Problem 1: his Water (density equal to 1000 kg/m) flows through a system of pipes that goes up a step. The water pressure is 140 kPa at the bottom of the step (point 1), the cross-sectional area of the pipe at the top of the step (point 2) is half that at the bottom of the step and the speed of the water at the bottom of the step is 1.20 m/s. The pressure at the top of the step is 120 kPa. Find the value of the height h? (10 points) y h 0 11

Answers

Answer 1

The value of the height h is 5 meters.

To find the value of the height h, we can apply Bernoulli's equation, which relates the pressure, density, and velocity of a fluid flowing through a system. Bernoulli's equation states that the sum of the pressure energy, kinetic energy, and potential energy per unit volume remains constant along a streamline.

Apply Bernoulli's equation at points 1 and 2:

At point 1 (bottom of the step):

P1 + 1/2 * ρ * v1^2 + ρ * g * h1 = constant

At point 2 (top of the step):

P2 + 1/2 * ρ * v2^2 + ρ * g * h2 = constant

Simplify the equation using the given information:

Since the pressure at point 1 (P1) is 140 kPa and at point 2 (P2) is 120 kPa, and the speed of the water at the bottom (v1) is 1.20 m/s, we can substitute these values into the equation.

140 kPa + 1/2 * 1000 kg/m^3 * (1.20 m/s)^2 + 1000 kg/m^3 * 9.8 m/s^2 * h1 = 120 kPa + 1/2 * 1000 kg/m^3 * v2^2 + 1000 kg/m^3 * 9.8 m/s^2 * h2

Since the cross-sectional area of the pipe at the top (point 2) is half that at the bottom (point 1), the velocity at the top (v2) can be calculated as v2 = 2 * v1.

Solve for the value of h:

Using the given values and the equation from Step 2, we can solve for the value of h.

140 kPa + 1/2 * 1000 kg/m^3 * (1.20 m/s)^2 + 1000 kg/m^3 * 9.8 m/s^2 * h1 = 120 kPa + 1/2 * 1000 kg/m^3 * (2 * 1.20 m/s)^2 + 1000 kg/m^3 * 9.8 m/s^2 * h2

Simplifying the equation and rearranging the terms, we can find that h = 5 meters.

Therefore, the value of the height h is 5 meters.

Learn more about Bernoulli's equation

brainly.com/question/29865910

#SPJ11


Related Questions

When a photon is absorbed by a semiconductor, an electron-hole pair is created. Give a physical explanation of this statement using the energy-band model as the basis for your description.

Answers

When a photon is absorbed by a semiconductor, an electron-hole pair is created due to the energy-band model. This occurs because photons carry energy, and when they interact with the semiconductor material, they can transfer their energy to the electrons within the material.

The energy-band model describes the behavior of electrons in a semiconductor material. In a semiconductor, such as silicon or germanium, there are two main energy bands: the valence band and the conduction band. The valence band contains electrons with lower energy, while the conduction band contains electrons with higher energy.

When a photon, which is a packet of electromagnetic energy, interacts with the semiconductor, its energy can be absorbed by an electron in the valence band. This absorption causes the electron to gain sufficient energy to move from the valence band to the conduction band, leaving behind an unfilled space in the valence band called a hole. This process is known as electron excitation.

The electron that moved to the conduction band now acts as a mobile charge carrier, capable of participating in electric current flow. The hole left in the valence band also behaves as a quasi-particle with a positive charge and can move through the material.

The creation of the electron-hole pair is a fundamental process in the operation of semiconductor devices such as solar cells, photodiodes, and transistors. These electron-hole pairs play a crucial role in the generation, transport, and utilization of electric charge within the semiconductor.

In summary, when a photon interacts with a semiconductor material, it can transfer its energy to an electron in the valence band. This energy absorption causes the electron to move to the conduction band, creating an electron-hole pair. The electron becomes a mobile charge carrier, contributing to electric current flow, while the hole acts as a positively charged quasi-particle.

Understanding the creation of electron-hole pairs is essential in the design and operation of semiconductor devices, where the manipulation and control of these charge carriers are crucial for their functionality. The energy-band model provides a framework for explaining and analyzing the behavior of electrons and holes in semiconductors, enabling advancements in modern electronics and optoelectronics.

To know more about photon ,visit:

https://brainly.com/question/30820906

#SPJ11

A cart at the farmer's market is loaded with potatoes and pulled at constant speed up a ramp to the top of a hill. If the mass of the loaded cart is 5.0 kg and the top of the hill has a height of 0.55 m, then what is the potential energy of the loaded cart at the top of the hill? 27 J 0.13 J 25 J 130 J

Answers

The potential energy of the loaded cart at the top of the hill is 27 J.

The potential energy (PE) of an object is given by the equation PE = mgh, where m is the mass of the object, g is the acceleration due to gravity (approximately 9.8 m/s²), and h is the height. In this case, the mass of the loaded cart is 5.0 kg, and the height of the top of the hill is 0.55 m. Plugging in these values into the equation, we have:

PE = (5.0 kg) * (9.8 m/s²) * (0.55 m)

Calculating this, we find:

PE ≈ 27 J

Therefore, the potential energy of the loaded cart at the top of the hill is approximately 27 joules.

To learn more about potential energy, click here: https://brainly.com/question/24284560

#SPJ11

A television is tuned to a station broadcasting at a frequency of 2.04 X 108 Hz. For best reception, the antenna used by the TV should have a tip-to-tip length equal to half the
wavelength of the broadcast signal. Find the optimum length of the antenna.

Answers

The optimum length of the antenna for best reception on the television tuned to a frequency of 2.04 X 10^8 Hz is half the wavelength of the broadcast signal i,e 73.5 cm

To find the optimum length of the antenna, we need to calculate half the wavelength of the broadcast signal. The wavelength (λ) of a wave can be determined using the formula:

λ = c / f

Where λ is the wavelength, c is the speed of light (approximately 3 X 10^8 meters per second), and f is the frequency of the wave. Plugging in the given frequency of 2.04 X 10^8 Hz into the formula:

λ = (3 X 10^8 m/s) / (2.04 X 10^8 Hz)

Simplifying the expression:

λ ≈ 1.47 meters

The optimum length of the antenna for best reception is half the wavelength. Thus, the optimum length of the antenna would be:

(1.47 meters) / 2 ≈ 0.735 meters or 73.5 centimeters.

To learn more about wavelength click here:

brainly.com/question/31143857

#SPJ11

Imagine you are a passenger upside-down at the top of a vertical looping roller coaster. The centripetal force acting on you at this position: (K:1) Select one: O a. lower than anywhere else in the loop O b. directed vertically downward O c. supplied by the seat of the rollercoaster O d. supplied by gravity

Answers

After considering the given data and analysing the information thoroughly we conclude that the correct option amongst all the other option is b, which is directed vertically downward.

When you are at the top of a vertical looping roller coaster, the centripetal force acting on you is directed vertically downward. This force is necessary to keep you moving in a circular path, and it is provided by the seat of the roller coaster. The seat exerts an upward normal force on you, which is equal in magnitude to the downward force of gravity acting on you. The net force acting on you is directed toward the center of the circular path, and it is the centripetal force that keeps you moving in that path.
To learn more about centripetal force
https://brainly.com/question/20905151
#SPJ4
The complete question is
Imagine you are a passenger upside-down at the top of a vertical looping roller coaster. The centripetal force acting on you at this position which one from the following is correct :
a. lower than anywhere else in the loop
b. directed vertically downward
c. supplied by the seat of the rollercoaster
d. supplied by gravity

A person weight is 640 N on the ground level of Planet X. What is the person weight in a high-altitude balloon at 90 km above the ground? (RPlanet X = 11.5 · 106 m and gPlanet X = 14.5 m/s2.)

Answers

The person's weight in the high-altitude balloon at 90 km above the ground level of Planet X is approximately 320 N.

The weight of an object can be calculated using the formula:

W = mg, where W is the weight, m is the mass, and g is the acceleration due to gravity.

The mass of the person remains constant, so to determine the weight at the higher altitude, we need to consider the change in the acceleration due to gravity. The gravitational acceleration decreases with increasing altitude due to the inverse square law.

Using the formula for gravitational acceleration at different altitudes, g' = (g0 * R0^2) / (R0 + h)^2, where g0 is the initial gravitational acceleration, R0 is the initial radius, h is the change in altitude, and g' is the new gravitational acceleration.

In this case, the radius of Planet X is given as 11.5 * 10^6 m. Plugging in the values, we can calculate the gravitational acceleration at 90 km above the ground:

g' = (14.5 * (11.5 * 10^6)^2) / ((11.5 * 10^6) + (90 * 10^3))^2.

By plugging in the given values and calculating g', we find it to be approximately 9.59 m/s^2.

Finally, we can calculate the weight at the higher altitude by multiplying the mass of the person by the new gravitational acceleration: W' = m * g'. Thus, the weight in the high-altitude balloon is approximately 320 N.

To learn more about weight click here: brainly.com/question/547621

#SPJ11

When two objects collide and bounce off each other after the collision, and there is no loss of kinetic energy, this type of collision is: All other answers are incorrect. Partially Elastic Perfectly Elastic Inelastic

Answers

A partially elastic collision is one where the kinetic energy is not conserved entirely, while in an inelastic collision, the colliding objects stick together after the collision.

When two objects collide and bounce off each other after the collision, and there is no loss of kinetic energy, this type of collision is known as perfectly elastic collision. Perfectly elastic collision is a type of collision between two objects where kinetic energy is conserved.

When two bodies collide elastically, they rebound with the same velocity as before the collision. During a perfectly elastic collision, there is no loss of kinetic energy, as the total kinetic energy before and after the collision is equal.Therefore, a perfectly elastic collision is one in which the two colliding objects bounce off each other without sticking together.

The colliding objects must have the same mass, and the velocity of the objects before and after the collision must also be the same. A perfectly elastic collision is ideal because there is no loss of energy, and kinetic energy is conserved. The two other types of collisions are partially elastic collisions and inelastic collisions.

To know more about elastic visit:

https://brainly.com/question/30999432

#SPJ11

1. (10 pts) Consider an isothermal semi-batch reactor with one feed stream and no product stream. Feed enters the reactor at a volumetric flow rate q(t) and molar concentration C (t) of reactant A. The reaction scheme is A à 2B, and the molar reaction rate of A per unit volume is r = KC12, where k is the rate constant. Assume the feed does not contain component B, and the density of the feed and reactor contents are the same. a. Develop a dynamic model of the process that could be used to calculate the volume (V) and the concentrations of A and B (C and C) in the reactor at any time. b. Perform a degrees of freedom analysis and identify the input and output variables clearly.

Answers

The dynamic model involves using mass balance and reaction kinetics principles to calculate the reactor volume (V) and the concentrations of reactant A (C) and product B (C) at any given time.

What is the dynamic model for the isothermal semi-batch reactor described in the paragraph?

The given paragraph describes an isothermal semi-batch reactor system with one feed stream and no product stream. The reactor receives a feed with a volumetric flow rate, q(t), and a molar concentration of reactant A, C(t). The reaction occurring in the reactor is A → 2B, with a molar reaction rate, r, given by the expression r = KC12, where K represents the rate constant. It is assumed that the feed does not contain component B, and the density of the feed and reactor contents are equivalent.

a. To develop a dynamic model of the process, one can utilize the principles of mass balance and reaction kinetics. By applying the law of conservation of mass, a set of differential equations can be derived to calculate the volume (V) of the reactor and the concentrations of A (C) and B (C) at any given time.

b. Performing a degrees of freedom analysis involves identifying the number of variables and equations in the system to determine the degree of freedom or the number of independent variables that can be manipulated. In this case, the input variable is the feed volumetric flow rate, q(t), while the output variables are the reactor volume (V) and the concentrations of A (C) and B (C).

Learn more about dynamic model

brainly.com/question/31580718

#SPJ11

A ray of light travels through a medium n1 and strikes a surface of a second medium, n2. The light that is transmitted to the medium n2 is deflected. This forms an angle smaller than its original direction, approaching the normal. We can conclude that medium 2 is more dense than medium 1.
Select one:
True
False

Answers

The conclusion that medium 2 is dense than medium 1 based solely on the fact that the transmitted light is deflected towards the normal is incorrect. This statement is false.

The phenomenon being described is known as refraction, which occurs when light travels from one medium to another with a different refractive index. The refractive index is a measure of how fast light travels in a particular medium. When light passes from a medium with a lower refractive index (n1) to a medium with a higher refractive index (n2), it slows down and changes direction.

The angle at which the light is deflected depends on the refractive indices of the two media and is described by Snell's law. According to Snell's law, when light travels from a less dense medium (lower refractive index) to a more dense medium (higher refractive index), it bends toward the normal. However, the denseness or density of the media itself cannot be directly inferred from the deflection angle.

To determine which medium is more dense, we would need additional information, such as the masses or volumes of the two media. Density is a measure of mass per unit volume, not directly related to the phenomenon of light refraction.

To learn more about refraction

https://brainly.com/question/27932095

#SPJ11

1111.A door is 2.5m high and 1.7m wide. Its moment of inertia is 180kgm^2. What would be its angular acceleration if you push it in the middle of the door with a force of 150N perpendicular to the door? (10 pts) What torque are you applying?(10 pts)

Answers

The angular acceleration of the door is calculated as to be 0.708 rad/s² and the torque being applied is calculated as to be 127.5 Nm.

A door is 2.5m high and 1.7m wide. Its moment of inertia is 180kgm². The torque that is being applied by a force F is given asτ = Fd, where d is the distance between the point of rotation (pivot) and the point of application of force.

Here, the force is applied at the center of the door, so the torque can be written asτ = F x (1/2w), where w is the width of the door.τ = 150 N x (1/2 x 1.7 m)τ

= 127.5 Nm

The moment of inertia of the door is given as I = 180 kg m². The angular acceleration α can be calculated as the torque divided by the moment of inertia,α = τ / Iα

= 127.5 / 180α

= 0.708 rad/s²

Therefore, the angular acceleration of the door is 0.708 rad/s².

The torque being applied is 127.5 Nm.

To know more about angular acceleration, refer

https://brainly.com/question/13014974

#SPJ11

An inductor with L - 18 mH is connected to a arcut that produces a current increasing steadily from 4 to 15 A ver a time of 255. What is the voltage across the inductor?

Answers

The voltage across the inductor is approximately 0.0788 V.

The voltage across an inductor can be calculated using the formula:

V = L * di/dt

Where:

V is the voltage across the inductor,

L is the inductance (given as 18 mH = 18 * 10^-3 H),

di/dt is the rate of change of current.

Given that the current increases steadily from 4 A to 15 A over a time of 255 s, we can calculate di/dt as follows:

di/dt = (change in current) / (change in time)

di/dt = (15 A - 4 A) / 255 s

di/dt = 11 A / 255 s

Now, we can substitute the values into the formula to find the voltage across the inductor:

V = (18 * 10^-3 H) * (11 A / 255 s)

V ≈ 0.0788 V

Therefore, the voltage across the inductor is approximately 0.0788 V.

Learn more about voltage:

https://brainly.com/question/1176850

#SPJ11

please explain answer if it seems too vague, especially #31. any
help i would appreciate. thank you
Question 26 (2 points) Listen 1) Fission is most commonly induced by bombarding large nuclei with high-speed particles like neutrons. spontaneously in nature. igniting large explosives. heating up fis

Answers

Fission is typically initiated by bombarding large atomic nuclei with high-speed particles such as neutrons, rather than occurring spontaneously in nature or through the ignition of large explosives.

Nuclear fission is a process in which the nucleus of an atom splits into two smaller nuclei, releasing a significant amount of energy. The most common method of inducing fission involves bombarding large atomic nuclei, such as those of uranium or plutonium, with high-speed particles like neutrons.

When a neutron collides with a heavy nucleus, it can be absorbed, causing the nucleus to become highly unstable. This leads to the nucleus undergoing fission, splitting into two smaller nuclei and releasing additional neutrons.

Spontaneous fission, on the other hand, is a rare phenomenon that occurs without any external influence. It happens when an unstable nucleus naturally decays, splitting into two smaller nuclei without the need for external particles.

However, spontaneous fission is more common in very heavy elements, such as those beyond uranium, and it is not the primary method used in practical applications like nuclear power or weapons.

The idea of fission occurring by igniting large explosives is incorrect. While high explosives can be used to compress fissile materials and initiate a chain reaction in a nuclear bomb, the actual fission process is not caused by the explosives themselves.

The explosives are used as a means to create the necessary conditions for a rapid and efficient fission chain reaction. In summary, the most common method to induce fission is by bombarding large atomic nuclei with high-speed particles like neutrons.

Spontaneous fission occurs naturally but is rare and more common in heavy elements. Igniting large explosives alone does not cause fission, although explosives can be used to initiate chain reactions in nuclear weapons.

To learn more about atomic nuclei  click here:

brainly.com/question/3992688

#SPJ11

Astronomers measure the distance to a particular star to
be 6.0 light-years (1 ly = distance light travels in 1 year). A spaceship travels from Earth to the vicinity of this star at steady speed, arriving in 3.50 years as measured by clocks on the spaceship. (a) How long does the trip take as measured by clocks in Earth's reference frame? (b) What distance does the spaceship travel as measured in its own
reference frame?

Answers

The time taken by the spaceship as measured by Earth's reference frame can be calculated as follows: Δt′=Δt×(1−v2/c2)−1/2 where:v is the speed of the spaceship as measured in Earth's reference frame, c is the speed of lightΔt is the time taken by the spaceship as measured in its own reference frame.

The value of v is calculated as follows: v=d/Δt′where:d is the distance between Earth and the star, which is 6.0 light-years. Δt′ is the time taken by the spaceship as measured by Earth's reference frame.Δt is given as 3.50 years.Substituting these values, we get :v = d/Δt′=6.0/3.50 = 1.71 ly/yr.

Using this value of v in the first equation v is speed, we can find Δt′:Δt′=Δt×(1−v2/c2)−1/2=3.50×(1−(1.71)2/c2)−1/2=3.50×(1−(1.71)2/1)−1/2=2.42 years. Therefore, the trip takes 2.42 years as measured by clocks in Earth's reference frame.

The distance traveled by the spaceship as measured in its own reference frame is equal to the distance between Earth and the star, which is 6.0 light-years. This is because the spaceship is at rest in its own reference frame, so it measures the distance to the star to be the same as the distance measured by Earth astronomers.

Learn more about speed:

brainly.com/question/13943409

#SPJ11

At gas is compressed slowly from 8m2 to 2m under a pressure of 6Pa. During the process 100J of heat was removed. What is the work done on the gas? What is the change in internal energy of the gas?

Answers

The work done on the gas is -36 J and the change in internal energy of the gas is -64 J.

To determine the work done on the gas and the change in internal energy, we can use the first law of thermodynamics, which states that the change in internal energy of a system is equal to the heat added to the system minus the work done by the system:

ΔU = Q - W

Q = -100 J (negative since heat is removed)

P = 6 Pa

A₁ = 8 m²

A₂ = 2 m²

First, we need to calculate the change in volume (ΔV) using the formula for the change in volume of a gas undergoing a process with constant pressure:

ΔV = A₂ - A₁

ΔV = 2 m² - 8 m² = -6 m² (negative since the gas is being compressed)

Now, let's calculate the work done on the gas (W) using the formula:

W = PΔV

W = 6 Pa * (-6 m²) = -36 J (negative since work is done on the gas)

Next, we can determine the change in internal energy (ΔU) using the first law of thermodynamics:

ΔU = Q - W

ΔU = -100 J - (-36 J) = -100 J + 36 J = -64 J (negative since the internal energy decreases)

To know more about work done refer to-

https://brainly.com/question/32263955

#SPJ11

A car comes to a stop six seconds after the driver applies the brakes. While the brakes are on, the following velocities are recorded:

Answers

The car has a negative acceleration of 4.17 m/s². It comes to a stop after six seconds as the velocity is decreasing at a constant rate of 4.17 m/s every second.

A car comes to a stop six seconds after the driver applies the brakes.

While the brakes are on, the following velocities are recorded:

Initial velocity, u = 25 m/sFinal velocity, v = 0 m/sTime, t = 6 s

Average acceleration, a can be calculated by the equation: a = (v - u) / t.

Therefore, substituting the values gives us:a = (0 - 25) / 6 = -4.17 m/s².

Here, the minus sign indicates that the acceleration is in the opposite direction to that of the initial velocity (deceleration).

The negative acceleration means that the velocity of the car decreases.

Therefore, the car's velocity is decreasing by 4.17 m/s every second. Hence, the car will come to a stop after six seconds as given in the problem statement.

To know more about acceleration visit:-

https://brainly.com/question/2303856

#SPJ11

Write the complete decay equation for the given nuclide in the complete 4xy notation. Refer to the periodic table for values of Z. A decay of 210 Po, the isotope of polonium in the decay series of 238U that was discovered by the Curies.

Answers

The complete decay equation for the given nuclide, 210Po, in the complete 4xy notation is:

210Po → 206Pb + 4He

Polonium-210 (210Po) is an isotope of polonium that undergoes alpha decay as part of the decay series of uranium-238 (238U). In alpha decay, an alpha particle (consisting of two protons and two neutrons) is emitted from the nucleus of the parent atom.

In the case of 210Po, the parent atom decays into a daughter atom by emitting an alpha particle. The daughter atom formed in this process is lead-206 (206Pb), and the emitted alpha particle is represented as helium-4 (4He).

The complete 4xy notation is used to represent the nuclear reactions, where x and y represent the atomic numbers of the daughter atom and the emitted particle, respectively. In this case, the complete decay equation can be written as:

210Po → 206Pb + 4He

This equation shows that 210Po decays into 206Pb by emitting a 4He particle. It is important to note that the sum of the atomic numbers and the sum of the mass numbers remain conserved in a nuclear decay reaction.

Learn more about decay

brainly.com/question/32239385

#SPJ11

Find the force corresponding to the potential energy
U(x) =-a/x + b/x^2 + cx^2

Answers

The force corresponding to the potential energy function U(x) = -a/x + b/[tex]x^{2}[/tex] + c[tex]x^{2}[/tex] can be obtained by taking the derivative of the potential energy function with respect to x.  The force corresponding to the potential energy function is  F(x) = a/[tex]x^{2}[/tex] - 2b/[tex]x^{3}[/tex] + 2cx.

To find the force corresponding to the potential energy function, we differentiate the potential energy function with respect to position (x). In this case, we have U(x) = -a/x + b/[tex]x^{2}[/tex] + c[tex]x^{2}[/tex].

Taking the derivative of U(x) with respect to x, we obtain:

dU/dx = -(-a/[tex]x^{2}[/tex]) + b(-2)/[tex]x^{3}[/tex] + 2cx

Simplifying the expression, we get:

dU/dx = a/[tex]x^{2}[/tex] - 2b/[tex]x^{3}[/tex] + 2cx

This expression represents the force corresponding to the potential energy function U(x). The force is a function of position (x) and is determined by the specific values of the constants a, b, and c in the potential energy function.

To learn more about potential energy click here:

brainly.com/question/1455245

#SPJ11

5Pb has a half-life of about t½ = 1.76x107 years and decays into 205Tl. There is no evidence for primordial 205Tl. (In other words, ALL of the 205Tl in the sample came from the decay of 205Pb) Estimate the age of a meteoroid with a ratio of 205Pb /205Tl = 1/65535. (Answer in scientific notation, in years, using 3 sig. figs.)

Answers

The estimated age of the meteoroid is approximately 2.13 x 10^9 years.

The ratio of 205Pb to 205Tl can be used to determine the number of half-lives that have occurred since the meteoroid formed. Since all 205Tl in the sample is from the decay of 205Pb, the ratio provides a direct measure of the number of 5Pb decay events.

The ratio of 205Pb to 205Tl is 1/65535, which means there is 1 unit of 205Pb for every 65535 units of 205Tl. Knowing that the half-life of 5Pb is approximately 1.76x10^7 years, we can calculate the age of the meteoroid.

To do this, we need to determine how many half-lives have occurred. By taking the logarithm of the ratio and multiplying it by -0.693 (the decay constant), we can find the number of half-lives. In this case, log (1/65535) * -0.693 gives us a value of approximately 4.03.

Finally, we multiply the number of half-lives by the half-life of 5Pb to find the age of the meteoroid: 4.03 * 1.76x10^7 years = 7.08x10^7 years. Rounding to three significant figures, the estimated age is approximately 2.13x10^9 years.

To learn more about half-life

Click here brainly.com/question/31666695

#SPJ11

Two very small particles of negligible radii are suspended by strings, each of length 1, from a common point. Each particle has mass m, but the one on the left has an electric charge 91 = 2 q, while the the one on the right has charge 3 q. Find the angle & that each string makes with the vertical in the following steps. (a) Draw a large picture of the system, with the two masses labeled mi, 91 and m2, 22. Make the angles of the two strings with respect to the vertical different, and label them 01 and 02. Both strings have the same length 1. Draw the forces on the two masses, naming the tensions in the two strings Tand T2. Be sure to include the gravitational and electrostatic forces. Showing appropriate com- ponents of forces on each mass (in terms of magnitudes of forces and sines and cosines), write down the net torque of the system about the attachment point of the two strings. In equilibrium, that net torque must be zero. Using this condi- tion, show that i = 02 = 0. (b) Draw a new picture of the system in which the two angles are equal. In addition to this picture, draw two separate free-body diagrams, one for each mass. Include the components of each force along the horizontal and vertical directions, and draw and label the axes (x and y) along those directions. (c) By referring to the large clear free-body diagrams that you have drawn for each of the two particles, write down the sum of the forces in the x and y direc- tions separately. Use these equations to find an expression that relates tan 8 to the mass m, string length 1, charge q, and the constants g (acceleration due to gravity) and Eo (permittivity of the vacuum). 1/3 (d) If 0 is small, show that your result in (a) gives 0 ~ (8.760mg 17)" 3).

Answers

In this system, two particles of mass m are suspended by strings of length 1 from a common point. One particle has a charge of 2q, while the other has a charge of 3q. By analyzing the net torque on the system, it can be denoted as θ1 and θ2, are equal.

(a) In equilibrium, the net torque about the attachment point of the strings must be zero. The gravitational force acting on each particle can be decomposed into a component along the string and a component perpendicular to it.

Similarly, the electrostatic force acting on each particle can be decomposed into components parallel and perpendicular to the string. By considering the torques due to these forces, it can be shown that the net torque is proportional to sin(θ1) - sin(θ2).

Since the net torque must be zero, sin(θ1) = sin(θ2). As the angles are small, sin(θ1) ≈ θ1 and sin(θ2) ≈ θ2. Therefore, θ1 = θ2 = θ.

(b) When the angles are equal, the system reaches equilibrium. Drawing separate free-body diagrams for each particle, the forces along the x and y directions can be analyzed.

The sum of the forces in the x-direction is zero since the strings provide the necessary tension to balance the electrostatic forces. In the y-direction, the sum of the forces is equal to the weight of each particle. By using trigonometry, the tension in the string can be related to the angles and the weight of the particles.

(c) By analyzing the free-body diagrams, the sum of the forces in the x and y directions can be written. Using these equations and trigonometric relationships, an expression relating tan(θ) to the mass (m), string length (1), charge (q), and constants (g and E₀) can be derived.

(d) If θ is small, the expression from (a) can be approximated using small angle approximations. Applying this approximation and simplifying the expression, we find that θ ≈ (8.760mg/17)^(1/3).

Learn more about torque here ;

https://brainly.com/question/30338175

#SPJ11

A circuit with equivalent resistance of 100 is connected to a 10
V battery. Measuring the current with an ammeter, it is found to be
1 A.
Select one:
True
False

Answers

The statement is incorrect. In this case, with a 10 V battery and a circuit resistance of 100 Ω, the expected current would be 0.1 A, not 1 A.

According to Ohm's Law, the current (I) flowing through a circuit is equal to the voltage (V) divided by the resistance (R), i.e., I = V/R. In this case, with a 10 V battery and a circuit resistance of 100 Ω, the expected current would be 10 V / 100 Ω = 0.1 A, not 1 A.
In this case, with a 10 V battery and an equivalent resistance of 100 Ω, the expected current should be 0.1 A. If the measured current is 1 A, it suggests that either the measurement is incorrect or there are additional factors affecting the circuit.
It is important to ensure accurate measurements and verify the connections and components in the circuit to identify any potential sources of error. If the measured current consistently deviates from the expected value, it may indicate a problem with the ammeter, an incorrect resistance value, or a different configuration in the circuit that is affecting the current flow.

Learn more about Ohm's law here:

https://brainly.com/question/27914610

#SPJ11

Q4 There are 3 polaroids is a row. The transmission axis of the first polaroid is vertical, that of the second polaroid is 45 degree from vertical, and that of the third polaroid is horizontal. Unpolarized light of intensity lo is incident on the first polaroid. What is the intensity of the light transmitted by the third polaroid?

Answers

When unpolarized light of intensity I₀ is incident on the first polaroid with a vertical transmission axis, the intensity of light transmitted by the first polaroid, denoted as I₁, is given by I₁ = I₀/2.

This occurs because the first polaroid only allows vertically polarized light to pass through, effectively reducing the intensity by half.

Next, this vertically polarized light reaches the second polaroid, which has a transmission axis inclined at 45 degrees from the vertical. The intensity of light transmitted by the second polaroid, denoted as I₂, can be calculated using the formula I₂ = I₁ cos²θ, where θ is the angle between the transmission axes of the second and third polaroids. In this case, θ is 45 degrees.

Substituting the value of I₁ = I₀/2 and θ = 45 degrees, we find I₂ = I₁/2 = (I₀/2)(1/2) = I₀/4. Thus, the intensity of light transmitted by the second polaroid is one-fourth of the original intensity I₀.

Finally, the vertically polarized light that passed through the second polaroid reaches the third polaroid, which has a horizontal transmission axis. Similar to the previous step, the intensity of light transmitted by the third polaroid, denoted as I₃, can be calculated as I₃ = I₂ cos²θ. Since θ is 45 degrees and I₂ = I₀/4, we have I₃ = I₂/2 = (I₀/4)(1/2) = I₀/8.

Therefore, the intensity of light transmitted by the third polaroid is I₀/8. This means that the light passing through all three polaroids and reaching the other side has an intensity equal to one-eighth of the original intensity I₀.

Understanding the behavior of polarized light and the effects of polaroid filters is crucial in various fields, such as optics, photography, and display technologies.

To learn more about polaroid, you can visit the following link:

brainly.com/question/30906185

#SPJ11

A hydrogen atom has orbital angular momentum 3.65 x 10^ - 34 Js (i) What letter (s, p, d or f) describes the electron? (ii) What is the atoms lowest corresponding value for n? (iii) Hence, what is the atoms minimum possible energy?

Answers

Answer: The minimum possible energy of the hydrogen atom is -3.4 eV.

The orbital angular momentum (L) of an electron is given as, L = √(l(l+1) x ℏ),

Where ℏ is Planck's constant and l is the quantum number of the orbital.

Given, L = 3.65 × 10^−34 Js

1. (i) The value of l can be determined from the given angular momentum as,

L = √(l(l+1) x ℏ)3.65 × 10^{-34} Js

= √(l(l+1) x 1.05 × 10^{-34}Js)

On squaring both sides, 3.65^{2} × 10^5^{-68} J5^{2}s^2 = l(l+1) x 1.05 × 105^{-34} Js

On simplifying ,l(l+1) = (3.655^{2}× 105^{-68} J5^{2}s5^{2}) / (1.05 × 10^−34 Js)l(l+1)

= 1.27 × 10^−34l5^{2} + l - 1.27 × 10^{-34} = 0

Using the quadratic formula, l = [-1 ± √(1 + 5.08 × 10^{-34})] / (2 x 1.27 × 10^{-34})l

= [-1 ± √(1 + 5.08 × 10^{-34})] / (2 x 1.27 × 10^{-34})

≈ 0.66.

Therefore, the value of l is 0, 1, 2, ..., n - 1, where n is the principal quantum number.

(ii) The letter s, p, d, or f, is given by the value of l. For l = 0, the letter is s, for l = 1, the letter is p, for l = 2, the letter is d, and for l = 3, the letter is f.

Thus, the letter that describes the electron is p. 2.

(ii) The lowest possible value of n can be determined using the relationship between n and l as n = l + 1Thus, n = l + 1 = 2

(iii) The minimum possible energy of the hydrogen atom is given as, E = −13.6 eV/n^{2} = −13.6 eV/2^{2} = -3.4 eV.

Therefore, the minimum possible energy of the hydrogen atom is -3.4 eV.

Learn more about energy : https://brainly.com/question/2003548

#SPJ11

: (1) The decay of a pure radioactive source follows the radioactive decay law N = Newhere N is the number of radioactive nuclei at time. Ne is the number at time and is the decay constant a) Define the terms half-life and activity and derive expressions for them from the above law.

Answers

Half-life:The half-life of a radioactive substance is defined as the time taken for half of the initial number of radioactive nuclei to decay. In terms of the decay constant, λ, the half-life, t1/2, is given by [tex]t1/2=0.693/λ.[/tex]

The value of t1/2 is specific to each radioactive nuclide and depends on the particular nuclear decay mode.Activity:

Activity, A, is the rate of decay of a radioactive source and is given by [tex]A=λN.[/tex]

The SI unit of activity is the becquerel, Bq, where 1 [tex]Bq = 1 s-1.[/tex]

An older unit of activity is the curie, Ci, where 1 [tex]Ci = 3.7 × 1010 Bq.[/tex]

The activity of a radioactive source decreases as the number of radioactive nuclei decreases.The decay law is given by [tex]N = N0e-λt[/tex]

Where N is the number of radioactive nuclei at time t, N0 is the initial number of radioactive nuclei, λ is the decay constant and t is the time since the start of the measurement.

The half-life of a radioactive substance is defined as the time taken for half of the initial number of radioactive nuclei to decay.

In terms of the decay constant, λ, the half-life, t1/2, is given by[tex]t1/2=0.693/λ.[/tex]

The activity of a radioactive source is the rate of decay of a radioactive source and is given by [tex]A=λN.[/tex]

To know more about radioactive visit:

https://brainly.com/question/1770619

#SPJ11

6. An electron beam is passed through crossed electric and magnetic fields. The force that each field exerts on the electrons is balanced by the force of the other field. The electric field strength is 375 N/C, and the magnetic field strength is 0.125 T. What is the speed of the electrons that pass through these fields undeflected? Enter your answer 7. Why do ions in a mass spectrometer first have to be passed through crossed electric and magnetic fields before being passed only through a magnetic field? Enter your answer

Answers

The speed of the electrons that pass through crossed electric and magnetic fields undeflected is 3 × 10^6 m/s.

To explain why ions in a mass spectrometer first have to be passed through crossed electric and magnetic fields before being passed only through a magnetic field, one would have to understand how mass spectrometers work.

A mass spectrometer is an instrument that scientists use to determine the mass and concentration of individual molecules in a sample. The mass spectrometer accomplishes this by ionizing a sample, and then using an electric and magnetic field to separate the ions based on their mass-to-charge ratio.

Ions in a mass spectrometer first have to be passed through crossed electric and magnetic fields before being passed only through a magnetic field because passing the ions through crossed electric and magnetic fields serves to ionize the sample.

The electric field ionizes the sample, while the magnetic field serves to deflect the ions, causing them to move in a circular path. This deflection is proportional to the mass-to-charge ratio of the ions.

After the ions have been separated based on their mass-to-charge ratio, they can be passed through a magnetic field alone. The magnetic field serves to deflect the ions even further, allowing them to be separated even more accurately.

To know more about speed of the electrons, visit:

https://brainly.com/question/31948190

#SPJ11

"Equal and Opposite Newton's third law of motion is often
stated as, ""For every action there is an equal and opposite
reaction."" True or False

Answers

The given statement "For every action there is an equal and opposite reaction" is true. This means that whenever an object exerts a force on another object, the second object exerts a force of equal magnitude but in the opposite direction on the first object.

Newton's third law of motion is often stated as "For every action there is an equal and opposite reaction."Newton's third law of motion is an important law of physics. This law explains that if one object exerts a force on another object, the second object exerts an equal and opposite force on the first object. This law implies that all forces come in pairs. For example, if you push a book on a table, the book will push back on your hand.

To learn more about Newton's third law of motion visit: https://brainly.com/question/26083484

#SPJ11

Plot the electric potential (V) versus position for the following circuit on a graph that is to scale. Make sure to label the locations a,b,c, and d on your horizontal axis. Find the current Ib​ What are the following values ΔVab​,ΔVda​,ΔVbd,​ΔVbc​,ΔVcd​ ?

Answers

The current Ib is 0.5 A. The values of ΔVab, ΔVda, ΔVbd, ΔVbc, and ΔVcd can only be determined with additional information about the circuit.

To plot the electric potential (V) versus position for the given circuit and determine the values of ΔVab, ΔVda, ΔVbd, ΔVbc, and ΔVcd, we need a clear understanding of the circuit diagram. Unfortunately, the question does not provide sufficient information about the circuit's components, such as resistors, capacitors, or voltage sources.

Without this information, it is impossible to accurately determine the values of ΔVab, ΔVda, ΔVbd, ΔVbc, and ΔVcd. However, we are given that the current Ib is 0.5 A. This suggests that there is a specific component or branch in the circuit labeled as Ib. The value of Ib represents the current flowing through that particular component or branch.

To calculate the values of ΔVab, ΔVda, ΔVbd, ΔVbc, and ΔVcd, we would need to analyze the circuit further, considering the specific elements and their connections. This would involve applying relevant circuit laws, such as Ohm's law or Kirchhoff's laws, to calculate voltage drops or potential differences across different components or segments of the circuit.

In summary, without additional information about the circuit's components and connections, we cannot accurately determine the values of ΔVab, ΔVda, ΔVbd, ΔVbc, and ΔVcd. However, the given value of 0.5 A represents the current flowing through a specific component or branch labeled as Ib.

Learn more about Current

brainly.com/question/31315986

#SPJ11

1. [0/5 Points] DETAILS PREVIOUS ANSWERS KATZPSE1 38.P.001. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER The Sun appears at an angle of 55.8° above the horizontal as viewed by a dolphin swimming underwater. What angle does the sunlight striking the water actually make with the horizon? (Assume nwater = 1.333. Enter an answer between 0° and 90°.) 38.31 Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error.º

Answers

The Sun appears at an angle of 55.8° above the horizontal when viewed by a dolphin swimming underwater. To determine the angle at which sunlight actually strikes the water in relation to the horizon, we can use Snell's Law. Given that the refractive index of water (n) is 1.333, we can calculate the angle of refraction.

Snell's Law states that n1 sin θ1 = n2 sin θ2, where θ1 is the angle of incidence, θ2 is the angle of refraction, n1 is the refractive index of the incident medium, and n2 is the refractive index of the refracted medium.

Substituting the given values, we have:

1.000 sin 55.8° = 1.333 sin θ2

Solving for θ2:

θ2 = sin⁻¹((1.000 sin 55.8°) / 1.333)

θ2 ≈ 38.31°

Therefore, the angle at which sunlight strikes the water in relation to the horizon is approximately 38.31°.

To learn more about the refraction of light, Snell's Law, and related topics, you can visit the following link: brainly.com/question/33217183

#SPJ11

A long straight wire can carry a current (100A). 1. what is the force (magnitude ans direction) on an electron traveling parallel to the wire, in the opposite direction to the current ar a speed of 10^7 m/s, when it is 10 cm from the wire?
2. what is the force on the electron (in circumstances from #1) when it travels perpendicularly towards the wire?

Answers

The force on the electron (in circumstances from #1) when it travels perpendicularly towards the wire is 3.2 × 10⁻¹² N, downwards.

1. Force on electron traveling parallel to the wire, in the opposite direction to the current at a speed of 107 m/s, when it is 10 cm from the wire

Force experienced by the electron is given by the Lorentz force, which is given by the formula:

F = Bqv

where, F = force experienced by the electron

B = magnetic field strength

q = charge on the electron

v = velocity of the electron

Using the right-hand thumb rule, we know that the direction of the magnetic field is perpendicular to both the velocity of the electron and the direction of the current flow.

Thus, the direction of the magnetic field will be in the plane of the screen and into it, as the current is flowing from left to right. Hence, we can use the formula:

$$B = \frac{{{\mu _0}I}}{{2\pi r}}$$

where, B = magnetic field strength

I = current flowing through the wire${\mu _0}$ = permeability of free space = 4π × 10⁻⁷ TmA⁻¹

r = distance of the electron from the wire= 10 cm = 0.1 m

Substituting the given values in the above formula, we get:

B = \frac{{4\pi \times {{10}^{ - 7}} \times 100}}{{2\pi \times 0.1}} = 2 \times {10^{ - 4}}T$$

Hence, the force experienced by the electron is given by:$$F = Bqv = 2 \times {{10}^{ - 4}} \times 1.6 \times {{10}^{ - 19}} \times 10^7 = 3.2 \times {10^{ - 12}}N$$

The direction of the force experienced by the electron will be opposite to the direction of current flow, i.e. from right to left.

2. Force on the electron (in circumstances from #1) when it travels perpendicularly towards the wire.

We know that the force experienced by an electron moving perpendicular to the magnetic field is given by the formula:$$F = Bqv$$

Here, the electron is moving perpendicularly towards the wire. Hence, its velocity will be perpendicular to the current flow. We know that the direction of the magnetic field is into the plane of the screen. Hence, the direction of the force experienced by the electron will be downwards. Thus, we can calculate the force using the formula above, which is given by:

F = Bqv = 2 \times {{10}^{ - 4}} \times 1.6 \times {{10}^{ - 19}} \times 10^7 = 3.2 \times {10^{ - 12}}N$$

To know more about force:

https://brainly.com/question/30507236


#SPJ11

Three resistors, each having a resistance of 30 Q2, are connected in parallel with each other. What is the value of their effective resistance? A string of 50 identical tree lights connected in series dissipates 100 W when connected to a 120 V power outlet. What is the equivalent resistance of the string?

Answers

The effective resistance of the three resistors connected in parallel is 10 Q2. To find the effective resistance of resistors connected in parallel, you can use the formula:

1/Req = 1/R1 + 1/R2 + 1/R3 + ...

In this case, you have three resistors connected in parallel, each with a resistance of 30 Q2. So, we can substitute these values into the formula:

1/Req = 1/30 Q2 + 1/30 Q2 + 1/30 Q2

1/Req = 3/30 Q2

1/Req = 1/10 Q2

Req = 10 Q2

Therefore, the effective resistance of the three resistors connected in parallel is 10 Q2.

Learn more about resistance here : brainly.com/question/32301085
#SPJ11

A 6.1 g marble is fired vertically upward using a spring gun. The spring must be compressed 8.3 cm if the marble is to just reach a target 26 m above the marble's position on the compressed spring. (a) What is the change AUg in the gravitational potential energy of the marble-Earth system during the 26 m ascent? (b) What is the change AUs in the elastic potential energy of the spring during its
launch of the marble? (c) What is the spring constant of the spring?

Answers

The spring constant of the spring is 6.78 Newtons per meter.

To solve this problem, we'll calculate the change in gravitational potential energy and the change in elastic potential energy, and then determine the spring constant.

Given:

Mass of the marble (m) = 6.1 g = 0.0061 kg

Height of ascent (h) = 26 m

Compression of the spring (x) = 8.3 cm = 0.083 m

(a) Change in gravitational potential energy (ΔUg):

The change in gravitational potential energy is given by the formula:

ΔUg = m * g * h

where m is the mass, g is the acceleration due to gravity, and h is the height of ascent.

Substituting the given values:

ΔUg = 0.0061 kg * 9.8 m/s² * 26 m

Calculating this expression gives:

ΔUg ≈ 1.56 J

Therefore, the change in gravitational potential energy during the ascent is approximately 1.56 Joules.

(b) Change in elastic potential energy (ΔUs):

The change in elastic potential energy is given by the formula:

ΔUs = (1/2) * k * x² where k is the spring constant and x is the compression of the spring.

Substituting the given values:

ΔUs = (1/2) * k * (0.083 m)²

Calculating this expression gives:

ΔUs ≈ 2.72 × 10^(-3) J

Therefore, the change in elastic potential energy during the launch of the marble is approximately 2.72 × 10^(-3) Joules.

(c) Spring constant (k):

To find the spring constant, we can rearrange the formula for ΔUs:

k = (2 * ΔUs) / x²

Substituting the calculated value of ΔUs and the given value of x:

k = (2 * 2.72 × 10^(-3) J) / (0.083 m)²

Calculating this expression gives:k ≈ 6.78 N/m

Therefore, the spring constant of the spring is approximately 6.78 Newtons per meter.

Learn more about  spring constant from the given link

https://brainly.com/question/22712638

#SPJ11

Final answer:

The increase in gravitational potential energy is 1549.56 J, the change in elastic potential of the spring is also 1549.56 J, and the spring constant is approximately 449 N/m.

Explanation:

(a) The change ΔUg in the gravitational potential energy of the marble-Earth system during the 26 m ascent can be calculated using the formula ΔUg = m*g*h, where m is mass, g is the gravitational constant, and h is the height. So, ΔUg = 6.1g * 9.8 m/s² * 26m = 1549.56 J.

(b) The change ΔUs in the elastic potential energy of the spring during its launch of the marble is equivalent to the gravitational potential energy at the peak of the marble's ascent. Thus, ΔUs equals 1549.56 J.

(c) The spring constant k can be found using the formula for elastic potential energy ΔUs = 0.5kx², where x is the compression of the spring. Solving for k, we get k = 2*ΔUs/x² = 2*1549.56 J / (8.3cm)² = 449 N/m.

Learn more about Elastic and Gravitational Potential Energy here:

https://brainly.com/question/14687790

#SPJ2

A 60.5-kg man lies on his back on a bed of nails, with 1,206 of the nails in contact with his body. The end of each nail has area 1.10 ✕ 10−6 m2. What average pressure is exerted by each nail on the man's body?
Pa

Answers

Each nail exerts an average pressure of approximately 5.02 × 10^6 Pascal (Pa) on the man's body.

To determine the average pressure exerted by each nail on the man's body, we can use the formula:Pressure = Force / Area. The force exerted by each nail can be calculated by multiplying the weight of the man by the number of nails in contact with his body. The weight can be calculated as:Weight = mass * gravitational acceleration.where the mass of the man is given as 60.5 kg and the gravitational acceleration is approximately 9.8 m/s².Weight = 60.5 kg * 9.8 m/s².Next, we divide the weight by the number of nails in contact to find the force exerted by each nail:Force = Weight / Number of nails

Force = (60.5 kg * 9.8 m/s²) / 1206 nails
Now, we can calculate the average pressure exerted by each nail bydividing the force by the area of each nail:Pressure = Force / Area

Pressure = [(60.5 kg * 9.8 m/s²) / 1206 nails] / (1.10 × 10^(-6) m²)

Simplifying the expression gives us the average pressure:

Pressure ≈ 5.02 × 10^6 Pa
Therefore, each nail exerts an average pressure of approximately 5.02 × 10^6 Pascal (Pa) on the man's body.

To learn more about pressure:

https://brainly.com/question/29341536

#SPJ11

Other Questions
You are attempting a stunt with a hot wheels launcher (and a hot wheels car as well) as shown. in the picture.a) Considering that the spring that you got has an elastic constant of 1000 N/m, calculate which needs to be the initial deformation of the spring for the car to exactly make thejump. Assume the mass of the car is 20.0 grams. At what rate must the potential difference between the plates of a parallel-plate capacitor with a 2.2 uF capacitance be changed to produce a displacement current of 2.0 A? What are some group counseling activity can you used has acounselor leader expressing Choice Theory/Reality Therapy What are the differences among T-bills, T-notes, and T-bonds? (LG 6-2) 3. What is a STRIPS? Who would invest in a STRIPS? (LG 6-2 Rio guessed she would score a 90 on her math test. She earned an 86 on her math test. What is the percent error? Structured and semi-structured interviews were developed to address what main problem? 1. Clinicians and researchers had tremendous difficulty in making consistent and accurate diagnoses of mental disorders with unstructured clinical interviews 2. The DSM used during development of structured interviews was not field trialed and resulted in disorders with weak validity 3. Insurance companies did not cover visits with diagnoses resulting from a structured interview 4. None of the above The gas in a constant-volume gas thermometer has a pressure of91.0 kPa at 106 CC. What is the pressure of the gas at 47.5 C?At what temperature does the gas have a pressure of 115 kPa? People with metabolic syndrome and type 2 diabetes often haveelevated LDL and VLDL levels, and low HDL levels.Group of answer choicesTrueFalse Burl and Paul have a total weight of 688 N. The tensions in the ropes that support the scaffold they stand on add to 1448 N. Determine the weight of the scaffold (N). (Note: Be sure to report answer with the abbreviated form of the unit.) Sam is not allowed to touch the TV remote. Nevertheless, he uses the remote to change the volume from level 13 to 15. His parents, who are in the next room, seem unaware. The next day, Sam becomes bold and turns the volume from level 13 to 26. His father yells at him, "Stop playing with the remote!" What prevented Sam's father from noticing the volume change on the previous day?a. absolute thresholdb.fixed thresholdc.difference thresholdd.distinct threshold Need help ASAP please Nataro, Incorporated, has sales of $678,000, costs of $339,000, depreciation expense of $84,000, interest expense of $49,000, and a tax rate of 21 percent. The firm paid out $79,000 in cash dividends, What is the addition to retained earnings? Note: Do not round intermediate calculations and round your answer to the nearest whole number, e.g. 32. Empire Electric Company (EEC) uses only debt and common equity. It can borrow unlimited amounts at an interest rate of ra- 10% as long as it finances at its target capital structure, which calls for 30% debt and 70% common equity. Its last dividend (Do) was $2.25, its expected constant growth rate is 3%, and its common stock sells for $20. EEC's tax rate is 25%. Two projects are available: Project A has a rate of return of 15%, and Project B's return is 12%. These two projects are equally risky and about as risky as the firm's existing assets.a. What is its cost of common equity? Do not round intermediate calculations. Round your answer to two decimal places.b. What is the WACC? Do not round intermediate calculations. Round your answer to two decimal places.%c. Which projects should Empire accept?-Select- An experiment is replicable if the same scientist does the experiment twice and gets similar data. True False Mrs Dupont consults you about diarrhea; during the visit, you take note of the following signs: - loss of appetite - bloating cold limbs - fatigue - stools containing undigested food - oedema of lower limbs urinary problems lumbar pain.Choose the right energetic diagnosisA Fullness of heart QiB Collapse of spleen QiC Empty yang of the spleenD Insufficient yin of the kidneys Based on the chart, what are the three most effective methods to protect against pregnancy?IUD, implant, injectionpatch, vaginal ring, implantpatch, vaginal ring, pillvaginal ring, patch, injection Is the following disagreement a difference in moral principles or a difference in beliefs? Explain.Jenny thinks that it is morally wrong to have an abortion after 6 weeks because that is when a fetus becomes a living, innocent person, and it is wrong to kill an innocent person.Amber thinks it is always from to kill an innocent person, but argues that abortion is always morally acceptable because a pregnancy is not a person. 6. Heilman, Manzi and Braun (2008, p. 90) found that:"Despite womens advancement in the workplace, their representation in male-dominated fields and occupations remains distressingly low. What accounts for the scarcity of women in traditionally male roles? It is not a consequence of differential experience, education or skills. Rather, we posit that womens participation in the workplace is hindered by gender bias in evaluation."What is the name of this perceptual bias and how can its effects be reduced? PLEASE HELPThe model y = -2x + 8 indicates the depth of a pool y (in feet) after x minutes of draining. (2,4) represents what in this context? 1. After 4 minutes, the depth of the pool is 2 feet. 2. After 2 minutes, the depth of the pool is 4 feet M works as a data scientist at an oil company. He is in charge of designing fast algorithms for understanding geological survey data. M came across a data matrix A = Ik of size kx k. Here k > 21. His manager asked him to study 2 matrices Cl = A - B and C2 = (A+ B)^-1 where B R^kxk.It is also known that B+B^T = Okxk The manager wants him to derive some properties of the matrix D = C1C2. (a) The manager claimed that he can find the sum of absolute value of eigenvalues of D from the given information. M thinks this is not possible. (b) M daimed that he can find the determinant of the matrix D easily from the given information. To this Manager replied that M's claim is wrong. (c) The manager also claimed that he can find the Frobenius norm of the matrix D with given information. To this M replied that its impossible to find the Frobenius norm but the matrix 1-norm can be found easily with the given properties. Who is telling the truth. Prove or disprove each of the state-ments