probability & statistics
6. (5 points)Student scores on exams given by certain instructor have mean 80 and stan- dard deviation 15. This instructor is about to give an exam to a class of size 50. Approximate the probability that average test score in the class exceeds 83.

Answers

Answer 1

a) The probability is 0.016.

b) The probability is  0.0003.

c) The probability is 0.254.

To approximate the probability for both parts (a) and (b), we will use the Central Limit Theorem (CLT). According to the CLT, when the sample size is sufficiently large (typically considered to be n ≥ 30), the distribution of sample means will be approximately normal, regardless of the shape of the population distribution.

Given that the population mean (μ) is 74 and the population standard deviation (σ) is 14, we can calculate the standard error (SE) for the sample means:

SE = σ / [tex]\sqrt{n}[/tex]

Where:

σ = 14 (population standard deviation)

n = sample size

(a) For the class size of 25:

SE = 14 / [tex]\sqrt{25}[/tex] = 14 / 5 = 2.8

To approximate the probability that the average test score in the class of 25 exceeds 80, we need to find the z-score associated with 80 and then find the probability of the z-score being greater than that.

z = (x - μ) / SE = (80 - 74) / 2.8 ≈ 2.14

Using a standard normal distribution table or calculator, we find that the probability associated with a z-score of 2.14 is approximately 0.016 (or 1.6%).

Therefore, the approximate probability that the average test score in the class of 25 exceeds 80 is approximately 0.016 or 1.6%.

(b) For the class size of 64:

SE = 14 / [tex]\sqrt{64}[/tex] = 14 / 8 = 1.75

To approximate the probability that the average test score in the class of 64 exceeds 80, we can follow the same steps as in part (a):

z = (x - μ) / SE = (80 - 74) / 1.75 ≈ 3.43

Using a standard normal distribution table or calculator, we find that the probability associated with a z-score of 3.43 is approximately 0.0003 (or 0.03%).

Therefore, the approximate probability that the average test score in the class of 64 exceeds 80 is approximately 0.0003 or 0.03%.

(c) To approximate the probability that the average test score in the larger class exceeds that of the other class by over 2.2 points, we can calculate the standard error for the difference in means ([tex]SE_diff[/tex]) using the formula:

[tex]SE_diff[/tex] = [tex]\sqrt{SE_1^{2}+SE_2^{2} }[/tex]

Where:

[tex]SE_1[/tex] = standard error for class size 25

[tex]SE_2[/tex] = standard error for class size 64

[tex]SE_1[/tex] = 2.8 (from part a)

[tex]SE_2[/tex] = 1.75 (from part b)

[tex]SE_diff[/tex] = [tex]\sqrt{2.8^{2}+1.75^{2} }[/tex] ≈ 3.35

Next, we need to find the z-score associated with a difference of 2.2 points:

z = (difference - 0) / [tex]SE_diff[/tex] = (2.2 - 0) / 3.35 ≈ 0.66

Using a standard normal distribution table or calculator, we find that the probability associated with a z-score of 0.66 (or greater) is approximately 0.254 (or 25.4%).

Therefore, the approximate probability that the average test score in the larger class exceeds that of the other class by over 2.2 points is approximately 0.254 or 25.4%.

Correct Question :

Student scores on exams given by a certain instructor have mean 74 and standard deviation 14. This instructor is about to give two exams, one to a class of size 25 and the other to a class size 64

a)approximate the probability that the average test score in the class of 25 exceeds 80

b)repeat for class size 64

c)approximate the probability that the average test score in the larger class exceed s that of the other class by over 2.2 points.

To learn more about probability here:

https://brainly.com/question/31828911

#SPJ4


Related Questions

explain why the function is differentiable at the given point. f(x, y) = 6 x ln(xy − 7), (4, 2) the partial derivatives are fx(x, y) =

Answers

Based on the existence and continuity of the partial derivative fx(x, y) at the point (4, 2), we can conclude that the function f(x, y) = 6x ln(xy - 7) is differentiable at that point.

To determine whether the function f(x, y) = 6x ln(xy - 7) is differentiable at the point (4, 2), we need to check if the partial derivatives exist and are continuous at that point.

Let's calculate the partial derivative fx(x, y) with respect to x:

fx(x, y) = d/dx [6x ln(xy - 7)]

To differentiate the function with respect to x, we treat y as a constant. The derivative of 6x is 6, and the derivative of ln(xy - 7) with respect to x can be found using the chain rule. The chain rule states that if we have a function of the form ln(g(x)), then the derivative is (1/g(x)) * g'(x). In this case, g(x) = xy - 7, so:

d/dx [ln(xy - 7)] = (1 / (xy - 7)) * (y)

Multiplying these results, we get:

fx(x, y) = 6 * (1 / (xy - 7)) * (y) = 6y / (xy - 7)

Now, let's evaluate the partial derivative fx(4, 2) at the point (4, 2):

fx(4, 2) = 6(2) / (4(2) - 7)

= 12 / (8 - 7)

= 12

The partial derivative fx(x, y) is a constant value of 12, which means it exists and is continuous at the point (4, 2).

Therefore, We can infer that the function f(x, y) = 6x ln(xy - 7) is differentiable at the point (4, 2) based on the presence and continuity of the partial derivative fx(x, y) at that location.

Learn more about partial derivative here:https://brainly.com/question/28751547

#SPJ11

find the distance between parallel planes s1 : 2x − 3y z = 4 and s2 : 4x − 6y 2z = 3.

Answers

To find the distance between two parallel planes s1 : 2x − 3y z = 4 and   s2 : 4x − 6y 2z = 3, we can use the formula:

distance = |(d dot n)| / |n|

where d is a vector connecting any point on one plane to the other plane, n is the normal vector of the planes, and | | denotes the magnitude of a vector.

We can rewrite the equations of the planes as:

s1: 2x - 3y + 0z = 4

s2: 4x - 6y + 0z = 3

To find a vector connecting a point on s1 to s2, we can set one of the variables (say, z) to zero, and solve for the other variables:

2x - 3y = 4    (equation of s1 with z=0)

4x - 6y = 3    (equation of s2 with z=0)

We can solve for x and y by multiplying the equation of s1 by 2 and subtracting it from the equation of s2:

4x - 6y - (4x - 6y) = 3 - 8

0 = -5

This equation is inconsistent, which means that there is no point on s1 that lies on s2 with z=0.

Therefore, we can choose any point on one plane and use it to find a vector connecting the planes. For example, we can choose the point (0, 0, 4/3) on s1:

d = (0, 0, 4/3) - (0, 0, 0) = (0, 0, 4/3)

The normal vectors of the planes are the coefficients of x, y, and z in their equations, so we have:

n1 = (2, -3, 0)

n2 = (4, -6, 0)

The magnitude of the normal vectors is:

|n1| = sqrt(2^2 + (-3)^2 + 0^2) = sqrt(13)

|n2| = sqrt(4^2 + (-6)^2 + 0^2) = 2sqrt(13)

The dot product of d and n1 is:

d dot n1 = (0)(2) + (0)(-3) + (4/3)(0) = 0

Therefore, the distance between the planes is:

distance = |(d dot n2)| / |n2| = |(0)| / 2sqrt(13) = 0

So the distance between the planes s1 and s2 is 0. This means that the two planes are actually the same plane.

To know more about parallel planes refer here:

https://brainly.com/question/27548728#

#SPJ11

HELP PLS
where do i put the dots

Answers

A graph of the function f(x) = sin(2πx + π/2) is shown in the image attached below.

What is a sine wave?

In Mathematics and Geometry, a sine wave is also referred to as a sinusoidal wave, or just sinusoid and it can be defined as a fundamental waveform that is typically used for the representation of periodic oscillations, in which the amplitude of displacement at each interval is directly proportional to the sine of the displacement's phase angle.

In this exercise, we would use an online graphing calculator to plot the given sine wave function f(x) = sin(2πx + π/2) with its minima, midline, and maxima as shown in the graph attached below.

In conclusion, we can logically deduce that the midline of this sine wave function y = 1/2sin(3x/2) + 2 is represented by y = 0.

Read more on sine function here: https://brainly.com/question/12150120

#SPJ1

Find the derivative of the function at Po in the direction of A. f(x,y,z) = -2 e^x cos(yz). Po(0,0,0). A= - 3i+2j+k (DA)(0,0,0) = ___ (Type an exact answer, using radicals as needed.)
"

Answers

The directional derivative is a measure of the rate of change of a function in a particular direction. It quantifies how a function changes along a specific vector direction in a given point.

Answer: [tex](DA)(0,0,0) = 6\sqrt (14)[/tex]

The given function is [tex]f(x, y, z) = -2 e^x cos(yz)[/tex].

We need to find the directional derivative of this function at Po in the direction of A,

where Po(0,0,0) and A= - 3i+2j+k.

To find the directional derivative we need the directional derivative formula, which is given by:

DA = ∇f.

P where DA is the directional derivative of f in the direction of A, ∇f is the gradient vector of f, and P is the point where the direction derivative is to be calculated.

Let's find the gradient vector of f using the partial derivatives.

[tex]\partial f/ \partial x = -2 e^x cos(yz)[/tex]

[tex]\partial f/\partial y = 2 e^x z sin(yz)[/tex]

[tex]\partial f/\partial z = 2 e^x y sin(yz)[/tex]

Therefore, the gradient vector of f is

∇f = <∂f/∂x, ∂f/∂y, ∂f/∂z> = <-2 e^x cos(yz),

2 e^x z sin(yz), 2 e^x y sin(yz)>

Now, we can find the directional derivative of f in the direction of A at P0 using the formula.

DA = ∇f.P = ∇f . A/|A|

where ∇f = <-2, 0, 0>, A = <-3, 2, 1>and

|A| = [tex]=\sqrt(3^2+2^2+1^2) \\= \sqrt(14)[/tex]

Now,∇f . A = (-2)(-3) + (0)(2) + (0)(1)

= 6DA = ∇f . A/|A|

=[tex]6 \sqrt(14)[/tex]

To Know more about directional derivative visit:

https://brainly.com/question/29451547

#SPJ11

If F(x,y)=[cos(x)e^(sin(x))y+e^((x^2)+cos(x)),e^(sin(x))-sin(y^2)+e^(cos(y))]
Calculate the Work done of F in the poligonal that starts in A=(-2,1), then goes to B=(2,5), then it goes to C=(3,-7) and ends on A=(2,-1)

Answers

The work done of F in the polygonal that starts in A(-2,1), then goes to B(2,5), then it goes to C(3,-7) and ends on A(2,-1) is -2.1333.

The formula for work done of F is given as;

                    W=F(x,y).dr

Where F is a two-dimensional vector function and dr is the position vector

The polygonal begins at A (-2,1) and ends at A (2,-1).

So the total work done is the sum of the works done along the three edges AB, BC and CA.

Since we have a position vector dr, we will find the vector function r first.

                                        r=xi+yj

From A to B,      

                                       r=2i+4j

The vector function

                [tex]F=cos(x)e^(sin(x))y+e^((x^2)+cos(x)),e^(sin(x))-sin(y^2)+e^(cos(y))[/tex]

where

    x=2,

    y=5

 [tex]F(2,5)=(cos(2)e^(sin(2)))5+e^(2^2+cos(2)),e^(sin(2))-sin(5^2)+e^(cos(5))[/tex]

          =4.6165

Work done W=F(x,y).dr

                    =W

                      =F(2,5).(2i+4j)

W=(4.6165)(2i+4j)

W=18.466

And for the line BC, we have r=xi-6j and

          F(x,y)=cos(x)e^(sin(x))y+e^((x^2)+cos(x)),e^(sin(x))-sin(y^2)+e^(cos(y))

where x=3,

          y=-7

[tex]F(3,-7)=(cos(3)e^(sin(3)))(-7)+e^(3^2+cos(3)),e^(sin(3))-sin((-7)^2)+e^(cos(-7))[/tex]

        =8.236

Work done W=F(x,y).dr

 Where r=(5i-6j)

        W=F(3,-7).(5i-6j)

        W=(8.236)(5i-6j)

         W=-23.9326

Finally, from C to A,

            r=i-8j

 [tex]F(x,y)=cos(x)e^(sin(x))y+e^((x^2)+cos(x)),e^(sin(x))-sin(y^2)+e^(cos(y))[/tex]

    where x=2,

                y=-1

  [tex]F(2,-1)=(cos(2)e^(sin(2)))(-1)+e^(2^2+cos(2)),e^(sin(2))-sin((-1)^2)+e^(cos(-1))[/tex]

           =-0.3667

Work done W=F(x,y).dr

 Where r=(5i-6j)

      W=F(2,-1).(5i-6j)

      W=(-0.3667)(-i-8j)

      W=3.3333

Therefore, the total work done W = W(AB) + W(BC) + W(CA)

                                                       = 18.466 - 23.9326 + 3.3333

                                                       = -2.1333

The result is approximately -2.1333, rounded to 4 decimal places.

Thus, the conclusion is that the work done of F in the polygonal that starts in A(-2,1), then goes to B(2,5), then it goes to C(3,-7) and ends on A(2,-1) is -2.1333.

To know more about two-dimensional vector, visit:

https://brainly.com/question/28931875

#SPJ11

The line integrals over all three segments, we can sum up the results to obtain the total work done by the vector field F along the given polygonal path.

To calculate the work done by the vector field F along the given polygonal path, we need to evaluate the line integral of F over each segment of the path and then sum up the results.

The line integral of a vector field F along a curve C is given by:

∫(C) F · dr

where F is the vector field, dr is an infinitesimal displacement vector along the curve C, and the dot represents the dot product.

Let's calculate the line integral over each segment of the polygonal path and then sum up the results.

Segment AB:

We parameterize the line segment AB from A to B as:

r(t) = A + t(B - A) = (-2, 1) + t(2, 5 - 1) = (-2, 1) + t(2, 4) = (-2 + 2t, 1 + 4t)

The differential displacement vector dr is given by:

dr = (dx, dy) = (2, 4)dt

Now, we calculate F · dr and integrate over the segment AB:

∫(AB) F · dr = ∫(t=0 to t=1) F(r(t)) · dr = ∫(t=0 to t=1) F((-2 + 2t, 1 + 4t)) · (2, 4)dt

To calculate this integral, we substitute the parameterization of r(t) into F and compute the dot product F · dr:

∫(AB) F · dr = ∫(t=0 to t=1) [cos((-2 + 2t))e^(sin((-2 + 2t)))(1 + 4t) + e^(((-2 + 2t)^2) + cos((-2 + 2t))),

e^(sin((-2 + 2t))) - sin((1 + 4t)^2) + e^(cos(1 + 4t))] · (2, 4)dt

Performing this integration will give us the work done along segment AB.

Similarly, we can calculate the line integrals along the other segments BC and CA using their respective parameterizations and compute the dot products F · dr.

Segment BC:

Parameterization: r(t) = B + t(C - B) = (2, 5) + t(3 - 2, -7 - 5) = (2, 5) + t(1, -12) = (2 + t, 5 - 12t)

Differential displacement: dr = (dx, dy) = (1, -12)dt

Segment CA:

Parameterization: r(t) = C + t(A - C) = (3, -7) + t(-2 - 3, 1 + 7) = (3, -7) + t(-5, 8) = (3 - 5t, -7 + 8t)

Differential displacement: dr = (dx, dy) = (-5, 8)dt

After calculating the line integrals over all three segments, we can sum up the results to obtain the total work done by the vector field F along the given polygonal path.

To know more about line integrals, visit:

https://brainly.com/question/30763905

#SPJ11

use the scalar triple product to determine whether the points as1, 3, 2d, bs3, 21, 6d, cs5, 2, 0d, and ds3, 6, 24d lie in the same plane.

Answers

The scalar triple product is not zero, we can conclude that the points A(1, 3, 2), B(3, 21, 6), C(5, 2, 0), and D(3, 6, 24) do not lie in the same plane.

To determine whether the points A(1, 3, 2), B(3, 21, 6), C(5, 2, 0), and D(3, 6, 24) lie in the same plane, we can use the scalar triple product.

The scalar triple product is defined as the dot product of the cross product of three vectors. In this case, we can form two vectors from the given points: AB and AC. If the scalar triple product of AB, AC, and AD is zero, then the points are collinear and lie on the same plane.

First, let's calculate the vectors AB and AC:

Vector AB = B - A = (3, 21, 6) - (1, 3, 2) = (2, 18, 4)

Vector AC = C - A = (5, 2, 0) - (1, 3, 2) = (4, -1, -2)

Next, we will calculate the scalar triple product using the vectors AB, AC, and AD:

Scalar Triple Product = AB · (AC x AD)

The cross product of AC and AD can be calculated as follows:

AC x AD = |i j k|

|4 -1 -2|

|2 3 22|

Expanding the determinant, we have:

AC x AD = (3 * -2 - 22 * 3)i - (2 * -2 - 22 * 4)j + (2 * 3 - 4 * 3)k

= (-66)i + (88)j + (2)k

= (-66, 88, 2)

Now, we can calculate the scalar triple product:

Scalar Triple Product = AB · (AC x AD)

= (2, 18, 4) · (-66, 88, 2)

= 2 * (-66) + 18 * 88 + 4 * 2

= -132 + 1584 + 8

= 1460

Learn more about scalar triple product at: brainly.com/question/13419505

#SPJ11

Use the information and graph below to answer the question. A non-native species of snake appeared in a large southern swamp in 1995. Shortly thereafter, scientists noticed that a particular species of river frog began to decline exponentially. They suspected that the snakes were eating the frogs at an alarming rate. The scientists made an exponential model to predict the decline in the frog population. The points plotted below come from their exponential model. Note that t is measured in years, the value t = 0 corresponds to 1995, and y is the predicted number of remaining frogs in thousands. River Frog Population 120 100 80 6R 40 20 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Which of the following values could represent the size of the frog population for the year 2005, as shown in the graph above? 32.800 River Frog Population 120 100 80 60 40 20 ... 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Which of the following values could represent the size of the frog population for the year 2005 as shown in the graph above?

Answers

According to the exponential model, the predicted number of remaining frogs in thousands for the year 2005 (t=10) is around 20. Therefore, the answer is not among the options given (32.800).

The frog population declined exponentially since the introduction of the non-native snake species in 1995, and the model shows that it will continue to decline unless action is taken to control the snake population. The decline of the frog population has a significant impact on the ecosystem since frogs are essential for maintaining balance in food chains and controlling insect populations.

This case highlights the importance of understanding the consequences of introducing non-native species to an ecosystem. Invasive species can disrupt the natural balance and cause irreversible damage to the environment.

Therefore, it is crucial to take preventive measures to avoid introducing non-native species to new areas and to monitor the impact of existing invasive species.

To know more about  exponential model visit:

https://brainly.com/question/30954983

#SPJ11

PLEASE HELP MY ASSIGNMENTS DUES TODAY JUST NEED HELP WITH 1 QUESTION PLEASE

Answers

The maximum value of the function is approximately 67,179.6 at x ≈ 29.5, and the minimum value of the function is approximately -27,512.5 and occurs at x ≈ -6.5.

 

We are given the quadratic equation as;

[tex]y = \dfrac{2}{3} x^{2} + \dfrac{5}{4} x- \dfrac{1}{3}[/tex]

Solving the equation ;

[tex]y = \dfrac{2}{3} x^{2} + \dfrac{5}{4} x- \dfrac{1}{3} \\\\\\y = \dfrac{8x^{2} + 15x - 4}{12}[/tex]

Using the second formula, we see that the roots of the equation

x = (-(-100) ± √((-100)² - 4(3)(-200))) / (2(3))

x = (-(-100) ± √(10000 2400)) / 6

x = (-(-100) ± √(12400)) / 6

x = (100 ± 20 √(31)) / 3

To determine whether these are maximum or minimum points,

y''(x1) = -6((100 √(31)) / 3) = -200 - 40√(31) < 0  is a local minimum

Learn more about solutions of a quadratic equation here:

https://brainly.com/question/15582302

#SPJ1

NOL atisfactory Q1 Solve the following equations simultaneously. Show your method of solution: 3 a) 3x - 2y = 17 b) 2x - y = 11

Answers

The required simultaneous equation is 3x - 2y = 17 and 2x - y = 11 and their solution is x = 5 and y = 10.

Given system of equations is:

3x - 2y = 17     ......(1)

2x - y = 11       ......(2)

Let's solve the given system of equations using the method of elimination.

For that, we multiply equation (2) by 2 on both sides to get the coefficient of y same in both equations as follows:

3x - 2y = 17     ......(1)

(2x - y = 11) × 2

=> 4x - 2y = 22     ......(3)

Now, we can subtract equation (3) from equation (1) to eliminate y as follows:

3x - 2y = 17     ......(1)

- (4x - 2y = 22)

=> -x = -5

Simplifying further, we get:

x = 5

Substituting x = 5 in equation (2), we get:

2x - y = 112(5) - y = 11

=> y = 10

Hence, the solution of the given system of equations is:

x = 5 and y = 10.

Therefore, the required simultaneous equation is 3x - 2y = 17

and 2x - y = 11 and their solution is x = 5 and y = 10.

To know more about elimination visit:

https://brainly.com/question/32403760

#SPJ11

–/1 points] details tanapmath7 2.3.026. my notes ask your teacher find the domain of the function. (enter your answer using interval notation.) f(x) = 6-x /4 x − 5

Answers

In interval notation, the domain of the function f(x) is (-∞, 5/4) U (5/4, +∞).

To find the domain of the function f(x) = (6 - x) / (4x - 5), we need to identify any values of x that would result in division by zero or any other undefined operations.

The function f(x) would be undefined if the denominator, 4x - 5, equals zero. So, we set 4x - 5 = 0 and solve for x:

4x - 5 = 0

4x = 5

x = 5/4

Therefore, the function f(x) is undefined when x = 5/4.

However, since division by zero is the only operation that would cause the function to be undefined, the domain of f(x) is all real numbers except x = 5/4.

In interval notation, the domain of the function f(x) is (-∞, 5/4) U (5/4, +∞).

Learn more about   interval notation here:

https://brainly.com/question/29252068

#SPJ11

Consider the statement n² + 1 ≥ 2ⁿ where n is an integer in [1, 4].
Identify the n values for which the equation is to be verified in order to prove the given statement.

Answers

The statement n² + 1 ≥ 2ⁿ holds true for all values of n in the range [1, 4].

To prove the statement n² + 1 ≥ 2ⁿ for the integer values of n in the range [1, 4], we need to verify the equation for each value of n within that range. By testing n = 1, 2, 3, and 4, we find that the equation holds true for all these values.

The statement n² + 1 ≥ 2ⁿ needs to be verified for the integer values of n in the range [1, 4]. Upon evaluating the equation for each value of n, we find that it holds true for all n in the given range. Therefore, the statement is proven to be true for the values n = 1, 2, 3, and 4.

To verify the given statement, we substitute the values of n from the range [1, 4] into the equation n² + 1 ≥ 2ⁿ and evaluate the expression for each value.

For n = 1, we have 1² + 1 ≥ 2¹, which simplifies to 2 ≥ 2. This is true.

For n = 2, we have 2² + 1 ≥ 2², which simplifies to 5 ≥ 4. This is also true.

For n = 3, we have 3² + 1 ≥ 2³, which simplifies to 10 ≥ 8. Again, this holds true.

Lastly, for n = 4, we have 4² + 1 ≥ 2⁴, which simplifies to 17 ≥ 16. Once again, this inequality is true.

Since the equation holds true for all values of n in the range [1, 4], we can conclude that the statement n² + 1 ≥ 2ⁿ is verified for n = 1, 2, 3, and 4.

Therefore, the statement n² + 1 ≥ 2ⁿ holds true for all values of n in the range [1, 4].

To learn more about Range:

brainly.com/question/29204101

#SPJ11

Devon is looking at a chart that lists the levels of education needed for specific careers and their salary. He notices that work as a pharmacist and a physical therapist both require an advanced degree but have very different salaries. A pharmacist earns $111,570 per year, and a physical therapist earns $76,310 per year. What will be the difference in lifetime earnings over a 30-year career for these two careers?

Answers

Answer:

Step-by-step explanation:

111,570 x 30 = 3347100

76,310 x 30 = 2289300

3347100-2289300= 1057800

The equation of a plane passing through P(2,-3,-3) and is parallel to z= Zy is

Answers

The equation of a plane passing through P(2,-3,-3) and is parallel to z= Zy is z = -3.An equation of a plane is defined as the algebraic expression of a plane in terms of x, y, and z coordinates.

The general form of an equation of a plane is Ax + By + Cz = D.What is parallel to the plane?In mathematics, when two lines lie on the same plane or are in the same plane, they are known as parallel planes. As a result, in the equation of a plane, the plane equation z = k is parallel to the XY plane. Similarly, the plane equation y = k is parallel to the XZ plane, and the plane equation x = k is parallel to the YZ plane.What is z= Zy?The equation z = Zy is a plane parallel to the XY plane. The variable z is fixed at a certain value, and as a result, the plane extends indefinitely in both the X and Y directions.The given plane is parallel to z = Zy, therefore, the equation of a plane passing through P(2,-3,-3) and is parallel to z= Zy is z = -3.

To know more about algebraic expression visit:

https://brainly.com/question/28884894

#SPJ11

B) During the repair, the mechanics will need to



connect a cable between chairs B and J, and then



continue that cable to chair G. What is the angle



formed by the cable?

Answers

The angle that will be formed by the cable based on the information given will be 15°.

We have to find the angle formed by the cable.

We know that angles are geometric figures formed by two rays or lines that share a common endpoint, called the vertex of the angle. Angles are typically measured in degrees (°) or radians (rad) and are used to describe the amount of rotation or separation between the rays.

From the complete information, it's important to divide the total angle by 12. This will be:

= 360°/12 = 30°

Then, the relations that will be used will be:

= 1/2(60° - 30°)

= 1/2 × 30°

= 15°

Therefore, the angle that will be formed by the cable based on the information given will be 15°.

Learn more about angles on:

brainly.com/question/25716982

#SPJ4

Given question is incomplete, the complete question is below

During the repair, the mechanics will need to connect a cable between chairs B and J, and then continue that cable to chair G. What is the angle formed by the cable?

Value of y if 8^y=8^y+2

Answers

Answer:

Undefinable. No solution.

Step-by-step explanation:

To find the value of y in the equation 8^y = 8^(y+2), we can equate the exponents since the base (8) is the same on both sides of the equation.

We have y = y + 2.

Simplifying this equation, we subtract y from both sides:

0 = 2.

This leads to an inconsistency because 0 is not equal to 2. Therefore, there is no valid value of y that satisfies the equation 8^y = 8^(y+2).

find the area of the following region. the region inside the curve r=sqrt(10cos0) and inside the circle r=sqrt(5) in the first quadrant

Answers

The area of the region inside the curve r = √(10cosθ) and inside the circle r = √5 in the first quadrant is 5√3.

To find the area of the region inside the curve r = √(10cosθ) and inside the circle r = √(5) in the first quadrant, we need to set up the integral in polar coordinates.

First, let's graph the given curves in the first quadrant:

The curve r = √(10cosθ) represents an astroid shape centered at the origin with a maximum radius of √10 and minimum radius of 0. The circle r = √5 represents a circle centered at the origin with a radius of √5.

To find the area of the region inside the curve and inside the circle, we need to determine the limits of integration for the angle θ.

The astroid shape intersects the circle at two points. Let's find these points:

Setting √(10cosθ) = √5, we have:

√(10cosθ) = √5

10cosθ = 5

cosθ = 1/2

θ = π/3 and θ = 5π/3

Therefore, the limits of integration for the angle θ are π/3 and 5π/3.

Now, we can set up the integral to find the area:

A = ∫[π/3, 5π/3] ∫[0, √(10cosθ)] r dr dθ

Integrating with respect to r first, we have:

A = ∫[π/3, 5π/3] [(1/2)r^2] [0, √(10cosθ)] dθ

Simplifying, we get:

A = (1/2) ∫[π/3, 5π/3] 10cosθ dθ

A = 5 ∫[π/3, 5π/3] cosθ dθ

Evaluating the integral, we have:

A = 5 [sinθ] [π/3, 5π/3]

A = 5 (sin(5π/3) - sin(π/3))

Using the values of sine for π/3 and 5π/3, which are √3/2 and -√3/2 respectively, we get:

A = 5 (-√3/2 - √3/2)

A = -5√3

Since we are interested in the area, we take the absolute value:

A = 5√3

Therefore, the area of the region inside the curve r = √(10cosθ) and inside the circle r = √5 in the first quadrant is 5√3.

Learn more about area of the region here

https://brainly.com/question/30465469

#SPJ11

1. A store sold 10 gallons of palm oil and 8 gallons of olive oil
. What fraction of the total
amount of vegetable oil sold is the number of gallons of olive oil?
A. 10/8
B. 4/9
C. 5/9
D. 9/4

Answers

For a store which sold the vegetable oil, the fraction or ratio of total amount of sold vegetable oil to the number of gallons of olive oil sold is equals to the [tex] \frac{4}{9} [/tex]. So, option(B) is right one.

Fraction is also called ratio of numbers, it has two main parts numentor and denominator. The uper part of ratio is numerator and lower is defined as denominator. We have a store which sold palm and olive oil.

The quantity of sold palm oil = 10 gallons

The quantity of sold olive oil = 8 gallons

We have to determine the faction of the total amount of vegetable oil sold to the number of gallons of olive oil sold.

Total amount of vegetable oil in store = quantity of palm oil + olive oil= 8 + 10

= 18 gallons

Using the fraction formula, the fraction of total amount of vegetable oil sold to olive oil = total amount of oil : amount of olive oil [tex]= \frac{ 8 }{18} [/tex]

= [tex] \frac{4}{9} [/tex]

Hence, required fraction value is [tex] \frac{4}{9} [/tex].

For more information about fraction, visit:

https://brainly.com/question/17220365

#SPJ4

How much money do winners go home with from the television quiz show Jeopardy? To determine an answer, a random sample of winners was drawn and the amount of money each won was recorded and listed below. Estimate with 90% confidence the mean winning's for all the show's players. 47932 35193 43384 32690 41761 46490 45309 34288 47397 40162 47486 31806 44933 36467 35502

Answers

The estimated mean winnings for all the show's players with 90% confidence is approximately $38,895.57 to $41,773.23.

To estimate the mean winnings for all the show's players with 90% confidence, we can use the formula for a confidence interval:

Confidence Interval = X' ± (Z * (σ/√n))

Where:

X' is the sample mean,

Z is the Z-score corresponding to the desired confidence level (90% corresponds to a Z-score of 1.645),

σ is the population standard deviation (unknown in this case), and

n is the sample size.

Given the sample of winnings: 47932, 35193, 43384, 32690, 41761, 46490, 45309, 34288, 47397, 40162, 47486, 31806, 44933, 36467, and 35502, we can calculate the sample mean (X') and the sample standard deviation (s).

X' = (47932 + 35193 + 43384 + 32690 + 41761 + 46490 + 45309 + 34288 + 47397 + 40162 + 47486 + 31806 + 44933 + 36467 + 35502) / 15

X' ≈ 40334.4

Next, we calculate the sample standard deviation (s):

s = √[Σ(Xᵢ - X')² / (n - 1)]

Substituting the values, we find:

s ≈ √[(∑(Xᵢ²) - (n * X'²)) / (n - 1)]

s ≈ √[(2285506502.4 - (15 * 40334.4²)) / 14]

s ≈ √[(2285506502.4 - 2446050703.2) / 14]

s ≈ √[-160542200.8 / 14]

s ≈ √[-11467228.6]

s ≈ 3388.49

Now we can calculate the confidence interval:

Confidence Interval = 40334.4 ± (1.645 * (3388.49 / √15))

Confidence Interval ≈ 40334.4 ± (1.645 * 875.02)

Confidence Interval ≈ 40334.4 ± 1438.83

Confidence Interval ≈ (38895.57, 41773.23)

Therefore, we estimate with 90% confidence that the mean winnings for all the show's players fall within the range of $38,895.57 to $41,773.23.

To know more about mean, refer here:

https://brainly.com/question/31101410

#SPJ4

What does it mean for a TV to have an aspect ratio of 16:9?

Answers

Answer: Below

Step-by-step explanation:

It means that the ratio of the length to the width of the display is 16:9, (simplified).

in terms of pixels, a "16:9" display has 1280:720 actual pixels. since this ratio simplifies to 16:9 when divided by 80, we often refer to 1280 x 720 pixels as "16:9"

Answer:

  the ratio of width to height is 16 to 9, about 1.778

Step-by-step explanation:

You want to know the meaning of a TV aspect ratio of 16:9.

Aspect ratio

In the context of a movie screen or television, the "aspect ratio" is the ratio of width to height. An aspect ratio of 16:9 means the television screen is 16 units wide for each 9 units high. Other ways to say this are ...

width is 1 7/9 times heightwidth is about 77.8% greater than height

For example, a screen with a 16:9 aspect ratio that is 48 inches wide will be 27 inches high:

  16 : 9 = 48 : 27

__

Additional comment

When movies and TV were introduced, the picture tended to be nearly square. For many years, the aspect ratio used was 4:3. As technology improved, screens became wider, engaging more peripher vision and providing a more immersive experience.

These days, an aspect ratio of 16:9 is used for high-definition TV and many displays. US theaters generally use an aspect ratio of about 1.85:1, and "wide screen" showings use a ratio of about 2.39:1.

The "golden ratio" of Φ = (1+√5)/2 ≈ 1.618034 is considered to be the "most pleasing" aspect ratio of a rectangular shape. This number shows up often in nature.

<95141404393>

estimate the limit numerically or state that the limit does not exist: lim x → 0 sin ( 9 x ) x limx→0sin(9x)x

Answers

Based on the numerical estimation and visual observation, we can conclude that the limit of sin(9x)/x as x approaches 0 exists and is approximately 5.837.

To estimate the limit numerically, we can evaluate the expression limx→0 sin(9x)/x by plugging in values of x that approach 0.

As x approaches 0, the expression sin(9x)/x approaches an indeterminate form of 0/0. This indeterminate form indicates that further evaluation is required to determine the actual limit.

Let's calculate the values of the expression sin(9x)/x for some values of x approaching 0:

x = 0.1: sin(9(0.1))/(0.1) = 0.58779/0.1 = 5.8779

x = 0.01: sin(9(0.01))/(0.01) = 0.058368/0.01 = 5.8368

x = 0.001: sin(9(0.001))/(0.001) = 0.005837/0.001 = 5.837

As we can see, as x gets closer to 0, the value of sin(9x)/x approaches approximately 5.837. This suggests that the limit of the expression as x approaches 0 is approximately 5.837.

To further support this estimation, we can also use a graphing calculator or software to plot the function sin(9x)/x and observe its behavior as x approaches 0. The graph will show that the function approaches a value close to 5.837 as x approaches 0.

It is important to note that this numerical estimation does not provide a rigorous proof of the limit. To formally prove the limit, additional mathematical techniques such as L'Hôpital's rule or trigonometric identities would need to be employed.

Learn more about limit at: brainly.com/question/12207563

#SPJ11

Determine which of the following is a subspace. (i) W1 = {p(2) € P3 |p(-3) <0} x' (ii) W2 = {A € R2x2 | det(A) = 0} (iii) W3 = {X = (21, 22, 23, 24) R4 | 21 – 2x2 + 3x3 – 4x4 = 0}

Answers

A subspace of a vector space is a subset of the vector space that is itself a vector space under the same operations as the original vector space. To determine which of the given options is a subspace, we need to check if it satisfies the three requirements of a subspace.

(i) W1 = {p(2) € P3 | p(-3) < 0}

Not a subspace, W1 is. The zero vector must be in W1, it must be closed under addition, and it must be closed under scalar multiplication for it to qualify as a subspace.

W1 does not, however, meet the closure under addition requirement. For instance, both p1 and p2 belong to W1 if we choose the two polynomials p1(x) = 2x + 1 and p2(x) = -x - 2, respectively, because p1(-3) = 7 > 0 and p2(-3) = -7 0.

(ii) W2 = A € R 2x2 | det(A) = 0 (ii)

A subspace is W2. The zero vector is in W2 (since the zero matrix's determinant is 0), it is closed under addition (the sum of two matrices with determinants 0 will also have a determinant of 0), It is closed under scalar multiplication (multiplying a matrix with determinant 0 by a scalar will still result in a matrix with determinant 0). 

(iii) W3 = X = (21, 22, 23, 24) R4 | 21 - 2x2, + 3x3, - 4x4 = 0

Not a subspace, W3. Under the condition of scalar multiplication, it does not satisfy the closure. For instance, the equation 21 - 2(22) + 3(23) - 4(24) = -20 is obtained if we take the vector X = (21, 22, 23, 24) in W3.

However, if we multiply X by the scalar c = 2, we obtain cX = (42, 44, 46, and 48), and when we enter the values into the equation, we obtain 

42 - 2(44) + 3(46), 4(48) = -36, 

To know more about Vector Space visit:

https://brainly.com/question/32671385

#SPJ11

Haley wants to spread 3 inches of mulch over her rectangular flower bed that measures 2 feet by 14 feet. One package of mulch contains 3.8 cubic feet. How many packages does she need?

Answers

The number is 22. 1 packages

How to determine the value

The formula for calculating the volume of a rectangle is expressed as;

V = lwh

Such that the parameters of the formula are written as;

V is the volume of the rectanglel is the length of the rectanglew is the width of the rectangleh is the height of the rectangle

Substitute the values

Volume = 3 × 2 × 14

Multiply the values, we get;

Volume = 84 cubic feet

If 1 = 3.8 cubic feet

x =  84 cubic feet

cross multiply the values, we have;

x = 84/3.8

x = 22. 1 packages

Learn more about volume at: https://brainly.com/question/1972490

#SPJ1

find the relative minimum of f(x,y)= 3x² 2y2-4xy-3, subject to the constraint 6x y = 297.

Answers

The objective function f(x, y) = 3x² + 2y² - 4xy - 3 at the critical points:

f(√33, 11) = 3(√33)² + 2(11)² - 4(√33)(11) - 3

= 99

To find the relative minimum of the function f(x, y) = 3x² + 2y² - 4xy - 3, subject to the constraint 6xy = 297, we will utilize the method of Lagrange multipliers. This method allows us to optimize a function subject to constraints.

First, let's define the Lagrangian function L(x, y, λ) as follows:

L(x, y, λ) = f(x, y) - λ(g(x, y))

where f(x, y) is the objective function, g(x, y) is the constraint function, and λ is the Lagrange multiplier.

In this case, our objective function is f(x, y) = 3x² + 2y² - 4xy - 3, and the constraint function is g(x, y) = 6xy - 297.

So, we have:

L(x, y, λ) = (3x² + 2y² - 4xy - 3) - λ(6xy - 297)

Next, we need to find the partial derivatives of L(x, y, λ) with respect to x, y, and λ, and set them equal to zero to find the critical points. We will differentiate L(x, y, λ) with respect to x, y, and λ separately.

∂L/∂x = 6x - 4y - 6λy

∂L/∂y = 4y - 4x - 6λx

∂L/∂λ = -6xy + 297

Setting these partial derivatives equal to zero, we have the following system of equations:

6x - 4y - 6λy = 0 (1)

4y - 4x - 6λx = 0 (2)

-6xy + 297 = 0 (3)

From equation (3), we can solve for y:

y = (297)/(6x)

Substituting this into equations (1) and (2), we have:

6x - 4(297)/(6x) - 6λ(297)/(6x) = 0 (4)

4(297)/(6x) - 4x - 6λx = 0 (5)

Simplifying equations (4) and (5), we get:

36x² - 4(297) - 6λ(297) = 0 (6)

4(297) - 24x² - 36λx² = 0 (7)

Equations (6) and (7) can be combined to eliminate λ:

36x² - 4(297) - 6(297)(4 - 6) = 0

Simplifying further, we have:

36x² - 1188 = 0

36x² = 1188

x² = 33

Taking the square root, we get:

x = ±√33

Substituting the value of x into equation (3), we can solve for y:

y = (297)/(6x)

For x = √33, y = 11

For x = -√33, y = -11

Now, we need to evaluate the objective function f(x, y) = 3x² + 2y² - 4xy - 3 at the critical points:

f(√33, 11) = 3(√33)² + 2(11)² - 4(√33)(11) - 3

= 99

Learn more about critical points here

https://brainly.com/question/30459381

#SPJ11

the heights of women aged 20 to 29 are approximately normal with mean 64 inches and standard deviation 2.7 inches. men the same age have mean height 69.3 inches with standard deviation 2.8 inches. (a) what is the z-score for a woman 56 inches tall?

Answers

To find the z-score for a woman who is 56 inches tall, we can use the formula:

Z = (X - μ) / σ

Where:
X = 56 inches (observed value)
μ = 64 inches (mean)
σ = 2.7 inches (standard deviation)

Substituting the given values into the formula, we get:

Z = (56 - 64) / 2.7
Z = -8 / 2.7
Z ≈ -2.963

Therefore, the z-score for a woman who is 56 inches tall is approximately -2.963.

In kinetic theory we have to evaluate integrals of the form I = = the-at? dt. Given EL . IV/a, evaluate I for n = 2, 4, 6, ---, 2m. that 1 -at2 dt = = . 1

Answers

In Kinetic theory, one has to evaluate integrals of the form I = (EL/IVa) × ∫ e^(-at) dt. Given EL . IV/a, evaluate I for n = 2, 4, 6, ---, 2m, such that ∫(1 - at^2) dt = 1.Kinetic Theory is a branch of classical physics that describes the motion of gas particles.

The integral that we need to evaluate is given as:I = (EL/IVa) × ∫ e^(-at) dtWe are also given that ∫(1 - at^2) dt = 1Substituting the value of the integral into I, we get:I = (EL/IVa) × ∫ e^(-at) (1 - at^2) dtI = (EL/IVa) × (∫ e^(-at) - a∫t^2e^(-at) dt)Using integration by parts, we can evaluate the second integral as follows:

C Substituting this value back into the original integral, we get:I = (EL/IVa) × (∫ e^(-at) - a(- (t^2/a)e^(-at) - (2/a^2)e^(-at)) dt)I = (EL/IVa) × (∫ e^(-at) + t^2e^(-at) + (2/a)e^(-at) dt)I = (EL/IVa) × (- e^(-at) - t^2e^(-at)/a - 2e^(-at)/a + C)Now we can substitute the limits of integration into the above equation, to get the value of I for different values of n.

For n = 2: I = (EL/IVa) × ((1 - e^(-2a))/a^3)For n = 4: I = (EL/IVa) × ((3 - 4e^(-2a) + e^(-4a))/a^5)For n = 6: I = (EL/IVa) × ((15 - 30e^(-2a) + 15e^(-4a) - 2e^(-6a))/a^7)And so on, for n = 8, 10, 12, ..., 2m

To know more about Kinetic visit:

https://brainly.com/question/999862

#SPJ11

test the claim about the differences between teo population variences at the given significance level of sequencew

Answers

Testing the claim about the differences between two population variances involves setting up hypotheses, calculating the appropriate test statistic, determining the critical value, making a decision based on the comparison of the test statistic and critical value, and stating the conclusion

Testing the claim about the differences between two population variances involves conducting a hypothesis test to determine if there is sufficient evidence to support the claim. The significance level, denoted as α, represents the probability of rejecting the null hypothesis when it is true. In this case, we are testing the claim about the differences between the variances of two populations.

The hypothesis test for comparing population variances can be performed using either the F-test or the Chi-square test. Both tests follow a similar general procedure, but the specific test statistic and critical values differ depending on the chosen test.

Let's outline the general steps for conducting the hypothesis test:

Step 1: State the null and alternative hypotheses.

The null hypothesis, denoted as H0, assumes that the variances of the two populations are equal. The alternative hypothesis, denoted as Ha, assumes that the variances are not equal.

H0: σ₁² = σ₂²

Ha: σ₁² ≠ σ₂²

Step 2: Select the significance level.

The significance level, α, determines the probability of making a Type I error, which is rejecting the null hypothesis when it is true. The significance level is typically set at 0.05 or 0.01, but it can vary depending on the context of the problem.

Step 3: Calculate the test statistic.

The test statistic depends on the chosen test. For the F-test, the test statistic is the ratio of the sample variances:

F = s₁² / s₂²

where s₁² and s₂² are the sample variances of the two populations.

For the Chi-square test, the test statistic is calculated as:

χ² = (n₁ - 1) * s₁² / (n₂ - 1) * s₂²

where n₁ and n₂ are the sample sizes of the two populations.

Step 4: Determine the critical value.

The critical value is obtained from the appropriate distribution (F-distribution or Chi-square distribution) based on the chosen significance level and the degrees of freedom associated with the test.

Step 5: Make a decision.

Compare the calculated test statistic with the critical value. If the test statistic falls in the critical region (i.e., it is greater than or less than the critical value), we reject the null hypothesis. Otherwise, if the test statistic falls outside the critical region, we fail to reject the null hypothesis.

Step 6: State the conclusion.

Based on the decision in Step 5, we conclude whether there is sufficient evidence to support the claim about the differences between the population variances at the given significance level.

It's important to note that the specific calculations and critical values depend on the test chosen (F-test or Chi-square test), the sample sizes, and the significance level. Therefore, to fully perform the hypothesis test, you would need to provide the specific values for these parameters.

In conclusion, testing the claim about the differences between two population variances involves setting up hypotheses, calculating the appropriate test statistic, determining the critical value, making a decision based on the comparison of the test statistic and critical value, and stating the conclusion. This process allows us to assess the evidence for or against the claim at the chosen significance level.

Learn more about population here

https://brainly.com/question/29885712

#SPJ11

for several years, a researcher recorded the lengths of fish caught in a local lake. she found that the average length has been decreasing by approximately 0.25 inches per year. what term best describes the analysis conducted by the researcher?

Answers

The term that best describes the analysis conducted by the researcher is trend analysis.

We have,

Trend analysis involves studying data over time to identify patterns or trends.

In this case,

The researcher recorded the lengths of fish caught in the lake over several years and observed that the average length has been decreasing by approximately 0.25 inches per year.

By recognizing this consistent decrease over time, the researcher has conducted a trend analysis to understand the long-term pattern in the data.

Thus,

The term that best describes the analysis conducted by the researcher is trend analysis.

Learn mroe about trend analysis here :

https://brainly.com/question/30111618

#SPJ12

Translate the following statements into symbolic form. Avoid negation signs preceding quantifiers. The predicate letters are given in parentheses.
All maples are trees. (M, T)

Answers

The symbolic representation of the statement "All maples are trees" is: ∀x(M(x) → T(x))

To translate the statement "All maples are trees" into symbolic form, we can use predicate letters to represent the relevant concepts. Let's assign the predicate letters as follows:

M: x is a maple.

T: x is a tree.

Using these predicate letters, we can translate the statement as follows:

For all x, if x is a maple (M), then x is a tree (T).

In symbolic form, this can be represented as:

∀x(M(x) → T(x))

The symbol ∀ represents the universal quantifier "for all" or "for every," indicating that the statement applies to all objects in the domain of discourse. In this case, the domain of discourse would include all objects or elements under consideration, such as trees.

The arrow (→) represents the implication, indicating that if an object x is a maple (M), then it is also a tree (T). The implication symbolizes the logical relationship between the antecedent (M(x)) and the consequent (T(x)), stating that if the antecedent is true (x is a maple), then the consequent must also be true (x is a tree).

This symbolic form accurately captures the idea that for every object x in the domain, if it is a maple, then it is also a tree. It provides a concise and precise representation of the statement in the language of symbolic logic.

Learn more about domain at: brainly.com/question/30133157

#SPJ11

A small p-value provides what kind of evidence against the null?

Answers

A small p-value provides strong evidence against the null hypothesis. The null hypothesis is the hypothesis that there is no significant difference or relationship between two variables.

The p-value is the probability of obtaining a result as extreme or more extreme than the observed result, assuming the null hypothesis is true.
If the p-value is small, typically less than 0.05, it means that the observed result is unlikely to have occurred by chance alone if the null hypothesis is true. This suggests that there is strong evidence against the null hypothesis and that we should reject it in favor of the alternative hypothesis. .
For example, if we conduct a hypothesis test to determine whether a new drug is more effective than a placebo, a small p-value would indicate that the drug is indeed more effective. This is because the observed results are highly unlikely to occur if the drug is not effective.
In summary, a small p-value provides strong evidence against the null hypothesis and supports the alternative hypothesis. It suggests that the observed results are not due to chance and that there is a significant difference or relationship between the variables being studied.

To know more about Value visit:

https://brainly.com/question/19881297

#SPJ11

The volume of a box is 247. 8 in3. Find the volume of a larger, similarly shaped box that has a scale factor of 3

Answers

Answer:

6690.6 cubic inches

Step-by-step explanation:

if the volume of smaller is 247.8 then volume of larger is given by:

V (larger) = k³ V (smaller), where k is scale factor.

v (larger) = (3)³  (247.8)

= 27 X 247.8

= 6690.6 cubic inches

Other Questions
Assume that yy is the solution of the initial-value problemy+y={2sinxx2x0x=0,y(0)=1.y+y={2sinxxx02x=0,y(0)=1.If yy is written as a power seriesy=n=0[infinity]cnxn,y=n=0[infinity]cnxn,theny=y= + xx + x2x2 + x3x3 + x4+x4+ .Note: You do not have to find a general expression for cncn. Just find the coefficients one by one. the nurse is reviewing with a client the steroid hormones that are released from the adrenal glands. which hormone is not secreted from the adrenal gland? physical performance is noticeably affected when body water loss first reaches A condition caused by congenital deficiency of the thyroid secretion that is marked by arrested mental and physical development is write the complete sql command to list the frequency of all the dates of birth (i.e. for each date of birth show how many persons have that date of birth). write the name of the sql keywords in upper cases. do not use aliases. include each part (clause) of the command on a separate line as indicated. .Recurring vesicles on the surface of human skin are symptoms ofA) Gardnerella vaginosis.B) genital herpes.C) candidiasis.D) trichomoniasis.E) lymphogranuloma venereum please help! thank uu~ :) women are more likely to be arrested than men for a. prostitution. b. burglary. c. theft. d. murder. June was thinking of a number. June doubles it, then adds 18 to get an answer of 90. 7. What was the original number? What was the purpose of European exploration?A. To discover trade routes to the New yorkB. Discovery of new landsC. To determine if the world was roundD. To discover trade routes to india Consider the curve x2 + y + 2xy = 1 (a) [6 marks] Use implicit differentiation to determine in at the point (x, y) = (1,0). (b) [6 marks ]Use implicit differentiation to determine at the point (x,y) = (1,0). (c) [3 marks]Determine the degree 2 Taylor polynomial of y(x) at the point (x,y) = (1,0). the csirt is also known as the ir reaction team.T/F virtually all learning theories assume that our attitudes and behavioral decisions are acquired via . carbon dioxide is removed from the atmosphere by: group of answer choices A. tertiary consumers B. primary consumersC. producersD. secondary consumers researchers who wish to obtain individually identifiable medical information must what phenomenon results from the fact that the moon rotates once on its axis for every orbit that it makes around earth? Write a function called nested sum that takes a list of lists of integers and adds up the elements from all of the nested lists. For example: >>> t = [[1, 2], [3], [4, 5, 6]] >>> nested sum(t) positive reputation may be valued as an intangible corporate: the nurse receives an order to give an intramuscular (im) injection to a frail older adult weighing 98 lb (44.5 kg). which needle should the nurse use? The graph of the function f(x) = (x + 6)(x + 2) is shown below.On a coordinate plane, a parabola opens down. It goes through (negative 6, 0), has a vertex at (negative 4, 4), and goes through (negative 2, 0).Which statement about the function is true?The function is increasing for all real values of x wherex < 4.The function is increasing for all real values of x where6 < x < 2.The function is decreasing for all real values of x wherex < 6 and where x > 2.The function is decreasing for all real values of x wherex < 4.