubes to cover its costs.
Learn more about Breakeven volume.
brainly.com/question/13149227
#SPJ11
The two countries US and Fiji produce two goods bananas (Y) and machines (X). Suppose the unit labor requirements are 4 units to produce bananas in the US and 2 units to produce them in Fiji, and 2 units to produce machines in the US and 4 units to produce it in Fiji, given the US has 3200 workers and Fiji has 4000 workers. 400 Based on your understanding of the Ricardo model of trade, illustrate using trade diagrams to show pattern of trade, (ii) gains from trade, and (iii) total world production of both goods before and after trade, (iv) autarky and international price ratios and finally the (v) trade triangles! How do you show the gains from free trade?
Ricardo's model of trade is an economic theory of comparative advantage that explains how trade can benefit all parties involved, even when one party has an absolute advantage in the production of all goods.
The model focuses on two countries: the US and Fiji, producing two goods - bananas (Y) and machines (X).
The labor unit requirements are as follows:
The US requires four units to produce bananas and two units to produce machines.Fiji requires two units to produce bananas and four units to produce machines.(i) Pattern of trade:
In this case, the US has a comparative advantage in machines, while Fiji has a comparative advantage in bananas. Therefore, the pattern of trade will be that the US will produce machines and trade them with Fiji, while Fiji will produce bananas and trade them with the US. The US will import bananas from Fiji and export machines to Fiji, while Fiji will import machines from the US and export bananas to the US.
(ii) Gains from trade:
The gains from trade are the benefits that both countries enjoy as a result of engaging in free trade. These gains can be illustrated using production possibility frontier (PPF) diagrams, which show the maximum combinations of two goods that a country can produce with its available resources.
Before trade, the PPF for the US shows that it can produce 800 machines or 400 bananas. The PPF for Fiji shows that it can produce 1000 machines or 250 bananas. Thus, the total world production before trade is 1800 machines and 650 bananas.
The autarky prices of machines and bananas in the US are 2 and 0.5, respectively, while in Fiji they are 4 and 1, respectively. The international price ratio of machines and bananas is 1:1.
(iii) Total world production of both goods before and after trade:
Before trade, the total world production of machines and bananas was 1800 machines and 650 bananas. After trade, the total world production of machines and bananas is 1000 machines and 750 bananas for the US, and 800 machines and 500 bananas for Fiji. Therefore, the total world production of machines and bananas has increased after trade.
(iv) Autarky and international price ratios:
Autarky prices refer to the prices of goods in a country that is not engaging in trade. In this case, the autarky prices of machines and bananas in the US are 2 and 0.5, respectively, while in Fiji they are 4 and 1, respectively. The international price ratio of machines and bananas is 1:1.
(v) Trade triangles:
Trade triangles demonstrate the gains from trade by comparing the pre-trade production and consumption of a good to the post-trade production and consumption. In this case, the trade triangle for the US shows that it exports 200 machines and imports 400 bananas. The trade triangle for Fiji shows that it exports 150 bananas and imports 300 machines. These trade triangles further illustrate the gains achieved through trade.
Learn more about price ratios
https://brainly.com/question/32093357
#SPJ11
4. Find the value of x for which ABCD must be a parallelogram.
Here is your answer!!
Properties of Parallelogram :
Opposite sides are equal.Opposite sides are parallelAdjacent angles add upto 180°.Opposite angles are equal.Here in the question we are provided with opposite sides 3x- 5 and 2x + 3 .
Therefore, First property of Parallelogram will be used here and both the opposite sides must be equal.
[tex] \sf 3x- 5 = 2x + 3 [/tex]
Further solving for value of x
Move all terms containing x to the left, all other terms to the right.
[tex] \sf 3x - 2x = 3 + 5[/tex]
[tex] \sf 1x = 8 [/tex]
[tex] \sf x = 8 [/tex]
Let's verify our answer!!
Since, 3x- 5 = 2x + 3
We are simply verify our answer by substituting the value of x here.
[tex] \sf 3x- 5 = 2x + 3 [/tex]
[tex] \sf 3(8) - 5 = 2(8) + 3 [/tex]
[tex] \sf 24 - 5 = 16 + 3 [/tex]
[tex] \sf 19 = 19 [/tex]
Hence our answer is verified and value of x is 8
Answer - Option 1
Determine if vector v=(1;2;-3;-6) can be expressed as a linear combination of vectors u1=(2;2;3;2), u2=(-1;-1;0;2), u3=(1;0;-1;-2), u4=(-1;-3;1;5). If so, find at least one way of doing it.
One way to express v as a linear combination of u1, u2, u3, and u4 is: v = u1 + 4u3 + 3u4
To determine if vector v can be expressed as a linear combination of u1, u2, u3, and u4, we need to solve the system of equations:
a1u1 + a2u2 + a3u3 + a4u4 = v
where a1, a2, a3, and a4 are constants.
Writing out this system of equations explicitly, we have:
2a1 - a2 + a3 - a4 = 1
2a1 - a2 = 2
3a1 - a3 = -3
2a1 + 2a2 - a3 + 5a4 = -6
We can write this system in matrix form as Ax=b, where:
A = [2 -1 1 -1; 2 -1 0 3; 3 0 -1 0; 2 2 -1 5]
x = [a1; a2; a3; a4]
b = [1; 2; -3; -6]
To solve for x, we can use Gaussian elimination or other matrix methods. However, it turns out that the determinant of A is zero (you can compute this using any method you prefer), which means that the system either has no solutions or infinitely many solutions.
To determine which case applies, we can row reduce the augmented matrix [A|b] and look at the resulting echelon form:
[2 -1 1 -1 | 1 ]
[0 0 1 -1 | 1 ]
[0 0 0 0 | 0 ]
[0 0 0 0 | 0 ]
The last two rows of the echelon form correspond to the equation 0=0, which is automatically satisfied, so we only need to consider the first two rows. In particular, the second row gives us:
1a3 - 1a4 = 1
which means that a3 = a4 + 1. Plugging this into the first row, we get:
2a1 - a2 + (a4+1) - a4 = 1
which simplifies to:
2a1 - a2 = 2
This is the same as the second equation in our original system of equations. Therefore, we can take a1=1 and a2=0, which gives us:
u1 + a3u3 + a4u4 = (2,2,3,2) + (1,0,-1,-2)a4
Therefore, one way to express v as a linear combination of u1, u2, u3, and u4 is: v = u1 + 4u3 + 3u4
Learn more about linear from
https://brainly.com/question/24318076
#SPJ11
complete the similarity statement for two triangles shown ABC? 30 cm 33cm 36cm 11cm 12cm 10cm
the similarity statement for the given triangles ABC and PQR can be stated as "Not Similar". Hence, the correct option is (D).
the sides of two triangles ABC and PQR such that ABC:
30 cm 33cm 36cmPQR: 11cm 12cm 10cm
Now we are to find the similarity statement for the two triangles. We know that two triangles are said to be similar if: Their corresponding angles are congruent. The corresponding sides of the triangles are proportional. So, in order to find the similarity statement, we need to check for the congruence of angles and proportionality of corresponding sides. From the given sides, we can see that the corresponding sides of the triangles are not proportional, since they don't have the same ratio.
So, we can only say that the two triangles ABC and PQR are not similar.
Option D is correct answer.
For more question triangles
https://brainly.com/question/1058720
#SPJ8
Find the values of the six trigonometric functions for the angle in standard position determined by each point. (1,-5)
The six trigonometric functions for the angle in standard position determined by the point (1, -5) are
sinθ = o/h = 5/√26
cosθ = a/h = 1/√26
tanθ = o/a = 5/1 = 5
cscθ = h/o = √26/5
secθ = h/a = √26/1 = √26
cotθ = a/o = 1/5
The given point (1, -5) is located in the third quadrant of the Cartesian plane, where x-coordinates are positive and y-coordinates are negative. To determine the values of the six trigonometric functions for the angle formed by this point in standard position, we need to first calculate the hypotenuse, adjacent, and opposite sides of the right triangle that is formed by the given point and the origin (0, 0).
The hypotenuse is the distance between the point (1, -5) and the origin (0, 0), which is given by the Pythagorean theorem as follows:
h = √((1 - 0)² + (-5 - 0)²)
h = √(1 + 25)
h = √26
The adjacent side is the distance between the point (1, -5) and the y-axis, which is equal to the absolute value of the x-coordinate:
a = |1|
a = 1
The opposite side is the distance between the point (1, -5) and the x-axis, which is equal to the absolute value of the y-coordinate:
o = |-5|
o = 5
Now, we can use these values to calculate the six trigonometric functions as follows:
sinθ = o/h = 5/√26
cosθ = a/h = 1/√26
tanθ = o/a = 5/1 = 5
cscθ = h/o = √26/5
secθ = h/a = √26/1 = √26
cotθ = a/o = 1/5
To know more about trigonometric refer here:
https://brainly.com/question/25618616
#SPJ11
Find the x-values of all points where the function has any relative extrema. Find the value(s) of any relative extrema.
f(x) = x^2-6x+9/x-10
Select the correct choice below, and, if necessary, fill in any answer boxes within your choice.
A. The function has a relative maximum of ____ at x=____ and a relative minimum of ___ at x=____.
(Use a comma to separate answers as needed.)
B. There are no relative minima. The function has a relative maximum of ___ at x=____.
(Use a comma to separate answers as needed.)
C. There are no relative maxima. The function has a relative minimum of ___ at x=____.
(Use a comma to separate answers as needed.)
D. There are no relative extrema.
Both second derivatives are zero, we can conclude that there are no relative extrema for the function f(x) = (x^2 - 6x + 9) / (x - 10). The correct choice is D. There are no relative extrema.
To find the relative extrema of the function f(x) = (x^2 - 6x + 9) / (x - 10), we need to determine where the derivative of the function is equal to zero.
First, let's find the derivative of f(x) using the quotient rule:
f'(x) = [ (x - 10)(2x - 6) - (x^2 - 6x + 9)(1) ] / (x - 10)^2
Simplifying the numerator:
f'(x) = (2x^2 - 20x - 6x + 60 - x^2 + 6x - 9) / (x - 10)^2
= (x^2 - 20x + 51) / (x - 10)^2
To find where the derivative is equal to zero, we set f'(x) = 0:
(x^2 - 20x + 51) / (x - 10)^2 = 0
Since a fraction is equal to zero when its numerator is equal to zero, we solve the equation:
x^2 - 20x + 51 = 0
Using the quadratic formula:
x = [-(-20) ± √((-20)^2 - 4(1)(51))] / (2(1))
x = [20 ± √(400 - 204)] / 2
x = [20 ± √196] / 2
x = [20 ± 14] / 2
We have two possible solutions:
x1 = (20 + 14) / 2 = 17
x2 = (20 - 14) / 2 = 3
Now, we need to determine whether these points are relative extrema or not. We can do this by examining the second derivative of f(x).
The second derivative of f(x) can be found by differentiating f'(x):
f''(x) = [ (2x^2 - 20x + 51)'(x - 10)^2 - (x^2 - 20x + 51)(x - 10)^2' ] / (x - 10)^4
Simplifying the numerator:
f''(x) = (4x(x - 10) - (2x^2 - 20x + 51)(2(x - 10))) / (x - 10)^4
= (4x^2 - 40x - 4x^2 + 40x - 102x + 1020) / (x - 10)^4
= (-102x + 1020) / (x - 10)^4
Now, we substitute the x-values we found earlier into the second derivative:
f''(17) = (-102(17) + 1020) / (17 - 10)^4 = 0 / 7^4 = 0
f''(3) = (-102(3) + 1020) / (3 - 10)^4 = 0 / (-7)^4 = 0
Since both second derivatives are zero, we can conclude that there are no relative extrema for the function f(x) = (x^2 - 6x + 9) / (x - 10).
Therefore, the correct choice is:
D. There are no relative extrema.
for such more question on derivatives
https://brainly.com/question/25324584
#SPJ8
3
NEED 100 PERCENT PERFECT ANSWER ASAP.
Please mention every part and give full step by step solution in a need hand writing.
I PROMISE I WILL RATE POSITIVE 3. A bicycle has wheels with a diameter of 42cm.
The bicycle is ridden in a straight line at a constant speed. The wheel makes 250 revolutions per minute.
What is the speed of the bicycle in kilometres per hour?
A bicycle has wheels with a diameter of 42cm.The bicycle is ridden in a straight line at a constant speed. The wheel makes 250 revolutions per minute. The speed of the bicycle would be 19.78 km/h.
Given that,
The diameter of the wheel = 42cm
The number of revolutions per minute = 250
To calculate:
The speed of the bicycle in kilometers per hour
Let's first find the circumference of the wheel. Circumference of the wheel is given by
πd = 3.14 × 42cm= 131.88cm
To convert this into meters, we divide by 100.131.88/100 = 1.3188 meters
The distance covered in one revolution of the wheel (i.e. circumference) = 1.3188m
We know that,
Speed = distance/time
Let's find the time taken for one revolution of the wheel
Time = 1/250 minutes
To convert this into hours, we divide by 60.1/250 ÷ 60 = 0.00006667 hours
Let's now substitute these values into the formula to get the speed of the bicycle.
Speed = 1.3188m/0.00006667 hours = 19,783.12 m/h
To convert this into kilometers per hour, we divide by 1000.19,783.12/1000 = 19.78 km/h
Therefore, the speed of the bicycle is 19.78 km/h.
Learn more about speed in kilometers per hour at https://brainly.com/question/30932687
#SPJ11
Find the measure of arc AC.
The measure of the arc AC which substends the angle ABC at the circumference of the circle is equal to 130°
What is angle subtended by an arc at the centerThe angle subtended by an arc of a circle at it's center is twice the angle it substends anywhere on the circle's circumference.
Given that the angle ABC = 65°
arc AC = 2(65)°
arc AC = 2 × 65°
arc AC = 130°
Therefore, the measure of the arc AC which substends the angle ABC at the circumference of the circle is equal to 130°°
Read more about angle here:https://brainly.com/question/24423151
#SPJ1
Suppose the position equation for a moving object is given by 8(t)=3t^(2) 2t 5 where s is measured in meters and t is measured in seconds. find the velocity of the object when t=2second
The velocity of the object when t = 2 seconds is 10 m/s.
The position equation for the moving object is given by s(t) = 3t^2 - 2t + 5, where s is measured in meters and t is measured in seconds. To find the velocity of the object when t = 2 seconds, we need to differentiate the position equation with respect to time (t) and then substitute t = 2 into the resulting expression.
Differentiating the position equation s(t) = 3t^2 - 2t + 5 with respect to time, we get:
v(t) = d/dt (3t^2 - 2t + 5)
To differentiate the equation, we apply the power rule and the constant rule of differentiation:
v(t) = 2 * 3t^(2-1) - 1 * 2t^(1-1) + 0
= 6t - 2
Substituting t = 2 into the velocity equation:
v(2) = 6(2) - 2
= 12 - 2
= 10
Therefore, the velocity of the object when t = 2 seconds is 10 m/s.
To know more about differentiation and the power rule, refer here:
https://brainly.com/question/24062595#
#SPJ11
Goup 2. Tell if true or false the following statement, justifying carefully your response trough a demonstration or a counter-example. If 0 is the only eigenvalue of A € M₁x3(C) then A=0.
The statement "If 0 is the only eigenvalue of A ∈ M₁x3(C), then A = 0" is false.
To demonstrate this, we can provide a counter-example. Consider the following matrix:
A = [0 0 0]
[0 0 0]
In this case, the only eigenvalue of A is 0. However, A is not equal to the zero matrix. Therefore, the statement is false.
The matrix A can have all zero entries, except for the possibility of having non-zero entries in the last row. In such cases, the matrix A will still have 0 as the only eigenvalue, but it won't be equal to the zero matrix. Hence, the statement is not true in general.
know more about eigenvaluehere:
https://brainly.com/question/31650198
#SPJ11
The figure shows two kayakers pulling a raft. One kayaker pulls with force vector F sub 1 equals open angled bracket 190 comma 160 close angled bracket comma and the other kayaker pulls with force vector F sub 2 equals open angled bracket 128 comma negative 121 close angled bracket period
two vectors F sub 1 and F sub 2 that share an initial point located on a raft, F sub 1 points right and up where its terminal point is at a kayak, F sub 2 points left and down where its terminal point is at another kayak
What is the angle between the kayakers? Round your answer to the nearest degree. (2 points)
78°
83°
86°
80°
Answer: Therefore, the angle between the kayakers is approximately 63 degrees. The closest answer choice is 78°.
Step-by-step explanation:
To find the angle between the kayakers, we can use the dot product formula:
F sub 1 · F sub 2 = ||F sub 1|| ||F sub 2|| cos θ
where · denotes the dot product, || || denotes the magnitude, and θ is the angle between the two vectors.
First, we need to find the magnitudes of F sub 1 and F sub 2:
||F sub 1|| = sqrt(190^2 + 160^2) = 247.79
||F sub 2|| = sqrt(128^2 + (-121)^2) = 170.10
Next, we need to find the dot product of F sub 1 and F sub 2:
F sub 1 · F sub 2 = (190)(128) + (160)(-121) = -12080
Substituting these values into the dot product formula, we get:
-12080 = (247.79)(170.10) cos θ
Solving for cos θ, we get:
cos θ = -0.424
Taking the inverse cosine of both sides, we get:
θ ≈ 116.8°
However, this is the angle between the two vectors in standard position (i.e., with initial points at the origin). To find the angle between the kayakers, we need to subtract this angle from 180°:
180° - θ ≈ 63.2°
Q11: Consider the following Data х Y 63 107 65 109 72 106 80 101 90 100 1. Calculate X. 2. Calculate Y. 3. Calculate E(X - DY-T). 4. Calculate (X-X). 5
the sum of (X - X)^2 is 498. Let's perform the calculations based on the given data: Calculation of X: X = (63 + 65 + 72 + 80 + 90) / 5 = 370 / 5 = 74
Calculation of Y: Y = (107 + 109 + 106 + 101 + 100) / 5 = 523 / 5 = 104.6
Calculation of E(X - DY-T): To calculate E(X - DY-T), we need to calculate the product of each pair of X and Y values, and then find their average:
(X - DY-T) = (63 - 74) + (65 - 74) + (72 - 74) + (80 - 74) + (90 - 74)
= -11 + -9 + -2 + 6 + 16
= 0
Since the sum of (X - DY-T) is zero, the average is also zero:
E(X - DY-T) = 0
Calculation of (X - X):
(X - X) = 63 - 74 + 65 - 74 + 72 - 74 + 80 - 74 + 90 - 74
= -11 + -9 + -2 + 6 + 16
= 0
Calculation of the sum of (X - X)^2:
(X - X)^2 = (-11)^2 + (-9)^2 + (-2)^2 + 6^2 + 16^2
= 121 + 81 + 4 + 36 + 256
= 498
Therefore, the sum of (X - X)^2 is 498.
Learn more about sum here
https://brainly.com/question/24205483
#SPJ11
Problem 30. Prove that
(x1+ · + xn)² ≤ n (x² + · + x2)
for all positive integers n and all real numbers £1,···, Xn.
[10 marks]
To prove the inequality (x1 + x2 + ... + xn)² ≤ n(x1² + x2² + ... + xn²), for all positive integers n and all real numbers x1, x2, ..., xn, we can use the Cauchy-Schwarz inequality. By applying the Cauchy-Schwarz inequality to the vectors (1, 1, ..., 1) and (x1, x2, ..., xn), we can show that their dot product, which is equal to (x1 + x2 + ... + xn)², is less than or equal to the product of their magnitudes, which is n(x1² + x2² + ... + xn²). Therefore, the inequality holds.
The Cauchy-Schwarz inequality states that for any vectors u = (u1, u2, ..., un) and v = (v1, v2, ..., vn), the dot product of u and v is less than or equal to the product of their magnitudes:
|u · v| ≤ ||u|| ||v||,
where ||u|| represents the magnitude (or length) of vector u.
In this case, we consider the vectors u = (1, 1, ..., 1) and v = (x1, x2, ..., xn). The dot product of these vectors is u · v = (1)(x1) + (1)(x2) + ... + (1)(xn) = x1 + x2 + ... + xn.
The magnitude of vector u is ||u|| = sqrt(1 + 1 + ... + 1) = sqrt(n), as there are n terms in vector u.
The magnitude of vector v is ||v|| = sqrt(x1² + x2² + ... + xn²).
By applying the Cauchy-Schwarz inequality, we have:
|x1 + x2 + ... + xn| ≤ sqrt(n) sqrt(x1² + x2² + ... + xn²),
which can be rewritten as:
(x1 + x2 + ... + xn)² ≤ n(x1² + x2² + ... + xn²).
Therefore, we have proven the inequality (x1 + x2 + ... + xn)² ≤ n(x1² + x2² + ... + xn²) for all positive integers n and all real numbers x1, x2, ..., xn.
Learn more about vector here:
brainly.com/question/24256726
#SPJ11
A triangular pyramid with a right triangle base with a leg 8 centimeters and hypotenuse 10 centimeters has a volume of 144 cubic centimeters. Find the height.
The height of the triangular pyramid is 9 centimeters.
To calculate the height of the triangular pyramid, we can use the formula for the volume of a pyramid: Volume = (1/3) * Base Area * Height. In this case, the base of the pyramid is a right triangle with a leg of 8 centimeters and a hypotenuse of 10 centimeters.
The formula for the area of a right triangle is: Base Area = (1/2) * Base * Height. Since we are given the length of one leg (8 centimeters), we can use the Pythagorean theorem to find the length of the other leg. The Pythagorean theorem states that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
Let's denote the height of the right triangle as 'h'. Using the Pythagorean theorem, we have: (8^2) + (h^2) = (10^2). Simplifying this equation, we get: 64 + h^2 = 100. Rearranging the equation, we have: h^2 = 100 - 64 = 36. Taking the square root of both sides, we find that the height of the right triangle is h = 6 centimeters.
Now that we have the base area and the height of the triangular pyramid, we can use the volume formula to find the height of the pyramid. The given volume is 144 cubic centimeters, so we have the equation: 144 = (1/3) * Base Area * Height. Plugging in the values, we get: 144 = (1/3) * (1/2) * 8 * 6 * Height. Simplifying this equation, we have: 144 = 4 * Height. Dividing both sides by 4, we find: Height = 36/4 = 9 centimeters.
Therefore, the height of the triangular pyramid is 9 centimeters.
To know more about the Pythagorean theorem, refer here:
https://brainly.com/question/14930619#
#SPJ11
Find the eight term in the expansion of (2x² – 1÷x²) ¹²
The eighth term in the expansion of (2x² - 1/x²)¹² is -25344x⁻⁴.
To find the eighth term in the expansion of (2x² - 1/x²)¹², we can use the binomial theorem. The binomial theorem states that the expansion of (a + b)ⁿ can be calculated using the formula:
[tex](a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^{n-1}* b^1 + C(n,2) * a^{n-2 }* b^2 + ... + C(n,k) * a^{n-k} * b^k+ ... + C(n,n) * a^0 * b^n,[/tex]
where C(n,k) represents the binomial coefficient, given by C(n,k) = n! / (k!(n-k)!), and k ranges from 0 to n.
In our case, we have (2x² - 1/x²)¹². Here, a = 2x² and b = -1/x².
We are looking for the eighth term, so k = 8-1 = 7 (since k starts from 0). Using the binomial theorem formula, we can calculate the eighth term as:
C(12,7) * (2x²)¹²⁻⁷ * (-1/x²)⁷.
[tex]C(12,7) =\frac{ 12! }{7!(12-7)!}= 792[/tex]
[tex](2x^2)^{12-7} = (2x^2)^2 = 32x^{10.[/tex]
-1/x²)⁷ = (-1)⁷ / (x²)⁷ = -1 / x¹⁴.
Putting it all together, the eighth term is:
792 * 32x¹⁰ * (-1 / x¹⁴) = -25344x⁻⁴.
For more such questions on expansion visit:
https://brainly.com/question/13602562
#SPJ8
Given: Circle P P with center at (-4,1) which equation could represent circle P
The possible equation of the circle P is (x + 4)² + (y - 1)² = 16
Determining the possible equation of the circle PFrom the question, we have the following parameters that can be used in our computation:
The circle
Where, we have
Center = (a, b) = (-4, 1)
The equation of the circle P can berepresented as
(x - a)² + (y - b)² = r²
So, we have
(x + 4)² + (y - 1)² = r²
Assume that
Radius, r = 4 units
So, we have
(x + 4)² + (y - 1)² = 4²
Evaluate
(x + 4)² + (y - 1)² = 16
Hence, the equation is (x + 4)² + (y - 1)² = 16
Read more about circles at
brainly.com/question/24810873
#SPJ1
all x,y. Prove that f is a constant function. (**) Using the Mean Value Theorem, prove that if 0
0, then (1+x)^p<1+px.
Suppose f is a function such that f(x) = f(y) for all x and y. Then f is a constant function.
To prove that function f is a constant function for all x and y, we will use the Mean Value Theorem.
Let's assume that f(x) = f(y) for all x and y. We want to show that f is constant, meaning that it has the same value for all inputs.
According to the Mean Value Theorem, if a function f is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists a point c in (a, b) such that f'(c) = (f(b) - f(a))/(b - a).
Let's consider two arbitrary points x and y. Since f(x) = f(y), we have f(x) - f(y) = 0. Applying the Mean Value Theorem, we have f'(c) = (f(x) - f(y))/(x - y) = 0/(x - y) = 0.
This implies that f'(c) = 0 for any c between x and y. Since f'(c) = 0 for any interval (a, b), we conclude that f'(x) = 0 for all x. This means that the derivative of f is always zero.
If the derivative of a function is zero everywhere, it means the function is constant. Therefore, we can conclude that f is a constant function.
To know more about the Mean Value Theorem, refer here:
https://brainly.com/question/30403137#
#SPJ11
Find the inverse function of f(x)= 1/x+6. F^−1(x)=
Given the function f(x)= 1/(x+6) We are to find the inverse function of the given function,
i.e., f^-1(x).To find the inverse of a function, we need to interchange the x and y and solve for y. So, we have:=> x = 1/(y+6) => y+6 = 1/x => y = 1/x - 6
Therefore, the inverse function of f(x) = 1/(x+6) is f^-1(x) = 1/x - 6.
Since the answer requires a 250-word count, we can explain the concept of inverse function.
What is the inverse function? A function which performs the opposite operation of another function is known as the inverse function.
The inverse function of a given function may be obtained by replacing x with y in the given function and solving for y. If the inverse function exists, the domain of the original function is equal to the range of the inverse function and the range of the original function is equal to the domain of the inverse function.
To know more about range Visit:
https://brainly.com/question/29204101
#SPJ11
Mónica fue al mercado y compró un racimo de uvas rojas que pesó 1/4 de kilogramo, otro de uvas sin semillas que pesó 1/2 y 3/4 de Kilogramo de ambas uvas sueltas. ¿Qué cantidad de uvas compró en total?
Monica went to the market and bought a bunch of red grapes that weighed 1/4 kilogram, another bunch of seedless grapes that weighed 1/2 kilogram, and 3/4 kilogram of loose grapes from both types. The total amount of grapes she bought is 1.5 kilograms.
Monica bought a total of grapes weighing 1/4 kilogram + 1/2 kilogram + 3/4 kilogram. To find the total amount of grapes, we need to add these fractions together.
First, we can convert the fractions to a common denominator. The common denominator for 4, 2, and 4 is 4. So we have:
1/4 kilogram + 2/4 kilogram + 3/4 kilogram
Now, we can add the fractions:
(1 + 2 + 3) / 4 kilogram
The numerator becomes 6, and the denominator remains 4:
6/4 kilogram
We can simplify this fraction by dividing both the numerator and denominator by their greatest common divisor, which is 2:
6/4 kilogram = (6 ÷ 2) / (4 ÷ 2) kilogram = 3/2 kilogram
Therefore, Monica bought a total of 3/2 kilogram of grapes.
In decimal form, 3/2 is equal to 1.5. So, Monica bought 1.5 kilograms of grapes in total.
For more such information on: total amount
https://brainly.com/question/29766078
#SPJ8
The question probable may be:
Monica went to the market and bought a bunch of red grapes that weighed 1/4 kilogram, another bunch of seedless grapes that weighed 1/2 kilogram, and 3/4 kilogram of loose grapes from both types. What is the total amount of grapes she bought?
Let x be a random variable that represents the percentage of successful free throws a professional basketball player makes in a season. Let y be a random variable that represents the percentage of successful field goals a professional basketball player makes in a season. A random sample of n = 6 professional basketball players gave the following information.
x 67 65 75 86 73 73
y 44 42 48 51 44 51
(a) Find ?x, ?y, ?x2, ?y2, ?xy, and r. (Round r to three decimal places. )
?x = ?y = ?x2 = ?y2 = ?xy = r = (b) Use a 5% level of significance to test the claim that ? > 0. (Round your answers to two decimal places. )
t = critical t = Conclusion
Reject the null hypothesis, there is sufficient evidence that ? > 0.
Reject the null hypothesis, there is insufficient evidence that ? > 0.
Fail to reject the null hypothesis, there is insufficient evidence that ? > 0.
Fail to reject the null hypothesis, there is sufficient evidence that ? > 0.
(c) Find Se, a, b, and x. (Round your answers to four decimal places. )
Se = a = b = x = (d) Find the predicted percentage ? of successful field goals for a player with x = 85% successful free throws. (Round your answer to two decimal places. )
%
(e) Find a 90% confidence interval for y when x = 85. (Round your answers to one decimal place. )
lower limit %
upper limit %
(f) Use a 5% level of significance to test the claim that ? > 0. (Round your answers to two decimal places. )
t = critical t = Conclusion
Reject the null hypothesis, there is sufficient evidence that ? > 0.
Reject the null hypothesis, there is insufficient evidence that ? > 0.
Fail to reject the null hypothesis, there is insufficient evidence that ? > 0.
Fail to reject the null hypothesis, there is sufficient evidence that ? > 0
The required values are:
(a) ?x = 72.8333, ?y = 46.6667, ?x2 = 265390, ?y2 = 16308, ?xy = 32163, r = 0.930.
(b) Fail to reject the null hypothesis, insufficient evidence that ? > 0.
(c) Se, a, b, and x need to be calculated.
(d) Predicted percentage of successful field goals for x = 85% needs to be calculated.
(e) 90% confidence interval for y when x = 85 needs to be determined.
(f) Fail to reject the null hypothesis, insufficient evidence that ? > 0 (repeated from part b).
(a) The required values are:
- Mean of x (?x) = 72.8333
- Mean of y (?y) = 46.6667
- Sum of squared x values (?x2) = 265390
- Sum of squared y values (?y2) = 16308
- Sum of x*y values (?xy) = 32163
- Pearson correlation coefficient (r) = 0.930 (rounded to three decimal places)
(b) Testing the claim that ? > 0:
- Null hypothesis: ? = 0
- Alternate hypothesis: ? > 0
- Degrees of freedom = 4
- Critical t-value = 2.132
- Decision: Fail to reject the null hypothesis, there is insufficient evidence that ? > 0.
(c) Other values:
- Standard error of the estimate (Se) = ...
- y-intercept of the regression line (a) = ...
- Slope of the regression line (b) = ...
- Value of x for which we want to predict y (x) = ...
(d) Predicted percentage of successful field goals for x = 85%: ...
(e) 90% confidence interval for y when x = 85: ...
- Lower limit: ...
- Upper limit: ...
(f) Testing the claim that ? > 0 (repeated from part b):
- Decision: Fail to reject the null hypothesis, there is insufficient evidence that ? > 0.
(a) To find the required values:
?x = Mean of x = (67 + 65 + 75 + 86 + 73 + 73) / 6 = 72.8333 (rounded to four decimal places)
?y = Mean of y = (44 + 42 + 48 + 51 + 44 + 51) / 6 = 46.6667 (rounded to four decimal places)
?x2 = Sum of squared x values = 67^2 + 65^2 + 75^2 + 86^2 + 73^2 + 73^2 = 265390
?y2 = Sum of squared y values = 44^2 + 42^2 + 48^2 + 51^2 + 44^2 + 51^2 = 16308
?xy = Sum of x*y values = 67*44 + 65*42 + 75*48 + 86*51 + 73*44 + 73*51 = 32163
r = Pearson correlation coefficient = (?nxy - ?x?y) / sqrt((?nx2 - (?x)^2)(?ny2 - (?y)^2))
Plugging in the values:
r = (6 * 32163 - 6 * 72.8333 * 46.6667) / sqrt((6 * 265390 - (6 * 72.8333)^2) * (6 * 16308 - (6 * 46.6667)^2))
(b) To test the claim that ? > 0:
Null hypothesis: ? = 0
Alternate hypothesis: ? > 0
Degrees of freedom = n - 2 = 6 - 2 = 4
Critical t-value for a one-tailed test at a 5% significance level with 4 degrees of freedom is approximately 2.132 (look up in t-distribution table)
If the calculated t-value is greater than the critical t-value, we reject the null hypothesis. Otherwise, we fail to reject the null hypothesis.
(c) To find Se, a, b, and x:
Se = Standard error of the estimate = sqrt((1 - r^2) * (?ny2 - (?y)^2) / (n - 2))
a = y-intercept of the regression line
b = slope of the regression line
x = value of x for which we want to predict y
(d) To find the predicted percentage of successful field goals for a player with x = 85% successful free throws:
Predicted y = a + bx
(e) To find a 90% confidence interval for y when x = 85:
Standard error of the estimate = Se
Margin of error = critical t-value * Se
Lower limit = Predicted y - Margin of error
Upper limit = Predicted y + Margin of error
(f) Same as part (b), testing the claim that ? > 0.
Learn more about Null hypothesis here:-
https://brainly.com/question/29387900
#SPJ11
. AD (~B DC) 2. ~B 3. 1. (~DVE) ~ (F&G) 2. (F&D) H 3. ~ (~FVH) 4. ~ (~F) & ~H 5. ~H 6. ~ (F&D) 7. ~F~D 8. ~ (~F) 10. ~DVE 11. ~ (F&G) 12. ~FV ~G 13. ~G 14. ~H&~G 15. ~ (HVG) De-Morgan's Law - 3 Simplification-4 Modus Tollen - 2,5 De-Morgan's Law-6 Simplification-4 Disjunctive Syllogism 7,8 Addition-9 Modus Ponen 1, 10 De- Morgan's Law-11 Disjunctive Syllogism - 8,12 Conjunction 5, 13 De-Morgan's Law-14
The given statement can be simplified using logical rules and operations to obtain a final conclusion.
In the given statement, a series of logical rules and operations are applied step by step to simplify the expression and derive a final conclusion. The specific rules used include De-Morgan's Law, Simplification, Modus Tollen, Disjunctive Syllogism, and Conjunction.
De-Morgan's Law allows us to negate the conjunction or disjunction of two propositions. Simplification involves reducing a compound statement to one of its simpler components. Modus Tollen is a valid inference rule that allows us to conclude the negation of the antecedent when the negation of the consequent is given. Disjunctive Syllogism allows us to infer a disjunctive proposition from the negation of the other disjunct. Conjunction combines two propositions into a compound statement.
By applying these rules and operations, we simplify the given statement step by step until we reach the final conclusion. Each step involves analyzing the structure of the statement and applying the appropriate rule or operation to simplify it further. This process allows us to clarify the relationships between different propositions and draw logical conclusions.
Learn more about De-Morgan's Law
brainly.com/question/29073742
#SPJ11
Help!!!!!!!!!!!!!!!!!!!!!!
The similar triangle of the triangle PQR are ΔRQS and ΔPRS.
How to find the side of similar triangle?Two triangles are said to be similar if their corresponding angles are congruent and the corresponding sides are in proportion.
In other words, Similar triangles are two or more triangles with the same shape, equal pair of corresponding angles, and the same ratio of the corresponding sides.
Therefore, the similar triangles of triangle PQR is as follows:
ΔRQS and ΔPRS are the only similar triangle to ΔPQR
learn more on right triangle here: https://brainly.com/question/29191745
#SPJ1
Given the following concerning an arithmetic series and a geometric series:
The second term of the arithmetic series is the same as the third term of the geometric series. Additionally, the fifth term of the geometric series is the
same as the fourteenth term of the arithmetic series.
The first term of the arithmetic series is equal to the second term of the geometric series and three times the first term of the said geometric series.
The sum of the first four terms of the arithmetic series, SAP-4 and the sum of
the first three terms of the geometric series, SGP-3 are related by the formula
SAP-4 – 4SGP-3 + 2 = 0.
What is the total of the sum of the first nine terms of the arithmetic series and the sum
of the first five terms of the geometric series?
The total of the sum of the first nine terms of the arithmetic series and the sum of the first five terms of the geometric series is 100.
Let the first term of the arithmetic series be a, the common difference be d, and the number of terms be n.
Let the first term of the geometric series be b, the common ratio be r, and the number of terms be m.
From the given information, we have the following equations:
a = b
a + d = 3b
a + 3d = b * r^4
SAP-4 - 4SGP-3 + 2 = 0
Solving the first two equations, we get a = b = 3.
Substituting a = 3 into the third equation, we get 3 + 3d = 3 * r^4.
Simplifying the right-hand side of the equation, we get 3 + 3d = 81r^4.
Rearranging the equation, we get 81r^4 - 3d = 3.
Since the geometric series is increasing, we know that r > 0.
Taking the fourth root of both sides of the equation, we get 3 * r = (3 + 3d)^(1/4).
Substituting this into the fourth equation, we get SAP-4 - 4 * 3 * (3 + 3d)^(1/4) + 2 = 0.
Expanding the right-hand side of the equation, we get SAP-4 - 12 * (3 + 3d)^(1/4) + 2 = 0.
This equation can be solved using the quadratic formula.
The solution is SAP-4 = 6 * (3 + 3d)^(1/4) - 2.
The sum of the first five terms of the geometric series is SGP-5
= b * r^4 = 81r^4.
The sum of the first nine terms of the arithmetic series is SAP-9
= a + (n - 1) * d = 3 + 8d.
The sum of the first nine terms of the geometric series is SGP-9
= b * (1 - r^4) / (1 - r).
The total of the sum of the first nine terms of the arithmetic series and the sum of the first five terms of the geometric series is SAP-9 + SGP-5
= 3 + 8d + 81r^4.
Substituting the values of a, d, r, and n into the equation, we get SAP-9 + SGP-5 .
= 3 + 8 * 3 + 81 * 1 = 100.
Therefore, the total of the sum of the first nine terms of the arithmetic series and the sum of the first five terms of the geometric series is 100.
Learn more about arithemetic with the given link,
https://brainly.com/question/6561461
#SPJ11
A coin is tossed 5 times. Find the probability that none are heads. The probability that none are heads is (Round to three decimal places as needed.)
The probability that none are heads is 1/32. Hence, the answer is answer 0.031.
Here is the solution to your question:
We need to find the probability that none are heads when a coin is tossed 5 times.P(H) = probability of getting a headP(T) = probability of getting a tail
According to the problem, probability of getting a head = probability of getting a tail = 1/2. This is because a coin has 2 sides; heads and tails.
Therefore, the probability of getting each is equal.
Thus:$$P(H) = P(T) = \frac{1}{2}$$We know that the formula for finding the probability of an event is:$$P(E) = \frac{\text{number of favorable outcomes}}{\text{total number of outcomes}}$$The number of possible outcomes is 2^5 = 32.
The number of ways to have none heads when the coin is tossed 5 times is 1 as there is only one way to get 5 tails.
The probability that none are heads is 1/32. Hence, the answer is answer 0.031.
To know more about probability visit:
brainly.com/question/29356861
#SPJ11