Problem A particle moves through the origin of an xy coordinate system at t = 0 with initial velocity i = (21 - 14) m/s. The particle moves in the xy plane with an acceleration = 4.1 m/s2.
A particle initially located at the origin has an acceleration of = 2.6 m/s2 and an initial velocity of i = 5.3 m/s.
(a) Find the velocity of the particle at t = 6.0 s.
i m/s +
m/s j
(b) Find the speed of the particle at this time.
m/s
(c) Find the angle between the direction of travel of the particle and the x axis at this time.

Answers

Answer 1

(a) The velocity of the particle at t = 6.0 s is 45.6 m/s i - 14 m/s j

(b) The speed of the particle at t = 6.0 s is approximately 47.7 m/s.

(c) The angle between the direction of travel of the particle and the x-axis at this time is approximately -17.2°.

a)

The velocity of the particle is,

vf = vi + a*t

Here,

vi = 21i - 14j m/s  

a = 4.1 m/s² .

Hence,

vf = (21i - 14j) + (4.1 m/s²)(6.0s)i m/s + (-14j) m/s  

vf = (21 + 24.6)i - 14j m/s

vf = 45.6i - 14j m/s

Therefore, the velocity of the particle at t = 6.0 s is 45.6 m/s i - 14 m/s j.

b)

The speed of the particle is,

Speed = |v|

        |v| = √(vx² + vy²)  

Here,

vx = 45.6 m/s  and vy = -14 m/s

Hence,

Speed = |v| = √((45.6 m/s)² + (-14 m/s)²)

           ≈ 47.7 m/s

Therefore, the speed of the particle at t = 6.0 s is approximately 47.7 m/s.

c)

The angle between the direction of travel of the particle and the x-axis is,

tanθ = vy/vx = (-14 m/s) / (45.6 m/s)

    θ = tan⁻¹( (-14 m/s) / (45.6 m/s) )

       ≈ -17.2°

Therefore, the angle between the direction of travel of the particle and the x-axis at this time is approximately -17.2°.

Learn more about the velocity:

brainly.com/question/21260195

#SPJ11


Related Questions

a small power plant produces a voltage of [v] kv and current of [i] a. the voltage is stepped up to [w] kv by a transformer before it is transmitted to a substation. the resistance of the transmission line between the power plant and the substation is [r] .capital omega what percentage of the power produced at the power plant is lost in transmission to the substation?

Answers

Percentage of Power Loss = (Power Loss / P1) * 100

= ((v * i) - (w * i)) / (v * i) * 100.

Simplifying this expression gives us the percentage of power lost in transmission from the power plant to the substation.

To calculate the percentage of power lost in transmission from the power plant to the substation, we can use the formula:

Percentage of Power Loss = (Power Loss / Power Produced) * 100.

Power is given by the equation:

Power = Voltage * Current.

Let's denote the power produced at the power plant as P1, and the power received at the substation as P2.

The power produced at the power plant is given by:

P1 = (v * i) kW.

After stepping up the voltage by the transformer, the power at the substation can be calculated as:

P2 = (w * i) kW.

The power loss in transmission can be calculated as :

Power Loss = P1 - P2.

Now, substituting the values:

Power Loss = (v * i) - (w * i) kW.

Finally, we can calculate the percentage of power lost:

Percentage of Power Loss = (Power Loss / P1) * 100

= ((v * i) - (w * i)) / (v * i) * 100.

To know more about power plant, here

brainly.com/question/1474542

#SPJ4

if the temperature at the bottom is 3.4 ∘c and at the top 19.9 ∘c , what is the radius of the bubble just before it reaches the surface?

Answers

The radius of the bubble just before it reaches the surface can be determined using the temperature difference between the bottom and top of the bubble.

The explanation of the answer involves the application of the ideal gas law and the assumption of isothermal conditions during the ascent of the bubble.

To calculate the radius of the bubble, we can make use of the ideal gas law, which states that the pressure of a gas is directly proportional to its temperature. Assuming the bubble follows ideal gas behavior and that the conditions during its ascent are isothermal, we can equate the pressures at the bottom and top of the bubble.

Using the equation P = ρgh, where P is the pressure, ρ is the density of the liquid, g is the acceleration due to gravity, and h is the height of the bubble, we can set up an equation for the pressure difference between the bottom and top of the bubble. Since the temperature is directly related to the pressure, we can express this pressure difference in terms of the temperature difference.

Using the ideal gas law, PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature, we can express the pressure difference in terms of the radius of the bubble.

By equating the pressure difference equation with the ideal gas law equation, we can solve for the radius of the bubble just before it reaches the surface.

Learn more about ideal gas law here:

https://brainly.com/question/12624936

#SPJ11

assume that a 7.0-cm-diameter, 110 w light bulb radiates all its energy as a single wavelength of visible light.

Answers

The wavelength of visible light is in the range of 400-700 nm. Assume that a 7.0-cm-diameter, 110 w light bulb radiates all its energy as a single wavelength of visible light. To calculate the energy of the light, we must first convert the diameter of the bulb into a radius:r = d/2 = 3.5 cm.

We can then calculate the surface area of the bulb: A = πr² = π(3.5 cm)² = 38.48 cm²The radiant flux of the light bulb (power emitted) is 110 W, which means it emits 110 joules of energy per second. The energy density of the light can be found by dividing the radiant flux by the surface area: E = P/A = 110 W / 38.48 cm² = 2.86 W/cm².

Now, we can use the equation for radiant energy density to find the energy per photon: E = hc/λ, where h is Planck's constant, c is the speed of light, and λ is the wavelength of the light.

Solving for λ, we get:λ = hc/E = (6.626 x 10⁻³⁴ J s)(3.00 x 10⁸ m/s) / (2.86 W/cm²)(10⁴ cm²/m²) = 2.19 x 10⁻⁷ m or 219 nm.

Therefore, the wavelength of the light emitted by the bulb is 219 nm.

Learn more about radiant flux here ;

https://brainly.com/question/15655691

#SPJ11

ground the electroscope and charge your pvc pipe with fur. approach but do not touch the electroscope with the charged pipe, then withdraw the pipe. What happens to the leaves of the electroscope?

Answers

When the electroscope is grounded and a PVC pipe charged with fur is brought near it without touching, the leaves of the electroscope will diverge.

The electroscope is a device used to detect the presence of electric charge. It consists of a metal rod with two thin leaves attached to the bottom. When the electroscope is grounded, any excess charge on the leaves is neutralized and they collapse.

When a PVC pipe is charged with fur, it becomes negatively charged. As like charges repel each other, the negative charge on the PVC pipe repels the electrons in the leaves of the electroscope. Even though the pipe does not physically touch the electroscope, the electric field from the charged pipe causes the electrons in the leaves to move apart, resulting in their divergence. This happens because the electrons in the leaves experience a force of repulsion from the negative charge on the PVC pipe.

Once the charged pipe is withdrawn, the electric field weakens, and the leaves gradually come back together. The electroscope returns to its initial state with the leaves collapsed, indicating that the excess charge has been neutralized.

To learn more about electroscope refer:

https://brainly.com/question/29643675

#SPJ11

prove that the parity operator is hermitian. (b) show that the eigenfunctions of the parity operator corresponding to di fferent eigenvalues are orthogonal.

Answers

(a) The parity operator is Hermitian as it satisfies P† = P.

(b) Eigenfunctions of the parity operator with different eigenvalues are orthogonal.

(a) To prove that the parity operator is Hermitian, we must show that it satisfies the condition: P† = P, where P† denotes the Hermitian conjugate of the operator P.

The parity operator, denoted by P, is defined as follows:

Pψ(x) = ψ(-x),

where ψ(x) is the wavefunction.

To prove that P is Hermitian, we consider the Hermitian conjugate of the parity operator P†:

P†ψ(x) = [ψ(-x)]†.

Since we are dealing with complex conjugation, we can write this as:

P†ψ(x) = ψ*(-x),

where ψ*(x) represents the complex conjugate of the wavefunction ψ(x).

Comparing P†ψ(x) with Pψ(x), we can observe that they are equal except for the presence of the complex conjugate in P†ψ(x). However, the complex conjugate does not affect equality since it cancels out when taking the inner product or evaluating the integral.

Thus, P†ψ(x) = ψ*(-x) = ψ(x) = Pψ(x).

Since P†ψ(x) = Pψ(x), we can conclude that the parity operator P is Hermitian.

(b) To show that the eigenfunctions of the parity operator corresponding to different eigenvalues are orthogonal, we need to demonstrate that their inner product is zero.

Let ψ1(x) and ψ2(x) be two eigenfunctions of the parity operator with eigenvalues p1 and p2, respectively, where p1 ≠ p2.

The eigenvalue equation for the parity operator can be written as:

Pψ(x) = pψ(x).

Considering the inner product of ψ1(x) and ψ2(x) and using the definition of the parity operator, we have:

⟨ψ1|ψ2⟩ = ∫ ψ1*(x)ψ2(x) dx.

Now, we can substitute the definition of the parity operator into this inner product:

⟨ψ1|ψ2⟩ = ∫ ψ1*(-x)ψ2(x) dx.

Since p1 ≠ p2, the eigenvalues of ψ1(x) and ψ2(x) are different. This implies that their corresponding eigenfunctions are distinct and do not have the same symmetry properties under parity.

When integrating the product ψ1*(-x)ψ2(x) over the entire domain, the integrand will exhibit oscillatory behavior due to the mismatch in the symmetry of the two functions.

As a result, the integral ∫ ψ1*(-x)ψ2(x) dx will evaluate to zero, indicating that the eigenfunctions of the parity operator corresponding to different eigenvalues are orthogonal.

Therefore, we can conclude that the eigenfunctions of the parity operator with different eigenvalues are orthogonal.

Learn more about hermitian operators at

https://brainly.com/question/32229692

#SPJ4

a maciromwave an an eray are traveling in a vacuum compared to the wavelnegth and period of the microwave the x ray hasa wavelnegth that is

Answers

A maciromwave and an X-ray are traveling in a vacuum compared to the wavelnegth and period of the microwave,  the X-ray has a wavelnegth that is shorter than that of a microwave

A microwave and an X-ray are both electromagnetic waves that travel through a vacuum, they differ in their wavelength and frequency. The wavelength of an X-ray is shorter than that of a microwave. The wavelength and period of a wave are inversely proportional. This means that as the wavelength decreases, the frequency and period increase. This is the case for X-rays, which have a high frequency and short period compared to microwaves.

In terms of energy, X-rays have more energy than microwaves due to their shorter wavelength. This allows X-rays to penetrate materials more easily and be used in medical imaging. In conclusion, the wavelength and period of a wave are inversely related. X-rays have a shorter wavelength and higher frequency compared to microwaves, allowing them to have more energy and penetrate materials more easily. So therefore the wavelength of an X-ray is shorter than that of a microwave.

To know more about X-rays visit:

https://brainly.com/question/29774932

#SPJ11

based on your results, determine what the index of refraction is in both water and glass for light of wavelength 629.0 nm.

Answers

For light of wavelength 629.0 nm, the index of refraction in water is approximately 1.33, and in glass, it is approximately 1.5.

To determine the index of refraction in water and glass for light of wavelength 629.0 nm, we need to use the equation for index of refraction:

Index of refraction (n) = c / v

where c is the speed of light in a vacuum and v is the speed of light in the medium.

The speed of light in a vacuum is approximately 3.0 x 10^8 meters per second (m/s).

For water:

The speed of light in water is slower than in a vacuum. The index of refraction for water varies slightly with wavelength, but for simplicity, we can use an average value of 1.33.

Index of refraction (water) = c / v = 3.0 x 10^8 m/s / v

To find v, we need to use the equation for the speed of light in a medium:

v = c / n

Substituting the values, we have:

v (water) = c / n (water) = 3.0 x 10^8 m/s / 1.33 = 2.26 x 10^8 m/s

Now we can find the index of refraction (n) in water for light of wavelength 629.0 nm:

n (water) = c / v (water) = 3.0 x 10^8 m/s / 2.26 x 10^8 m/s ≈ 1.33

For glass:

The index of refraction for glass varies depending on the type of glass. Let's assume a typical value of 1.5 for simplicity.

Index of refraction (glass) = c / v = 3.0 x 10^8 m/s / v

Using the same equation as before, we find:

v (glass) = c / n (glass) = 3.0 x 10^8 m/s / 1.5 = 2.0 x 10^8 m/s

And the index of refraction (n) in glass for light of wavelength 629.0 nm is:

n (glass) = c / v (glass) = 3.0 x 10^8 m/s / 2.0 x 10^8 m/s = 1.5

Learn more about Index of refraction here:

https://brainly.com/question/30761100

#SPJ11

It takes a force of 5.00 NN to stretch an ideal spring 2.00 cm. What force does it take to stretch the spring an additional 4.00 cm?

Answers

The force required to stretch the spring an additional 4.00 cm is 10.00 NN.

According to Hooke's Law, the force required to stretch or compress a spring is directly proportional to the displacement. The formula for Hooke's Law is:

F = k * x

where F is the force applied, k is the spring constant, and x is the displacement from the equilibrium position.

In this case, we are given that a force of 5.00 NN is required to stretch the spring by 2.00 cm. Let's use this information to calculate the spring constant, k:

5.00 NN = k * 2.00 cm

To simplify the calculation, we need to convert centimeters to meters:

5.00 NN = k * 0.02 m

Now we can solve for k:

k = 5.00 NN / 0.02 m

k = 250.00 N/m

Now that we have the spring constant, we can calculate the force required to stretch the spring an additional 4.00 cm. Let's denote this force as F2:

F2 = k * x2

where x2 is the displacement of 4.00 cm or 0.04 m:

F2 = 250.00 N/m * 0.04 m

F2 = 10.00 N

Therefore, it takes a force of 10.00 N to stretch the spring an additional 4.00 cm.

The force required to stretch the spring an additional 4.00 cm is 10.00 N.

To learn more about force, visit    

https://brainly.com/question/28572157

#SPJ11

In an aqueous solution of a certain acid with pKa = 4.60 the pH is 3.16. Calculate the percent of the acid that is dissociated in this solution. Round your answer to 2 significant digits 0% alo x10 Ar

Answers

The percent of acid dissociation of a certain acid in an aqueous solution was calculated to be 3.45 %.

When HCl molecules break down, they break down into H⁺ ions (HCl) and Cl⁻ ions (Cl-Cl). Because HCl is a nearly insoluble acid, it dissolves well in water. Acetic acid, on the other hand, dissolves poorly in water because many H⁺ons are trapped inside the molecule.

Acid Dissociation Constant (Ka) Acid Dissociation constant Ka is calculated as H⁺ = (A⁻) / (HA).

Given that

pKa = 4.60 = -logKa

Ka = 2.51 *10⁻⁵

pH = 3.16 = -log[H⁺]

[H+] = 6.92 *10⁻⁴

Let the Acid be HA with an initial concentration of x

                               [tex]HA \rightleftharpoons H^+ A^-[/tex]

Initial (M)                       x  0  0

Change (M)-6.92 *10⁻⁴    +6.92 *10⁻⁴ +6.92 *10⁻⁴

Equilibrium (M)x-6.92 *10⁻⁴  6.92 *10⁻⁴  6.92 *10⁻⁴

Ka = [H⁺][A⁻] / [HA]

2.51 *10⁻⁵ = (6.92 *10⁻⁴)2 / (x-6.92 *10⁻⁴)

(2.51 *10⁻⁵ )x - (1.74 *10⁻⁸) = 4.79 *10⁻⁷

(2.51 *10⁻⁵ )x = 4.96 *10⁻⁷

The initial concentration of acid (x) = 0.0198 M.

Percent of acid dissociated

=([H⁺] / [HA]initial)*100%  

= ((6.92 *10⁻⁴)/0.0198)*100% = 3.45 %

To learn more about the aqueous solution, refer to the link:

https://brainly.com/question/1382478

#SPJ4

A turbine develops 15,500 hp with a decrease in head of 37 ft and a rotational speed of 160 rpm. What type of turbine is best suited for this application?

Answers

Based on the given information, the best-suited turbine for this application is not specified. Further analysis is required to determine the appropriate turbine type.

The information provided states that a turbine develops 15,500 horsepower (hp) with a decrease in head of 37 feet and a rotational speed of 160 revolutions per minute (rpm). While the power output and rotational speed are mentioned, the specific characteristics of the turbine, such as the type and design, are not provided. To determine the best-suited turbine for this application, additional factors need to be considered.

The choice of turbine depends on various factors, including the available head, flow rate, power output, efficiency requirements, and specific site conditions. Different types of turbines, such as Pelton, Francis, or Kaplan, are suitable for different head and flow conditions. The head represents the height difference or pressure drop across the turbine, and it plays a significant role in selecting the appropriate turbine type.

Without further information about the head and flow rate, it is not possible to determine the specific turbine type that would be best suited for this application. A thorough analysis of the site conditions, including the head, flow rate, and other technical requirements, would be necessary to determine the optimal turbine type for this particular scenario.

Learn more about rotational speed here:

https://brainly.com/question/14391529

#SPJ11

A student wants to determine the coefficient of static friction between a long, flat wood board and a
small wood block.
(a) Describe an experiment for determining the coefficient of static friction between the wood board
and the wood block. Assume equipment usually found in a school physics laboratory is available.
i. Draw a diagram of the experimental setup of the board and block. In your diagram,
indicate each quantity that would be measured and draw or state what equipment would
be used to measure each quantity.
ii. Describe the overall procedure to be used, including any steps necessary to reduce
experimental u

Answers

The experiment involves measuring the coefficient of static friction between a wood board and a wood block using a spring balance. The procedure includes cleaning surfaces, tilting the board, and calculating the friction coefficient.

The experiment for determining the coefficient of static friction between the wood board and the wood block is given below:

Clean the surface of the wood board and the wood block.Keep the wood board flat and place the wood block on the board slowly.Start to tilt the board slowly until the block just starts to slide.Measure the angle of inclination [tex]$\theta$[/tex] with the horizontal.Repeat the above step and average the results to obtain more accuracy.Note the weight of the block, [tex]$W$[/tex], with a spring balance, the weight of the board, [tex]$W_2$[/tex], with the spring balance, and the force, [tex]$F$[/tex], required to just move the block when it is on the point of slipping.Draw a free-body diagram of the forces acting on the block.Use the free-body diagram to calculate the coefficient of static friction [tex]$\mu$[/tex] between the block and the board. It is given by [tex]$\mu = \frac{F}{W}$[/tex].

Learn more about static friction: brainly.com/question/13680415

#SPJ11

Which of the following is the best description of the first law of thermodynamics? The entropy of an isolated system increases until the system reaches thermal equilibriunm Thermal energy flows from the colder object to the warmer object. outside force. The change in thermal energy ofa systemis equal to the energy transferred into An objet will maintain its current state of motion unless acted upon by an or out of the system as work, heat, or both.

Answers

The change in thermal energy of a system is equal to the energy transferred into or out of the system as work, heat, or both.

The first law of thermodynamics, also known as the law of energy conservation, states that energy cannot be created or destroyed in an isolated system.

Instead, it can only be transferred or converted from one form to another. In the context of thermal energy, this law can be expressed as follows:

ΔU = Q - W

where:

ΔU is the change in internal energy of the system,

Q is the heat transferred into the system, and

W is the work done by the system.

This equation shows that the change in thermal energy of a system is equal to the energy transferred into the system as heat (Q) minus the work done by the system (W).

The first law of thermodynamics is a fundamental principle that describes the conservation of energy in a thermodynamic system.

It states that the change in thermal energy of a system is determined by the net transfer of energy into or out of the system as heat and work.

To know more  about thermodynamics visit:

https://brainly.com/question/26035962

#SPJ11

Which missing item would complete this beta decay reactWhat percentage of a radioactive species would be found as daughter material after seven half-lives?



Answers

After seven half-lives, a significant percentage (approximately 99.22%) of a radioactive species would be found as daughter material, while only a small fraction (approximately 0.78%) of the parent material would remain.

The missing item to complete the beta decay reaction would be the radioactive parent nucleus. Without knowing the specific parent nucleus involved, it is challenging to provide the complete reaction equation. In beta decay, a radioactive parent nucleus undergoes the transformation where a beta particle (electron) is emitted, resulting in the formation of a daughter nucleus.

Now let's discuss the percentage of a radioactive species that would be found as daughter material after seven half-lives. The half-life of a radioactive substance is the time it takes for half of the initial amount of the substance to decay. Each half-life represents a 50% reduction in the amount of the parent material remaining.

After one half-life, 50% of the parent material will have decayed, leaving 50% as the daughter material. After two half-lives, another 50% of the remaining parent material will decay, resulting in 25% of the original parent material and 75% as the daughter material. This pattern continues for each subsequent half-life.

Therefore, after seven half-lives, the remaining parent material will be reduced to (1/2)^7 = 1/128 ≈ 0.78% of the original amount. Consequently, approximately 99.22% of the radioactive species would have decayed into the daughter material after seven half-lives.

It is important to note that the specific percentage of daughter material after seven half-lives will depend on the particular radioactive species and its decay characteristics. Different radioactive substances have different half-lives, so the percentage of daughter material after seven half-lives will vary between different radioactive species.

For more such information on: radioactive species

https://brainly.com/question/1518972

#SPJ8

how to find moment at specific point from moment diagram in risa 2d

Answers

To find the moment at a specific point from a moment diagram in RISA 2D, you can use the following steps:

1. Open the RISA 2D software and load the structure model for which you have generated the moment diagram.

2. Locate the point on the structure where you want to find the moment.

3. In the software, use the "Moment Diagram" tool or option to display the moment diagram for the desired member or element.

4. Identify the specific location on the moment diagram corresponding to the point of interest.

5. Read the value of the moment at that specific location on the diagram.

6. Note the sign convention used in the software for moments (e.g., clockwise or counterclockwise positive).

7. Record the magnitude of the moment, considering the sign convention, as the moment at the specific point.

In RISA 2D, the moment diagram represents the internal moments within a structure. By visualizing the moment diagram, you can determine the distribution and magnitude of moments along the member.

To find the moment at a specific point, you need to locate that point on the structure and refer to the corresponding location on the moment diagram. The moment diagram provides a graphical representation of how the moments vary along the length of the member.

Once you have identified the specific location on the moment diagram corresponding to the point of interest, read the value of the moment at that location. Take note of the sign convention used in the software for moments, as it may vary depending on the software or analysis settings.

By recording the magnitude of the moment, considering the sign convention, at the specific point, you can determine the moment value at that location.

To find the moment at a specific point from a moment diagram in RISA 2D, locate the point on the structure, identify the corresponding location on the moment diagram, and read the moment value at that location while considering the sign convention. This process allows you to determine the moment at the desired point accurately.

To know more about  moment diagram, visit

https://brainly.com/question/29484649

#SPJ11

A sample of iron, 10.0 g is heated and its temperature changed from 25.0°c to 50.4°c. what is the amount of energy does it take-in?

Answers

Therefore, the amount of energy absorbed by iron is 114.3 J.

To calculate the amount of energy absorbed or released by a substance during a change in temperature, the formula for specific heat capacity must be applied. Given that the temperature of iron has changed from 25.0°c to 50.4°c, the amount of energy it takes in can be determined as follows: Specific heat capacity of iron is 0.45 J/g °C. Change in temperature ΔT = 50.4 - 25.0 = 25.4°CThe amount of energy Q absorbed by a substance can be calculated as: Q = mcΔTwhere m is the mass of the substance, c is the specific heat capacity of the substance and ΔT is the change in temperature. Substituting the values into the formula, Q = (10.0 g)(0.45 J/g °C)(25.4°C)Q = 114.3 J.

to know more about specific heat capacity visit:

https://brainly.com/question/28302909

#SPJ11

Which of the following quasars would you expect to have the largest number of hydrogen absorption lines in its spectrum?
(a) a quasar with a lookback time of 1 billion years
(b) a quasar with a lookback time of 8 billion years
(c) a quasar with a lookback time of 13 billion years

Answers

A quasar with a lookback time of 13 billion years is expected to have the largest number of hydrogen absorption lines in its spectrum.

The lookback time refers to the time it takes for the light from an object to reach us. Therefore, a quasar with a lookback time of 13 billion years means that we are observing the quasar as it appeared 13 billion years ago.

The number of hydrogen absorption lines in a quasar's spectrum depends on the presence of intervening gas clouds between the quasar and us.

These gas clouds can absorb specific wavelengths of light, resulting in absorption lines in the spectrum.

As we go further back in time, we are observing the universe at earlier stages of its evolution. In the early universe, there was a higher density of gas, including hydrogen clouds.

Therefore, a quasar with a lookback time of 13 billion years is expected to have encountered more hydrogen clouds along its line of sight, leading to a larger number of hydrogen absorption lines in its spectrum compared to quasars with shorter lookback times.

Therefore, a quasar with a lookback time of 13 billion years is expected to have the largest number of hydrogen absorption lines in its spectrum.

To know more about  quasar visit:

https://brainly.com/question/31587081

#SPJ11

a flexible container holding 4.00 moles of gas contracts from 89.6 l to 44.8 l when some gas is release

Answers

Avogadro's law connects temperature, pressure, volume, and substance amount for a certain gas, which makes it closely related to the ideal gas equation. The moles of gas in the reduced container are 2.

According to Avogadro's hypothesis, a gas law, the volume occupied by a gas at constant temperature and pressure is directly proportional to the total number of atoms/molecules of a gas (i.e., the amount of gaseous substance).

The following formula can be used to represent Avogadro's law under constant pressure and temperature:

V/n = K

Where 'V' is volume and 'n' is number of moles.

V₁/n₁ = V₂/n₂

n₂ = n₁V₂ / V₁

n₂ = 4 × 44.8 / 89.6

n₂ = 2

To know more about Avogadro's law, visit;

https://brainly.com/question/31168814

#SPJ12

Your question is incomplete, most probably your full question was:

a flexible container holding 0.04 moles of a gas contract from 800ml to 200ml when some gas is released. how many moles of gas are in the reduced container

For a given person, as the time needed to run up a flight of stairs decreases, the power
increases then decreases
increases
remains the same
decreases then increases

Answers

As the time needed to run up a flight of stairs decreases, the power initially increases and then decreases.

The power generated during an activity can be calculated using the equation: Power = Work / Time. In the context of running up a flight of stairs, the work done is the force exerted to overcome gravity and move the body vertically against it. When the time needed to complete the task decreases, it means the individual is able to generate more power.

Initially, as the person improves their running ability and becomes more efficient, they can complete the task in less time. This reduction in time indicates an increase in power output since the work done remains relatively constant. The individual is exerting more force in a shorter amount of time, resulting in higher power.

However, there is a limit to how much power a person can generate. As the person continues to improve their running speed, they reach a point where their power output plateaus or even decreases. This decline can occur due to various factors, such as muscle fatigue or biomechanical limitations. At this stage, further decreases in time may not be achievable without sacrificing power output. Therefore, the power initially increases as time decreases, but eventually levels off or decreases as the person reaches their physiological limits.

To learn more about power refer:

https://brainly.com/question/11569624

#SPJ11

A 32 lb weight is attached to a spring suspended from a ceiling. The weight stretches the spring 2 ft. The weight is then pulled down 6 in. below its equilibrium position and released at T = No external forces are present: but resistance of the medium is 10ds (Ft. per sec.) Find the equation of the motion.

Answers

This is the equation of motion for the weight attached to the spring

32 * y'' = -k * 2 + 32 * 32 - 10 * y'

Let's denote the equilibrium position of the weight as the reference point (y = 0). When the weight is pulled down 6 inches below equilibrium, its displacement is -0.5 ft. We can choose the downward direction as positive.

1. Determine the spring force:

The spring force is proportional to the displacement from the equilibrium position and follows Hooke's Law: F_spring = -k * y, where k is the spring constant. Since the weight stretches the spring by 2 ft, we have F_spring = -k * 2 ft.

2. Determine the force due to gravity:

The weight has a mass of 32 lb, so the force due to gravity is F_gravity = m * g, where g is the acceleration due to gravity (32 ft/s^2).

3. Determine the force due to resistance:

The force due to resistance is given as F_resistance = -10 * y' ft/s, where y' is the velocity of the weight.

Applying Newton's second law, the sum of the forces equals the mass of the weight times its acceleration:

m * y'' = F_spring + F_gravity + F_resistance

32 lb * y'' = -k * 2 ft + 32 lb * 32 ft/s^2 - 10 ft/s * y'

Simplifying the equation and converting the mass and force units to the appropriate unit system, we have:

32 * y'' = -k * 2 + 32 * 32 - 10 * y'

This is the equation of motion for the weight attached to the spring. The specific value of k and any initial conditions would be needed to solve the equation further and obtain a more detailed motion equation.

for more questions on motion
https://brainly.com/question/26083484
#SPJ8

a planet with the same mass as earth orbiting at a distance of 1 au from a star with thirty six times the sun's mass.

Answers

To determine the orbital period of a planet with the same mass as Earth orbiting at a distance of 1 AU from a star with thirty-six times the mass of the Sun, we can use Kepler's third law of planetary motion.

Kepler's third law states that the square of the orbital period (T) is proportional to the cube of the semi-major axis (a) of the orbit. The semi-major axis of the Earth's orbit is approximately 1 AU, which is equivalent to about 149.6 million kilometers. Given: Mass of the star (M_star) = 36 times the mass of the Sun. To calculate the orbital period, we need to find the value of the semi-major axis of the planet's orbit around the star. Using Kepler's third law equation: T^2 = (4π^2 / G * M_star) * a^3 Where: T is the orbital period in seconds, G is the gravitational constant (approximately 6.67430 x 10^-11 m^3 kg^-1 s^-2), M_star is the mass of the star in kilograms, a is the semi-major axis of the orbit in meters. We need to convert the distance from AU to meters: 1 AU = 149.6 million kilometers = 149.6 x 10^9 meters. Substituting the values: T^2 = (4π^2 / (6.67430 x 10^-11) * (36 * (1.989 x 10^30)) * (149.6 x 10^9)^3 Simplifying the equation and solving for T: T^2 = 4π^2 * (36 * (1.989 x 10^30)) * (149.6 x 10^9)^3 / (6.67430 x 10^-11) Taking the square root of both sides to find T: T = √(4π^2 * (36 * (1.989 x 10^30)) * (149.6 x 10^9)^3 / (6.67430 x 10^-11)) Evaluating this expression will give us the orbital period of the planet.

To learn more about planetary, https://brainly.com/question/12813684

#SPJ11

Final answer:

To calculate the gravitational force between a planet with the same mass as Earth and a star with thirty-six times the sun's mass at a distance of 1 AU, we can use Newton's law of universal gravitation.

Explanation:

If a planet with the same mass as Earth orbits at a distance of 1 AU from a star with thirty-six times the sun's mass, we can calculate the gravitational force between them using Newton's law of universal gravitation. The formula is F = G * (m1 * m2) / r^2, where G is the gravitational constant, m1 and m2 are the masses of the two bodies, and r is the distance between them.

In this case, the mass of the planet is the same as Earth's mass (let's call it m), the mass of the star is 36 times the sun's mass (36M), and the distance between them is 1 AU. Plugging these values into the formula, we get F = G * (m * 36M) / (1 AU)^2.

To find the force, we need the values of G and the masses. The value of G is approximately 6.67430 × 10^-11 N(m/kg)^2. The mass of the sun is about 1.989 × 10^30 kg. Substituting these values, we can calculate the force between the planet and the star.

Learn more about Calculating Gravitational Force here:

https://brainly.com/question/32609171

#SPJ12

use the parallel axis theorem to find the moment of inertia of a solid sphere of mass m = 3.7 kg and radius r = 0.27 m about an axis 1.25 m away from its surface

Answers

The moment of inertia of the solid sphere about the given axis is 6.375 kg·m².

What is moment of inertia?

Moment of inertia is a physical quantity that describes the distribution of mass in an object and its resistance to changes in rotational motion.

For a solid sphere with mass m and radius r, the moment of inertia about its center of mass (Icm) is given by:

Icm = (2/5) * m * r^2

Using the parallel axis theorem, the moment of inertia about an axis parallel to and 1.25 m away from its surface (I) is:

I = Icm + m * d^2

where d is the distance between the axis of rotation and the center of mass of the sphere.

In this case, we have:

m = 3.7 kg

r = 0.27 m

d = 1.25 m

Substituting these values into the equations, we can calculate the moment of inertia I:

Icm = (2/5) * m * r^2

= (2/5) * 3.7 kg * (0.27 m)^2

≈ 0.607 kg·m²

I = Icm + m * d^2

= 0.607 kg·m² + 3.7 kg * (1.25 m)^2

= 0.607 kg·m² + 3.7 kg * 1.5625 m²

≈ 0.607 kg·m² + 5.768 kg·m²

≈ 6.375 kg·m²

Therefore, the moment of inertia of the solid sphere about the given axis is approximately 6.375 kg·m².

To learn more about moment of inertia,

https://brainly.com/question/14460640

#SPJ4

(13%) Problem 6: Suppose a 0.85- g speck of dust has the same momentum as a proton moving at 0.99 %. Calculate the speed, in meters per second, of this speck of dust.

Answers

The speed of the speck of dust is approximately 5.89 × [tex]10^{5}[/tex] m/s.

To solve this problem, we can use the principle of conservation of momentum. The momentum of an object is given by the product of its mass and velocity.

Given:

Mass of the speck of dust (m1) = 0.85 g = 0.85 × [tex]10^{-3}[/tex] kg

Mass of the proton (m2) = mass of the proton = 1.67 × [tex]10^{-27}[/tex] kg

Velocity of the proton (v2) = 0.99 times the speed of light (c) = 0.99 × 3 × [tex]10^{8}[/tex] m/s

Since the momentum of the speck of dust (p1) is equal to the momentum of the proton (p2), we can write:

m1 * v1 = m2 * v2

Solving for the velocity of the speck of dust (v1):

v1 = (m2 * v2) / m1

Substituting the given values:

v1 = (1.67 × [tex]10^{-27}[/tex]  kg * 0.99 × 3 × [tex]10^{8}[/tex] m/s) / (0.85  × [tex]10^{-3}[/tex]  kg)

Calculating the value:

v1 = 5.89  × [tex]10^{5}[/tex] m/s

Therefore, the speed of the speck of dust is approximately 5.89  × [tex]10^{5}[/tex] m/s.

To know more about speed here

https://brainly.com/question/29119423

#SPJ4

two 2.10 cm × 2.10 cm plates that form a parallel-plate capacitor are charged to ± 0.706 nc. What is the electric field strength inside the capacitor if the spacing between the plates is 1.30 mm ?

Answers

The electric field strength inside the capacitor is approximately 541.5 V/m if the spacing between the plates is 1.30 mm.

The electric field strength (E) inside a parallel-plate capacitor is given by the formula:

E = σ / ε₀

where σ is the surface charge density on the plates and ε₀ is the permittivity of free space.

To calculate E, we need to find the surface charge density on the plates. The surface charge density (σ) is defined as the charge (Q) divided by the area (A) of the plate:

σ = Q / A

Given that the plates are charged to ±0.706 nC and have dimensions of 2.10 cm × 2.10 cm, we can calculate the surface charge density:

σ = (±0.706 nC) / (2.10 cm × 2.10 cm)

Next, we need to convert the spacing between the plates to meters:

d = 1.30 mm = 1.30 × 10^(-3) m

Finally, we can substitute the values of σ and ε₀ into the formula for E:

E = σ / ε₀

Using the value of ε₀ = 8.854 × 10^(-12) F/m, we can calculate the electric field strength (E).

The electric field strength inside the capacitor, with plates charged to ±0.706 nC and a spacing of 1.30 mm, is approximately 541.5 V/m.

To know more about Capacitor, visit

https://brainly.com/question/21851402

#SPJ11

at the end of 1/2 second an apple freely falling from rest has a speed of
A. 1 m/s. B. more than 10 m/s. C. 10 m/s.
D. 5 m/s.

Answers

At the end of 1/2 second an apple freely falling from rest has a speed of. the correct answer is D. 5 m/s.

At the end of ½ second, an apple freely falling from rest will have a speed of approximately 4.9 m/s, assuming no significant air resistance.

When an object is freely falling under the influence of gravity, its speed increases at a constant rate due to the acceleration of gravity (approximately 9.8 m/s² near the Earth’s surface). This acceleration causes the object to gain velocity over time.

The velocity of a falling object can be calculated using the equation:

V = gt

Where v is the final velocity, g is the acceleration due to gravity, and t is the time elapsed.

In this case, after ½ second (0.5 seconds), plugging the values into the equation, we have:

V = (9.8 m/s²) × (0.5 s) = 4.9 m/s

Therefore, the correct answer is D. 5 m/s. The apple will have a speed of approximately 4.9 m/s after ½ second of free fall. It is important to note that this calculation assumes no air resistance, which can affect the actual velocity of the falling object in real-world scenarios.

Learn more about gravity here:

https://brainly.com/question/14874038

#SPJ11

8. explain why the outdoor fan motor is de-energized during the defrost cycle?

Answers

During the defrost cycle of a heat pump or air conditioning system, the outdoor fan motor is turned off.

Why the outdoor fan motor is de-energized during the defrost cycle?

This is to prevent cold air circulation, optimize heat transfer, prevent potential damage to the fan blades from contact with ice or frost, and reduce noise levels.

De-energizing the outdoor fan motor allows for efficient defrosting, faster melting of ice or frost on the outdoor unit, and improved overall system performance. It ensures that the heat pump or air conditioner operates effectively even in colder temperatures while minimizing any potential disruptions or issues.

Read more on defrost cycle here:https://brainly.com/question/30163560

#SPJ4

Estimate the pressure exerted on a floor by (a) one pointed heel of area = 0.45 cm2, and (b) one wide heel of area 16 cm2. The person wearing the shoes has a mass of 56 kg.
answers are: (a) 6.1 x 10^6 N/m^2
(b) 1.7 x 10^5 N/m^2

Answers

a) The pressure exerted by the pointed heel is 12.2 N/m².

b) The pressure exerted by the wide heel is 0.343 N/m².

(a) For the pointed heel with an area of 0.45 cm²:

The mass of the person wearing the shoes is 56 kg, which means the force exerted by the person's heel can be calculated using the equation F = m g, where g is the acceleration due to gravity

F = 56 kg × 9.8 m/s²

F = 548.8 N

Calculate the pressure by dividing the force by the area:

Pressure = Force / Area

Pressure = 548.8 N / 0.45 cm²

To convert cm² to m², we divide by 10,000 (since there are 10,000 cm² in 1 m²):

Pressure = 548.8 N / (0.45 cm² / 10,000)

Simplifying:

Pressure = 548.8 N / 45 m²

Pressure = 12.195 N/m²

(b) For the wide heel with an area of 16 cm²:

Following the same process as above, calculate the force exerted by the person's heel:

F = 56 kg × 9.8 m/s²

F = 548.8 N

Calculate the pressure:

Pressure = 548.8 N / 16 cm²

Pressure = 548.8 N / (16 cm² / 10,000)

Pressure = 548.8 N / 1,600 m²

Pressure = 0.343 N/m²

To learn more about the pressure, follow the link:

https://brainly.com/question/30673967

#SPJ4

a 1.0-cm rod carries a 50-a current when the electric field in the rod is 1.4 v/m. what is the resistivity of the rod material?

Answers

The resistivity of the rod material is 2.24 x 10⁻⁷ Ω·m where the rod carries a 50 A current.

To determine the resistivity of the rod material, we can use Ohm's law and the formula for resistance. Ohm's law states that the current (I) flowing through a conductor is directly proportional to the electric field (E) and inversely proportional to the resistance (R).

Mathematically, Ohm's law can be expressed as:

I=E/R

In this case, we are given that the rod carries a 50 A current when the electric field in the rod is 1.4 V/m. We need to calculate the resistivity (ρ) of the rod material.

The resistance (R) can be calculated using the formula R = ρL/A, where ρ represents the resistivity, L is the length of the rod, and A is the cross-sectional area of the rod.

Let's assume the length of the rod is 1.0 cm, which is equal to 0.01 m.

To calculate the cross-sectional area (A), we need to know the shape of the rod. Assuming the rod has a uniform circular cross-section, we can use the formula A = πr², where r is the radius of the rod.

Since we are not given the radius of the rod, we cannot determine the exact resistivity of the rod material without additional information.

However, if we assume a specific value for the radius, we can proceed with the calculation. Let's assume a radius of 0.5 cm, which is equal to 0.005 m.

Now we can calculate the cross-sectional area:

[tex]\[ A = \pi (0.005 m)^2 = 7.85 \times 10^{-5} m^2 \][/tex]

Substituting the given values into Ohm's law:

[tex]\[ 50 A = \frac{1.4 V/m}{\rho \frac{0.01 m}{7.85 \times 10^{-5} m^2}} \][/tex]

Simplifying the equation, we find:

[tex]\[ 50 A = 1782.28 \frac{V}{m\Omega} \][/tex]

To isolate ρ, we rearrange the equation:

[tex]\[ \rho = \frac{1.4 V/m}{50 A \frac{0.01 m}{7.85 \times 10^{-5} m^2}} \][/tex]

Evaluating the expression, the resistivity of the rod material is approximately 2.24 x 10⁻⁷ Ω·m.

Learn more about resistivity:

https://brainly.com/question/17010736

#SPJ11

In Gay-Lussac's law, the pressure of a gas increases due to an increase in temperature because _____.
(a) the molecules strike the walls of the container less often.
(b) the molecules strike the walls of the container more often.
(c) the molecules get bigger.
(d) there is a decrease in the volume of the container.
(e) there is an increase in the number of gas particles.

Answers

Option (b) is the correct answer: the pressure of a gas increases due to an increase in temperature because the molecules strike the walls of the container more often.

Gay-Lussac's law, also known as the pressure law, states that the pressure of a gas is directly proportional to its temperature, assuming the volume and amount of gas remain constant. Therefore, an increase in temperature leads to an increase in pressure. The explanation for this phenomenon lies in the kinetic theory of gases.

According to the kinetic theory, the temperature of a gas is related to the average kinetic energy of its molecules. When the temperature increases, the average kinetic energy of the gas molecules also increases. As a result, the gas molecules move with higher velocities and collide more frequently with the walls of the container.

The frequency of molecular collisions with the container walls is directly related to the pressure exerted by the gas. When the gas molecules strike the walls more often due to increased kinetic energy, the pressure exerted by the gas increases.

Therefore, option (b) is the correct answer: the pressure of a gas increases due to an increase in temperature because the molecules strike the walls of the container more often.

An increase in temperature causes the pressure of a gas to increase because the gas molecules collide more frequently with the walls of the container, as explained by Gay-Lussac's law and the kinetic theory of gases.

To know more about molecules visit:

https://brainly.com/question/1078183

#SPJ11

Large planes typically carry about 500 people (passengers, flight crew): Estimate the energy one person uses in one round-trip from Phoenix to London to Phoenix (in Joule)

Answers

The estimated energy one person uses in one round-trip from Phoenix to London to Phoenix is approximately 2.5 million joules.

To estimate the energy used by one person on a round-trip flight from Phoenix to London to Phoenix, we need to consider the energy consumption of the airplane and divide it by the number of passengers.

Let's assume the airplane consumes an average of 1 gallon (3.785 liters) of jet fuel per mile (as a rough estimation).

The distance from Phoenix to London is approximately 5,334 miles (8,577 kilometers) in a direct flight path.

To calculate the energy content of the fuel, we need to know its energy density. Jet fuel typically has an energy density of around 35 megajoules per liter (MJ/L).

Energy content of the fuel for one mile:

1 gallon ≈ 3.785 liters

Energy content per mile = 3.785 L/mile * 35 MJ/L

Energy content per mile = 132.475 MJ/mile

Total energy consumption for the round trip:

Energy consumption = Energy content per mile * Total distance

Total distance = 2 * 5,334 miles

Total distance = 10,668 miles

Energy consumption = 132.475 MJ/mile * 10,668 miles

Energy consumption = 1,412,795 MJ

Now, we need to divide this total energy consumption by the number of passengers (500) to estimate the energy used per person.

Energy used per person = Energy consumption / Number of passengers

Energy used per person = 1,412,795 MJ / 500

Energy used per person = 2,825.59 MJ

Finally, we convert megajoules (MJ) to joules (J) by multiplying by 1 million:

Energy used per person = 2,825.59 MJ * 1,000,000 J/MJ

Energy used per person = 2,825,590,000 J

The estimated energy one person uses in one round-trip from Phoenix to London to Phoenix is approximately 2.5 million joules (2,825,590,000 J).

Keep in mind that this is a rough estimation and the actual energy usage may vary depending on various factors such as aircraft efficiency, load factors, and operational practices.

To know more about density visit:

Energy used per person

#S[J11

Given that the nucleus of 18/8 O is formed by 8 protons and 10 neutrons, is the mass of a neutral atom of 18/8 O equals to the sum of the masses of 8 atoms of 1/1 H and 10 neutrons? Recall that the mass of a proton is mP = 1.007276 u and the mass of a neutron is mn = 1.008665 u. The mass of a neutral atom of 1/1 H is mH = 1.007825 u.

Answers

The mass of a neutral atom of ₈O¹⁸ is approximately equal to the sum of the masses of 8 atoms of ₁H¹ and 10 neutrons.

Given that the nucleus of ₈O¹⁸ is formed by 8 protons and 10 neutrons.

₈O¹⁸ = 8 protons(p) + 10 neutrons(n)

The mass of an atom is defined as the sum of the nucleons of the atom.

Nucleons are the general word for protons and neutrons since they are both found in the nucleus. Nucleons are hence the scientific term for the subatomic particles found in the atom's nucleus.

So,

Mass of the neutral atom of ₈O¹⁸ = (8 x mp) + (10 x mn)

m(₈O¹⁸) = (8 x 1.007276u) + (10 x 1.008665u)

m(₈O¹⁸) = 8.058208 + 10.08665

m(₈O¹⁸) = 18.144858 u

Also,

Mass of 8 atoms of ₁H¹ = 8 x m(₁H¹)

Mass of 8 atoms of ₁H¹ = 8 x 1.007825u

Mass of 8 atoms of ₁H¹ = 8.0626 u

So,

Mass of 8 atoms of ₁H¹ + 10 mn = 8.0626 + 1.008665

M = 18.9291 u

To learn more about nucleons, click:

https://brainly.com/question/9662870

#SPJ4

Other Questions
Enlist major reasons behind the annulment of partition of Bengal by the British Empire and how did this decision strengthen the goals of All India Muslim League? You borrow money on a self liquidating installment loan (equal payments at the end of each year, each payment is part principal part interest)Loan amount$985,000Interest Rate12.7%Life60 yearsDate of LoanJanuary 1, 2021Use the installment method - not straight lineDo NOT round any interrmediate numbers.Do NOT turn this into a monthly problem. solve the given differential equation by undetermined coefficients. 1 4 y'' y' y = x2 4x Hart Company made 3,100 bookshelves using 21,000 board feet of wood costing $256,200. The company's direct materials standards for one bookshelf are 8 board feet of wood at $12.10 per board foot.Exercise 23-14A Materials variances recorded and closed LO P5Hart Company records standard costs in its accounts and its materials variances in separate accounts when it assigns materials costs to the Work in Process Inventory account.(1) Prepare the journal entry that both charges the direct materials costs to the Work in Process Inventory account and records the materials variances in their proper accounts.(2) Assume that Hart's materials variances are the only variances accumulated in the accounting period and that they are immaterial. Prepare the adjusting journal entry to close the variance accounts at period-end. The distribution of Student's t has _________.A mean of zero and a standard deviation that depends on the sample sizeA mean that depends on the sample size and a standard deviation of oneA mean of zero and a standard deviation of oneA mean of one and a standard deviation of one Mellon Inc., has equity with a market value of 50 million and debt with a market value of 10 million. Mellon has bond with a YTD of 4 percent per year, and the expected return on the market portfolio is 10 percent. Mellon has a Beta of 1, and the tax rate is 25%, the company has a huge tax loss carry forward. a) What is the Debt/asset ratio? What is the Debt-to-Equity ratio? b) What is the firm's weighted average cost of capital? Courtney and Kenzie are doing an experiment to determine which fish food gives their fish more energy. They have two fish tanks, each with the same number, size, and type of fish. The tanks are the same size and have identical filters and decorations. They were both filled with store-bought spring water and are cleaned at the same time. When the girls submitted their results to a journal for publication, scientists criticized the experiment. What about the experiment would need to be changed so that scientists might accept their findings?A) The fish would need to be fed more food. B) The tanks would need more fish in each one. C) There would need to be several more tanks of fish. D) The tanks would need to have a different type of water Adam and his family decided to take a trip to the mountains for the weekend in late February. They had a small cabin and looked forward to a weekend away from the big city. The family had a wonderful time together on Saturday morning hiking in the woods and enjoying nature. However, Saturday afternoon a storm rolled in bringing snow and subfreezing temperatures.Since the heater in the cabin wasn't working well, Adam's mother and sister decided to drive into the nearest town to spend the night. Adam and his father, not being sissies, stayed at the cabin where they started a gas heater to keep them warm.The next morning Adam's mother and sister returned to find both Adam and his father unconscious. An ambulance was called and they were both transported to the nearest hospital. Adam had arterial blood gases drawn with the following results:pH 7.2PaCO2 31.4,PaO2 40.7 mmHgHis oxygen saturation was 72%. Adam was diagnosed with carbon monoxide poisoning.DeliverablesAnswer the following questions and save your responses in a Microsoft Word document. Provide a scholarly resource to support your answers.With respect to hemoglobin loading, please explain the relationship between binding of oxygen (O2) and carbon monoxide (CO) to the hemoglobin molecules.During the ambulance ride, a pulse oximeter showed 100% O2 saturation. Why is that different from the 72% measured at the hospital?One course of treatment is a hyperbaric oxygen treatment. How does a hyperbaric chamber work?Adams blood work shows him to be in an acidosis (normal blood pH is 7.35-7.45). Explain how this will shift the hemoglobin dissociation curve and why. in the example for distilling miscible liquids, which two compounds were used? Find the transition matrix from the ordered basis [(*);()] of R2 to the ordered basis [(12):() of R2 ? determine whether the geometric series is convergent or divergent. (5 7 49 5 343 25 ) which one of the following foods has the lowest sodium content? which, if either, of the forces pictured as acting upon the rod in the diagram will produce a torque about an axis perpendicular to the plane of the diagram at the left end of the rod? Consider the problem of finding the root of the polynomial f(x) = 24 - 0.99.2 - 1.1 in [1,2] (i) Show that 1 - 0.99.c - 1.1=0&I= 0.99.c + 1.1 on [1,2]. Execute the commands plot y=(0.99 x + 1.1)^(1/4) and y=1 and y=2 for x= 1 .. 2 plot y=D[ (0.99 x + 1.1) (1/4) ] and y=-1 and y=1 for x= 1 .. 2 at the Wolfram Alpha (Wa) website to demonstrate, as we did during the lectures, th at the iteration function g(x) = V0.99x + 1.1 satisfies the conditions of the main statement on convergence of the Fixed-Point Iteration method from the lecture notes on the interval [1,2]. Copy (with your own hand) both graphs in your work. Based on the graphs, make a conclusion on convergence of the FPI for the problem at hand. (ii) Use the Fixed-Point Iteration method to find an approximation pn of the fixed-point p of g(2) in [1,2], the root of the polynomial f(c) in [1, 2], satisfying RE(PNPN-1) In each period, the per-period inverse demand for a good is p = 100 Q. The product is offered by a pair of Bertrand competitors, firms 1 and 2. Initially, each firm has a constant marginal cost of c1 pre = C pre.. Also, each firm has a discount factor = 0.9Determine the pre-innovation equilibrium price. 2. Which of the following statements is NOT true? (2 im) O a. Inflation reduces the purchasing power of most workers. O b. Given the current U.S. tax structure, inflation reduces the incentive to compare inodes used in linux and ntfs. are they the same? if not, which one is better? how much work must we do on a proton to move it from point a, which is at a potential of 50v, to point b, which is at a potential of -50 v, along the semicircular path shown in the figure? remember: work does no consider the effect of a volume change on this reaction at equilibrium. 2h2s(g)2h2(g) s2(g)Predict the effect (shift right, shift left, or no effect) of increasing the reaction volume. On September 1, a corporation had 100.000 shares of $2 par value common stock, and $1,000,000 of retaimed wanings. The corporation decides record this transaction is A. Retained earnings (debit) and stock spit (credit). B. Retained eamings (debit) and common stock split distribution (credit) C. No journal entry D. Retained earnings (debit) and common stock (credit).