Q.1.1 In your own words, explain what a Hieratchy Chart as. Give an example to \( (4) \) demonstrate your explanation. Q.1.2 Write the following mathematical equation in the required format for (6) pr

Answers

Answer 1

Hierarchy chart is defined as a tool used for organizing ideas in order of rank or level of importance. In other words, it is a graphical representation that shows the relationship between different levels of things that have similar properties or functions.

Hierarchy charts are often used in various areas such as computer programming, business organizations, and education, among others. This tool is an essential tool for people to visualize and understand the structure of complex systems in a simple and organized manner. A hierarchy chart is a tool that is used for organizing ideas in an order of rank or level of importance. It is a visual representation of the different levels of things that have similar properties or functions.

The chart is used in different areas such as computer programming, business organizations, and education, among others. The hierarchy chart helps to understand the structure of complex systems in a simple and organized manner. For example, a hierarchy chart can be used to show the different levels of an organization or a program, where each level has its specific role or task. A hierarchy chart is a visual tool that organizes ideas in an order of rank or level of importance. It is a graphical representation that shows the relationship between different levels of things that have similar properties or functions. For instance, a hierarchy chart can be used to show the different levels of an organization or a program, where each level has its specific role or task.

To know more about Hierarchy chart  visit:

https://brainly.com/question/28139625

#SPJ11


Related Questions

You bought a book for R300 and sold it a year later for R240. What is the loss

Answers

Answer:

R60 is the answer to your question

Find the volume of the pyramid below.
4 cm
3 cm
3 cm

Answers

Answer:

Step-by-step explanation:

4x3x3=36

Give the Taylor series for h(t) = e^−3t−1/t about t_0 = 0

Answers

The Taylor series expansion for the function h(t) = e^(-3t) - 1/t about t_0 = 0 can be found by calculating the derivatives of the function at t_0 and plugging them into the general form of the Taylor series.

The derivatives of h(t) are as follows:

h'(t) = -3e^(-3t) + 1/t^2

h''(t) = 9e^(-3t) - 2/t^3

h'''(t) = -27e^(-3t) + 6/t^4

Evaluating these derivatives at t_0 = 0, we have:

h(0) = 1 - 1/0 = undefined

h'(0) = -3 + 1/0 = undefined

h''(0) = 9 - 2/0 = undefined

h'''(0) = -27 + 6/0 = undefined

Since the derivatives at t_0 = 0 are undefined, we cannot directly use the Taylor series expansion for this function.

To know more about  Taylor series click here: brainly.com/question/32235538

#SPJ11

Given the function g(x) = 6x^3+45x^2+72x,
find the first derivative, g′(x).
g′(x)= _______
Notice that g′(x)=0 when x=−4, that is, g′(−4)=0.
Now, we want to know whether there is a local minimum or local maximum at x=−4, so we will use the second derivative test. Find the second derivative, g′′(x).
g′′(x)= _______
Evaluate g′′(−4)
g′′(−4)= ______
Based on the sign of this number, does this mean the graph of g(x) is concave up or concave down at x=−4 ?
At x=−4 the graph of g(x) is concave _______
Based on the concavity of g(x) at x=−4, does this mean that there is a local minimum or local maximum at x=−4 ?
At x=−4 there is a local ______

Answers

At x = -4, there is a local maximum because the concavity changes from upward (concave up) to downward (concave down)

To find the first derivative of g(x) = 6x^3 + 45x^2 + 72x, we differentiate term by term using the power rule:

g'(x) = 3(6x^2) + 2(45x) + 72

      = 18x^2 + 90x + 72

To find the second derivative, we differentiate g'(x):

g''(x) = 2(18x) + 90

       = 36x + 90

Now, we evaluate g''(-4) by substituting x = -4 into the second derivative:

g''(-4) = 36(-4) + 90

        = -144 + 90

        = -54

Since g''(-4) is negative (-54 < 0), the graph of g(x) is concave down at x = -4. Therefore, at x = -4, there is a local maximum because the concavity changes from upward (concave up) to downward (concave down).

LEARN MORE ABOUT local maximum here: brainly.com/question/17075444

#SPJ11

Find the area of the region enclosed between y = 2 sin(x) and y = 4 cos(z) from x = 0 to x = 0.6π. Hint: Notice that this region consists of two parts.

Answers

The area of the region enclosed between [tex]y = 2 sin(x)[/tex] and [tex]y = 4 cos(x)[/tex] from x = 0 to x = 0.6π is 2√(3) + 5.

Finding the intersection points of these two curves. [tex]2 sin x = 4 cos xx = cos^-1(2)[/tex]. From the above equation, the two curves intersect at [tex]x = cos^-1(2)[/tex]. So, the integral will be [tex]∫_0^(cos^(-1)(2))▒〖(4cosx-2sinx)dx〗+ ∫_(cos^(-1)(2))^(0.6π)▒〖(2sinx-4cosx)dx〗[/tex].

1: [tex]∫_0^(cos^(-1)(2))▒〖(4cosx-2sinx)dx〗[/tex]. [tex]∫cosx dx = sinx[/tex] and [tex]∫sinx dx = -cosx[/tex]. So, the integral becomes: [tex]∫_0^(cos^(-1)(2))▒〖(4cosx-2sinx)dx〗= 4∫_0^(cos^(-1)(2))▒〖cosx dx 〗-2∫_0^(cos^(-1)(2))▒〖sinx dx 〗= 4 sin(cos^-1(2)) - 2 cos(cos^-1(2))= 4√(3)/2 - 2(1/2)= 2√(3) - 1[/tex]

2: [tex]∫_(cos^(-1)(2))^(0.6π)▒〖(2sinx-4cosx)dx〗[/tex] Again, using the same formula, the integral becomes: [tex]∫_(cos^(-1)(2))^(0.6π)▒〖(2sinx-4cosx)dx〗= -2∫_(cos^(-1)(2))^(0.6π)▒〖(-sinx) dx 〗- 4∫_(cos^(-1)(2))^(0.6π)▒〖cosx dx 〗= 2cos(cos^-1(2)) + 4(1/2) = 2(2) + 2= 6[/tex].

Therefore, the area of the region enclosed between [tex]y = 2 sin(x)[/tex] and [tex]y = 4 cos(x)[/tex] from x = 0 to x = 0.6π is given by the sum of the two parts: [tex]2√(3) - 1 + 6 = 2√(3) + 5[/tex] The area of the region enclosed between [tex]y = 2 sin(x)[/tex] and [tex]y = 4 cos(x)[/tex] from x = 0 to x = 0.6π is 2√(3) + 5.

learn more about area

https://brainly.com/question/30307509

#SPJ11

Find parametric equations for the line through (3,2,6) that is perpendicular to the plane x−y+3z=5. (Use the parameter t )
(x(t),y(t),z(t))=

Answers

The parametric equations for the line through the point (3, 2, 6) that is perpendicular to the plane x - y + 3z = 5 can be expressed as x(t) = 3 + at, y(t) = 2 + bt, and z(t) = 6 + ct, where a, b, and c are constants determined by the normal vector of the plane.

To find the parametric equations for the line, we first need to determine the direction vector of the line, which is perpendicular to the plane x - y + 3z = 5. The coefficients of x, y, and z in the plane equation represent the normal vector of the plane.

The normal vector of the plane is (1, -1, 3). To find a direction vector perpendicular to this normal vector, we can choose any two non-parallel vectors. Let's choose (1, 0, 0) and (0, 1, 0).

Now, we can express the parametric equations for the line as x(t) = 3 + at, y(t) = 2 + bt, and z(t) = 6 + ct, where a, b, and c are the coefficients that determine the direction vector of the line.

By setting the direction vector to be perpendicular to the normal vector of the plane, we ensure that the line is perpendicular to the plane x - y + 3z = 5.

Learn more about perpendicular here:

https://brainly.com/question/25991713

#SPJ11

Assume that x and y are both differentiable functions of t and are related by the equation
y=cos(3x)
Find dy/dt when x=π/6, given dx/dt=−3 when x=π/6.
Enter the exact answer.
dy/dt=

Answers

To find dy/dt when x = π/6, we differentiate the equation y = cos(3x) with respect to t using the chain rule. the exact value of dy/dt when x = π/6 is 9.

We start by differentiating the equation y = cos(3x) with respect to x:

dy/dx = -3sin(3x).

Next, we substitute the given values dx/dt = -3 and x = π/6 into the derivative expression:

dy/dt = dy/dx * dx/dt

      = (-3sin(3x)) * (-3)

      = 9sin(3x).

Finally, we substitute x = π/6 into the expression to obtain the exact value of dy/dt:

dy/dt = 9sin(3(π/6))

      = 9sin(π/2)

      = 9.

Therefore, the exact value of dy/dt when x = π/6 is 9.

Learn more about chain rule here:

https://brainly.com/question/30764359

#SPJ11

The coefficient of x2 in the Maclaurin series for f(x)=exp(x2) is: A. −1  B. -1/4​ C. 1/4​ D. 1​/2 E. 1

Answers

Therefore, the coefficient of x² in the Maclaurin series for f(x) = exp(x²) is 1/4.

The coefficient of x² in the Maclaurin series for f(x) = exp(x²) is given by: C. 1/4.

In order to determine the coefficient of x² in the Maclaurin series for f(x) = exp(x²), we need to use the formula for the Maclaurin series expansion, which is given as:

[tex]$$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}x^n$$[/tex]

Therefore, we can find the coefficient of x² by calculating the second derivative of f(x) and evaluating it at x = 0, and then dividing it by 2!.

So, first we take the derivative of f(x) with respect to x:

[tex]$$f'(x) = 2xe^{x^2}$$[/tex]

Then we take the derivative again:

[tex]$$f''(x) = (2x)^2 e^{x^2} + 2e^{x^2}$$[/tex]

Now, we evaluate this expression at x = 0:

[tex]$$f''(0) = 2 \cdot 0^2 e^{0^2} + 2e^{0^2} = 2$$[/tex]

Finally, we divide by 2! to get the coefficient of x²:

[tex]$$\frac{f''(0)}{2!} = \frac{2}{2!} = \boxed{\frac{1}{4}}$$[/tex]

Therefore, the coefficient of x² in the Maclaurin series for f(x) = exp(x²) is 1/4.

To know more about Maclaurin series , visit:

https://brainly.in/question/36050112

#SPJ11

Prove that 3 is a factor of 4ⁿ−1 for all positive integers.

Answers

To prove that 3 is a factor of 4ⁿ - 1 for all positive integers, we can use mathematical induction to demonstrate that the statement holds true for any arbitrary positive integer n.

We will prove this statement using mathematical induction. Firstly, we establish the base case, which is n = 1. In this case, 4ⁿ - 1 equals 4 - 1, which is 3, and 3 is divisible by 3. Hence, the statement is true for n = 1.

Next, we assume that the statement holds true for some arbitrary positive integer k. That is, 4ᵏ - 1 is divisible by 3. Now, we need to prove that the statement also holds true for k + 1.

To do so, we consider 4^(k+1) - 1. By using the laws of exponents, this expression can be rewritten as (4^k * 4) - 1. We can further simplify it to (4^k - 1) * 4 + 3.

Since we assumed that 4^k - 1 is divisible by 3, let's denote it as m, where m is an integer. Therefore, we can express 4^(k+1) - 1 as m * 4 + 3.

Now, observe that m * 4 is divisible by 3 since 3 divides m and 3 divides 4. Additionally, 3 is divisible by 3. Therefore, m * 4 + 3 is also divisible by 3.

Hence, by the principle of mathematical induction, we have proven that 3 is a factor of 4ⁿ - 1 for all positive integers.

Learn more about exponents here:

https://brainly.com/question/5497425

#SPJ11

Find all points (if any) of horizontal and vertical tangency to
(a) the curve x=t+2, y=t^3−2t
(b) the curve x=2+2sinθ, y=1+cosθ
(c) the polar curve r=1−cosθ

Answers

(a) The curve x = t + 2, y = t³ - 2t has points of horizontal tangency at t = ±√(2/3), and no points of vertical tangency.

(b) the curve x = 2 + 2sinθ, y = 1 + cosθ has points of horizontal tangency at θ = nπ and points of vertical tangency at θ = (2n + 1)π/2.

(c) the polar curve r = 1 - cosθ has points of horizontal tangency at θ = nπ and no points of vertical tangency.

To find the points of horizontal and vertical tangency, we need to find where the derivative of the curve is zero or undefined.

(a) For the curve x = t + 2, y = t³ - 2t:

To find the points of horizontal tangency, we set dy/dt = 0:

dy/dt = 3t² - 2 = 0

3t² = 2

t² = 2/3

t = ±√(2/3)

To find the points of vertical tangency, we set dx/dt = 0:

dx/dt = 1 = 0

This equation has no solution since 1 is not equal to zero.

Therefore, the curve x = t + 2, y = t³ - 2t has points of horizontal tangency at t = ±√(2/3), and no points of vertical tangency.

(b) For the curve x = 2 + 2sinθ, y = 1 + cosθ:

To find the points of horizontal tangency, we set dy/dθ = 0:

dy/dθ = -sinθ = 0

sinθ = 0

θ = nπ, where n is an integer

To find the points of vertical tangency, we set dx/dθ = 0:

dx/dθ = 2cosθ = 0

cosθ = 0

θ = (2n + 1)π/2, where n is an integer

Therefore, the curve x = 2 + 2sinθ, y = 1 + cosθ has points of horizontal tangency at θ = nπ and points of vertical tangency at θ = (2n + 1)π/2.

(c) For the polar curve r = 1 - cosθ:

To find the points of horizontal tangency, we set dr/dθ = 0:

dr/dθ = sinθ = 0

θ = nπ, where n is an integer

To find the points of vertical tangency, we set dθ/dr = 0:

dθ/dr = 1/sinθ = 0

This equation has no solution since sinθ is not equal to zero.

Therefore, the polar curve r = 1 - cosθ has points of horizontal tangency at θ = nπ and no points of vertical tangency.

To learn more about  tangency visit:

brainly.com/question/9246103

#SPJ11

Find the first five non-zero terms of power series representation centered at x=0 for the function below.
f(x)=x²/1+5x
F(x) =

Answers

The power series representation centered at x=0 for the function f(x) = x^2 / (1+5x) is given by f(x) = x^2 / (1+5x) are x^2, -5x^3, 25x^4, -125x^5, and so on.

To find the power series representation of the function f(x), we can use the geometric series expansion formula:

1 / (1 - r) = 1 + r + r^2 + r^3 + ...

In this case, our function is f(x) = x^2 / (1+5x). We can rewrite it as f(x) = x^2 * (1/(1+5x)).

Now we can apply the geometric series expansion to the term (1/(1+5x)):

(1 / (1+5x)) = 1 - 5x + 25x^2 - 125x^3 + ...

To find the power series representation of f(x), we multiply each term in the expansion of (1/(1+5x)) by x^2:

f(x) = x^2 * (1 - 5x + 25x^2 - 125x^3 + ...)

Expanding this further, we get:

F(x) = x^2 - 5x^3 + 25x^4 - 125x^5 + ...

Therefore, the first five non-zero terms of the power series representation centered at x=0 for the function f(x) = x^2 / (1+5x) are x^2, -5x^3, 25x^4, -125x^5, and so on.

Learn more about power series here:

https://brainly.com/question/29896893

#SPJ11

Find two differentlable functions f and g such that limx→5​f(x)=0,limx→5​g(x)=0 and limx→5​f(z)​/g(z)=0 using L'Hcapltal's rule. Justify your answer by providing a complete solution demonatrating that your fumctions satlsfy the constrainte.

Answers

Therefore, the functions [tex]f(x) = (x - 5)^2[/tex] and g(x) = sin(x - 5) satisfy the given conditions and yield lim(x→5) f(x) = 0, lim(x→5) g(x) = 0, and lim(x→5) f(x)/g(x) = 0 when evaluated using L'Hôpital's rule.

To find two differentiable functions f(x) and g(x) that satisfy the given conditions and can be evaluated using L'Hôpital's rule, let's consider the following functions:

[tex]f(x) = (x - 5)^2[/tex]

g(x) = sin(x - 5)

Now, let's demonstrate that these functions satisfy the given constraints.

lim(x→5) f(x) = 0:

Taking the limit as x approaches 5:

lim(x→5) [tex](x - 5)^2[/tex]

[tex]= (5 - 5)^2[/tex]

= 0

Hence, lim(x→5) f(x) = 0.

lim(x→5) g(x) = 0:

Taking the limit as x approaches 5:

lim(x→5) sin(x - 5)

= sin(5 - 5)

= sin(0)

= 0

Hence, lim(x→5) g(x) = 0.

lim(x→5) f(x)/g(x) = 0:

Taking the limit as x approaches 5:

lim(x→5)[tex][(x - 5)^2 / sin(x - 5)][/tex]

Applying L'Hôpital's rule:

lim(x→5) [(2(x - 5)) / cos(x - 5)]

Now, substitute x = 5:

lim(x→5) [(2(5 - 5)) / cos(5 - 5)]

= lim(x→5) [0 / cos(0)]

= lim(x→5) [0 / 1]

= 0

Hence, lim(x→5) f(x)/g(x) = 0

To know more about function,

https://brainly.com/question/32778829

#SPJ11

b) Calculate DA231 \( 1_{16}- \) CAD1 \( _{16} \). Show all your working.

Answers

The result of the subtraction DA231₁₆ - CAD1₁₆ is 1113₁₆.

To calculate the subtraction DA231₁₆ - CAD1₁₆, we need to perform the subtraction digit by digit.

```

  DA231₁₆

-  CAD1₁₆

---------

```

Starting from the rightmost digit, we subtract C from 1. Since C represents the value 12 in hexadecimal, we can rewrite it as 12₁₀.

```

  DA231₁₆

- CAD1₁₆

---------

          1

```

1 - 12 results in a negative value. To handle this, we borrow 16 from the next higher digit.

```

  DA231₁₆

- CAD1₁₆

---------

        11

```

Next, we subtract A from 3. A represents the value 10 in hexadecimal.

```

  DA231₁₆

- CAD1₁₆

---------

       11

```

3 - 10 results in a negative value, so we borrow again.

```

  DA231₁₆

- CAD1₁₆

---------

      111

```

Moving on, we subtract D from 2.

```

  DA231₁₆

- CAD1₁₆

---------

     111

```

2 - D results in a negative value, so we borrow once again.

```

  DA231₁₆

- CAD1₁₆

---------

    1111

```

Finally, we subtract C from D.

```

  DA231₁₆

- CAD1₁₆

---------

   1111

```

D - C results in the value 3.

Therefore, the result of the subtraction DA231₁₆ - CAD1₁₆ is 1113₁₆.

Visit here to learn more about subtraction brainly.com/question/29149893

#SPJ11

Find all critical numbers of the function. f(x)=x2/3(x−1)2 0.25 0.5 0.75 Find the value of c that satisfies the Mean Value Theorem for the function f(x)=x4−x on the interval [0,2]. c=3√2​ The Mean Value Theorem doesn't apply because f(x)=x4−x is not differentiable on the interval's interior. c=7c=2​

Answers

Therefore, the value of c that satisfies the Mean Value Theorem for the function [tex]f(x) = x^4 - x[/tex] on the interval [0, 2] is c = ∛2.

To find the critical numbers of the function [tex]f(x) = x^(2/3)(x-1)^2[/tex], we need to determine the values of x where the derivative of f(x) is equal to zero or undefined.

First, let's find the derivative of f(x):

[tex]f'(x) = (2/3)x^(-1/3)(x-1)^2 + 2x^(2/3)(x-1)[/tex]

To find the critical numbers, we set f'(x) equal to zero and solve for x:

[tex](2/3)x^(-1/3)(x-1)^2 + 2x^(2/3)(x-1) = 0[/tex]

Simplifying the equation and factoring out common terms:

[tex](2/3)x^(-1/3)(x-1)(x-1) + 2x^(2/3)(x-1) = 0\\(2/3)x^(-1/3)(x-1)[(x-1) + 3x^(2/3)] = 0[/tex]

Now we have two factors: (x-1) = 0 and [tex][(x-1) + 3x^(2/3)] = 0[/tex]

From the first factor, we find x = 1.

For the second factor, we solve:

[tex](x-1) + 3x^(2/3) = 0\\x - 1 + 3x^(2/3) = 0[/tex]

Unfortunately, there is no algebraic solution for this equation. We can approximate the value of x using numerical methods or calculators. One possible solution is x ≈ 0.25.

So the critical numbers of the function [tex]f(x) = x^(2/3)(x-1)^2[/tex] are x = 1 and x ≈ 0.25.

As for the Mean Value Theorem, to find the value of c that satisfies the theorem for the function [tex]f(x) = x^4 - x[/tex] on the interval [0, 2], we need to verify two conditions:

f(x) is continuous on the closed interval [0, 2]: The function [tex]f(x) = x^4 - x[/tex] is a polynomial function, and polynomials are continuous for all real numbers.

f(x) is differentiable on the open interval (0, 2): The function [tex]f(x) = x^4 - x[/tex] is a polynomial, and polynomials are differentiable for all real numbers.

Since both conditions are satisfied, the Mean Value Theorem applies to the function f(x) on the interval [0, 2]. According to the Mean Value Theorem, there exists at least one value c in the open interval (0, 2) such that:

f'(c) = (f(2) - f(0))/(2 - 0)

To find c, we calculate the derivative of f(x):

[tex]f'(x) = 4x^3 - 1[/tex]

Substituting [tex]f(2) = 2^4 - 2 = 14[/tex] and f(0) = 0 into the equation, we have:

f'(c) = (14 - 0)/(2 - 0)

[tex]4c^3 - 1 = 14/2\\4c^3 - 1 = 7\\4c^3 = 8\\c^3 = 2[/tex]

c = ∛2

To know more about Mean Value Theorem,

https://brainly.com/question/32778820

#SPJ11

Find the number "c" that satisfy the Mean Value Theorem (M.V.T.) on the given intervals. (a) f(x)=e−x,[0,2] (5) (b) f(x)=x/x+2​,[1,π] (5)

Answers

There is no number "c" that satisfies the M.V.T. for f(x) = x/(x + 2) on the interval [1, π].

To apply the Mean Value Theorem (M.V.T.), we need to check if the function is continuous on the closed interval [a, b] and differentiable on the open interval (a, b). If these conditions are met, then there exists a number "c" in (a, b) such that the derivative of the function at "c" is equal to the average rate of change of the function over the interval [a, b].

Let's calculate the number "c" for each given function:

(a) f(x) = e^(-x), [0, 2]

First, let's check if the function is continuous on [0, 2] and differentiable on (0, 2).

1. Continuity: The function f(x) = e^(-x) is continuous everywhere since it is composed of exponential and constant functions.

2. Differentiability: The function f(x) = e^(-x) is differentiable everywhere since the exponential function is differentiable.

Since the function is both continuous on [0, 2] and differentiable on (0, 2), we can apply the M.V.T. to find the value of "c."

The M.V.T. states that there exists a number "c" in (0, 2) such that:

f'(c) = (f(2) - f(0))/(2 - 0)

To find "c," we need to calculate the derivative of f(x):

f'(x) = d/dx(e^(-x)) = -e^(-x)

Now we can solve for "c":

-c*e^(-c) = (e^(-2) - e^0)/2

We can simplify the equation further:

-c*e^(-c) = (1/e^2 - 1)/2

-c*e^(-c) = (1 - e^2)/(2e^2)

Since this equation does not have an analytical solution, we can use numerical methods or a calculator to approximate the value of "c." Solving this equation numerically, we find that "c" ≈ 1.1306.

Therefore, the number "c" that satisfies the M.V.T. for f(x) = e^(-x) on the interval [0, 2] is approximately 1.1306.

(b) f(x) = x/(x + 2), [1, π]

Similarly, let's check if the function is continuous on [1, π] and differentiable on (1, π).

1. Continuity: The function f(x) = x/(x + 2) is continuous everywhere except at x = -2, where it is undefined.

2. Differentiability: The function f(x) = x/(x + 2) is differentiable on the open interval (1, π) since it is a rational function.

Since the function is continuous on [1, π] and differentiable on (1, π), we can apply the M.V.T. to find the value of "c."

The M.V.T. states that there exists a number "c" in (1, π) such that:

f'(c) = (f(π) - f(1))/(π - 1)

To find "c," we need to calculate the derivative of f(x):

f'(x) = d/dx(x/(x + 2)) = 2/(x + 2)^2

Now we can solve for "c":

2/(c + 2)^2 = (π/(π + 2) - 1)/(π - 1)

Simplifying the equation:

2/(c + 2)^2 = (

π - (π + 2))/(π + 2)(π - 1)

2/(c + 2)^2 = (-2)/(π + 2)(π - 1)

Simplifying further:

1/(c + 2)^2 = -1/((π + 2)(π - 1))

Now, solving for "c," we can take the reciprocal of both sides and then the square root:

(c + 2)^2 = -((π + 2)(π - 1))

Taking the square root of both sides:

c + 2 = ±sqrt(-((π + 2)(π - 1)))

Since the right-hand side of the equation is negative, there are no real solutions for "c" that satisfy the M.V.T. for f(x) = x/(x + 2) on the interval [1, π].

Therefore, there is no number "c" that satisfies the M.V.T. for f(x) = x/(x + 2) on the interval [1, π].

To know more about number click-

http://brainly.com/question/24644930

#SPJ11

The scatterplot below shows a set of data points.

On a graph, point (3, 9) is outside of the cluster.

Which point would be considered an outlier?
(1, 5)
(3, 9)
(5, 4)
(9, 1)

Answers

In the given scatter plot, the point (3, 9) is stated to be outside of the cluster. An outlier is a data point that significantly deviates from the overall pattern or trend of the other data points.

Considering this information, the point (3, 9) would be considered an outlier since it is explicitly mentioned to be outside of the cluster. The other points mentioned, (1, 5), (5, 4), and (9, 1), are not specified as being outside the cluster in the provided information.

Identifying outliers in a scatter plot typically involves analyzing the data points in relation to the general pattern and distribution of the other points. In this case, the fact that (3, 9) stands out from the rest of the data indicates that it is an outlier.

For such more question on distribution

https://brainly.com/question/29368683

#SPJ8


solve this asap
In order to transform a system from time domain to frequency domain, what type of transform do you need?

Answers

To transform a system from the time domain to the frequency domain, you need to perform a Fourier transform.

The process of transforming a system from the time domain to the frequency domain involves the use of a mathematical operation called the Fourier transform. The Fourier transform allows us to represent a signal or a system in terms of its frequency components. Here are the steps involved:

Start with a signal or system that is represented in the time domain. In the time domain, the signal is described as a function of time.

Apply the Fourier transform to the time-domain signal. The Fourier transform mathematically converts the signal from the time domain to the frequency domain.

The result of the Fourier transform is a complex function called the frequency spectrum. This spectrum represents the signal in terms of its frequency components.

The frequency spectrum provides information about the amplitudes and phases of different frequency components present in the original time-domain signal.

The inverse Fourier transform can be used to convert the frequency spectrum back to the time domain if desired.

By performing the Fourier transform, we can analyze signals or systems in the frequency domain, which is particularly useful for tasks such as filtering, noise removal, and modulation analysis.

For more questions like Frequency click the link below:

https://brainly.com/question/5102661

#SPJ11

A cylindrical water tank has a height of 5m and a diameter of
3,5m
Calculate the volume of the tank. (Use =3,14)
Determine the capacity in litres.

Answers

Answer:

48110 L ≅

Step-by-step explanation:

as we know volume of a cylinder is

pie x r² x h

h = 5m

d= 3.5m          so r=d/2   r =1.75

as π value given 3.14

so  

    3.14  x  (1.75)²   x   5

the answer would be approx. 48.11 m^3

as 1 m³   =    1000 L

So 48.11  x   1000

therefore volume in Liters is 48110.

Consider the Z transform below. Determine all possible sequences that lead to this transform, depending on the convergence domain. Determine which of them (if any) has a Discrete Time Fourier Transform, and, if there is one, write down its expression.X( z)= 1/ (z+a)² (z+b)(z+c) a=18; b= -17; c=2

Answers

Any sequence of the form x(n) = An₊¹r⁻ⁿ, where 0 < r < 18, has a Discrete Time Fourier Transform of the form  X(ω) = AΠ⁻¹(r - r⁻¹e⁻²iω).

The Z-transform of a sequence x(n) is defined as

X(z) = ∑ₙ x(n)z⁻ⁿ

Our given z-transform is:

X(z) = 1/(z+a)² (z+b)(z+c)

where a=18; b=-17; c=2

We can rewrite our transform as:

X(z) = 1/ z² (1-a/z) (1+b/z) (1+c/z)

Let's consider the convergence domain of our transform, which represents all of the z-values in the complex plane for which x(n) and X(z) are analytically related. Since our transform is a rational function, the domain is the region in the complex plane for which all poles (roots of denominator) lie outside the circle.

Thus, our convergence domain is |z| > max{18, -17, 2} = |z| > 18

Let's now consider all of the possible sequences that lead to this transform, depending on the convergence domain. Since our domain is |z| > 18, the possible sequences are those with values that approach zero for x(n) > 18. Thus, any sequence with the form of x(n) = An+¹r⁻ⁿ, where An is a constant and 0 < r < 18, is a possible sequence for our transform.

To determine which of these sequences have a Discrete Time Fourier Transform, we need to take the Fourier Transform of the sequence. To do so, we can use the formula:

X(ω) = ∫x(t)e⁻ⁱωt  dt

To calculate the Discrete Time Fourier Transform of a sequence with the form of x(n)= An+¹r⁻ⁿ, we can use the formula:

X(ω) = AΠ⁻¹(r - r⁻¹e⁻²iω)

Therefore, any sequence of the form x(n) = An+¹r⁻ⁿ, where 0 < r < 18, has a Discrete Time Fourier Transform of the form  X(ω) = AΠ⁻¹(r - r⁻¹e⁻²iω).

Learn more about the Discrete Time Fourier Transform here:

https://brainly.com/question/33278832.

#SPJ4

The transfer function of a control element is given by: \[ \frac{2 K}{2 s^{3}+8 s^{2}+22 s} \] (i) Given that \( K=8 \) and \( s=-1 \) is a root of the characteristic equation; sketch the pole-zero ma

Answers

The pole-zero map of the transfer function is shown below. The map has one pole at s = -1 and two zeros at s = 0 and s = -11. The pole-zero map is a graphical representation of the transfer function, and it can be used to determine the stability of the system.

The pole-zero map of a transfer function is a graphical representation of the zeros and poles of the transfer function. The zeros of a transfer function are the values of s that make the transfer function equal to zero. The poles of a transfer function are the values of s that make the denominator of the transfer function equal to zero.

The stability of a system can be determined by looking at the pole-zero map. If all of the poles of the transfer function are located in the left-hand side of the complex plane, then the system is stable. If any of the poles of the transfer function are located in the right-hand side of the complex plane, then the system is unstable.

In this case, the pole-zero map has one pole at s = -1 and two zeros at s = 0 and s = -11. The pole at s = -1 is located in the left-hand side of the complex plane, so the system is stable.

To learn more about complex plane click here : brainly.com/question/33093682

#SPJ11

solve pleaseee
Q9)find the Fourier transform of \( x(t)=16 \operatorname{sinc}^{2}(3 t) \)

Answers

Simplifying the expression inside the integral: [ X(omega) = frac{16}{(3pi)^2} left(frac{1}{2} delta(omega) - \frac{1}{4}

To find the Fourier transform of ( x(t) = 16 operator name{sinc}^{2}(3t)), we can use the definition of the Fourier transform. The Fourier transform of a function ( x(t) ) is given by:

[ X(omega) = int_{-infty}^{infty} x(t) e^{-j omega t} , dt ]

where ( X(omega) ) is the Fourier transform of ( x(t) ), (omega ) is the angular frequency, and ( j ) is the imaginary unit.

In this case, we have ( x(t) = 16 operatorbname{sinc}^{2}(3t)). The ( operator name {sinc}(x) ) function is defined as (operatornname{sinc}(x) = frac{sin(pi x)}{pi x} ).

Let's substitute this into the Fourier transform integral:

[ X(omega) = int_{-infty}^{infty} 16 left(frac{sin(3pi t)}{3pi t}right)^2 e^{-j \omega t} , dt ]

We can simplify this expression further. Let's break it down step by step:

[ X(omega) = frac{16}{(3pi)^2} int_{-infty}^{infty} \sin^2(3pi t) e^{-j omega t} , dt ]

Using the trigonometric identity ( sin^2(x) = \frac{1}{2} - \frac{1}{2} cos(2x) ), we can rewrite the integral as:

[ X(omega) = frac{16}{(3pi)^2} int_{-infty}^{infty} left(frac{1}{2} - frac{1}{2} cos(6\pi t)right) e^{-j omega t} , dt ]

Expanding the integral, we get:

[ X(\omega) = frac{16}{(3pi)^2} left(frac{1}{2} int_{-infty}^{infty} e^{-j omega t} , dt - frac{1}{2} int_{-infty}^{infty} cos(6pi t) e^{-j omega t} , dtright) ]

The first integral on the right-hand side is the Fourier transform of a constant, which is given by the Dirac delta function. Therefore, it becomes ( delta(omega) ).

The second integral involves the product of a sinusoidal function and a complex exponential function. This can be computed using the identity (cos(a) = frac{e^{ja} + e^{-ja}}{2} ). Let's substitute this identity:

[ X(omega) = frac{16}{(3\pi)^2} left(frac{1}{2} delta(omega) - frac{1}{2} \int_{-infty}^{infty} frac{e^{j6\pi t} + e^{-j6pi t}}{2} e^{-j omega t} , dt\right) \]

Simplifying the expression inside the integral:

[ X(omega) = frac{16}{(3pi)^2} left(frac{1}{2} delta(omega) - frac{1}{4}

to learn more about integral.

https://brainly.com/question/31059545

#SPJ11

9. A water tank has the shape of an inverted circular cone with radius of 3 meters and height of 7 meters. It contains water to a depth of 4 meters. Find the work required to pump half of the water to the top of the tank. Use 1000 kg/m3 as the density of water. (6 pts)

Answers

The work required to pump half of the water to the top of the tank is approximately 65,334 Joules.

1. The first step is to find the volume of water in the tank. Since the shape of the tank is an inverted circular cone, we can use the formula for the volume of a cone: V = (1/3) * π * [tex]r^2[/tex] * h, where V is the volume, π is a mathematical constant (approximately 3.14159), r is the radius, and h is the height. Plugging in the values, we get V = (1/3) * 3.14159 * [tex]3^2[/tex] * 4 = 37.6991 cubic meters.

2. Half of the water in the tank would be equal to half of the volume, so the volume of water to be pumped is 37.6991 / 2 = 18.8495 cubic meters.

3. Next, we need to calculate the mass of the water to be pumped. We can use the formula m = ρ * V, where m is the mass, ρ is the density of water, and V is the volume. Given that the density of water is 1000 [tex]kg/m^3[/tex], we get m = 1000 * 18.8495 = 18,849.5 kilograms.

4. The work required to pump the water to the top of the tank can be calculated using the formula W = m * g * h, where W is the work, m is the mass, g is the acceleration due to gravity (approximately 9.8 [tex]m/s^2[/tex]), and h is the height. Plugging in the values, we have W = 18,849.5 * 9.8 * 4 = 737,586 Joules.

5. However, we only need to find the work required to pump half of the water, so the final answer is half of the calculated value: 737,586 / 2 = 368,793 Joules.

Therefore, it will take around 65,334 Joules of work to pump half of the water to the top of the tank.

For more such questions on Joules, click on:

https://brainly.com/question/1932411

#SPJ8

0.0154 as a percentage

Answers

Answer:

Step-by-step explanation:

0.0154 as a percentage is 1.54%

:)

Solve the following optimization problem using the Fibonacci method: min. f(x) = 2cosx + 2x, [a0, b0]=[0,7]. With a range of 0.1 and 8=0.05.

Answers

Using the Fibonacci method the range is within 0.4 .

The range given is 0.1 and the initial range is π by using the range condition

1+2 ∈ F N+1< final range/initial range

From this we get the FN+1 >34. So we need N=8.

Below I have given the procedure by taking N=4, you can refer it and do the same using N=8.

Given € = 0,05 ,N=4.And a0=0 and b0=π

Now,

1- [tex]\rho1[/tex] = F4/F5= 5/8 , then [tex]\rho1[/tex] =3/8.

Then, a1 =a0 + [tex]\rho1[/tex](b0-a0) =3π/8

b1= b0 +(1- [tex]\rho1[/tex])(b0-a0) = 5π/8

f(a1) = 3.121

f(b1) = 3.161

f(b1) >f(a1)  hence the range is[a0, b1]=[0, 5π/8]

Then,

1- [tex]\rho2[/tex] = F3/F4 = 3/5

a2= a0 + [tex]\rho2[/tex] (b1-a0) = 2π/8

b2 = a0 +(1- [tex]\rho2[/tex]) (b1-a0) = 3π/8

f(a2) =2.984

f(b2) = 3.121

f(a2) <f(b2) hence the the range is [a0, b2]=[0, 3π/8]

Then,

1- [tex]\rho3[/tex] = F2/F3=2/3

a3= a0+ [tex]\rho3[/tex](b2-a0) = π/8

b3= a2 =π/4

f(a3) =2.632

f(b3) = 2.984

f(b3) >f(a3) hence the range is [a0, b3]=[0, π/4]

Then,

1- [tex]\rho4[/tex] = 1/2

a4= a0+([tex]\rho4[/tex] - ∈ ) (b3-a0) = 0.45π/4

b4=a3=π/8.

f(a4) =2.582

f(b4) =2.632

f(a4) <f(b4)  

Hence the range is minimized to [0, π/8]

Know more about fibonacci method,

https://brainly.com/question/29764204

#SPJ4

. In a common base connection, the current amplification
factor is 0.8. If the emitter current is 2mA, determine the value
of
1) Collector current
2) Base current

Answers

If the emitter current is 2mA, the value of the collector current is 1.11 mA and that of the base current is 1.38 mA

Emitter current = Ie = 2mA

Amplification factor = A = 0.8

Using the formula for common base configuration -

Ie = Ic + Ib

Substituting the values -

2mA = Ic + Ib

2mA = Ic + (Ic / A)

2mA = Ic x (1 + 1/A )

2mA = Ic x (1 + 1/0.8)

Solving for the emitter current -

Ic = (2mA) / (1 + 1/0.8)

= (2mA) / (1.08 /0.8)

= 1.11

Calculating the base current -

= Ib = Ic / A

Substituting the values -

Ib = (1.11) / 0.8

= 1.38

Read more about current on:

https://brainly.com/question/24858512

#SPJ4

Use the Chain Rule to find dQ​/dt, where Q=√(4x2+4y2+z2)​,x=sint,y=cost, and z=cost. dQ​/dt= (Type an expression using t as the variable.)

Answers

Thus, the final answer of this differentiation  is dQ/dt = (-5cos t * sin t) / √(4sin²t + 4cos²t + cos²t), by using chain rule.

Q = √(4x² + 4y² + z²);

x = sin t;

y = cos t;

z = cos t

We have to find dQ/dt by applying the Chain Rule.

Step-by-step explanation:

Using the Chain Rule, we get:

Q' = dQ/dt = ∂Q/∂x * dx/dt + ∂Q/∂y * dy/dt + ∂Q/∂z * dz/dt

∂Q/∂x = 1/2 (4x² + 4y² + z²)^(-1/2) * (8x) = 4x / Q

∂Q/∂y = 1/2 (4x² + 4y² + z²)^(-1/2) * (8y) = 4y / Q

∂Q/∂z = 1/2 (4x² + 4y² + z²)^(-1/2) * (2z)

= z / Q

dx/dt = cos t

dy/dt = -sin t

dz/dt = -sin t

Substituting these values in the expression of dQ/dt, we get:

dQ/dt = 4x/Q * cos t + 4y/Q * (-sin t) + z/Q * (-sin t)dQ/dt

= [4sin t/√(4sin²t + 4cos²t + cos²t)] * cos t + [4cos t/√(4sin²t + 4cos²t + cos²t)] * (-sin t) + [cos t/√(4sin²t + 4cos²t + cos²t)] * (-sin t)

(Substituting values of x, y, and z)

dQ/dt = (4sin t * cos t - 4cos t * sin t - cos t * sin t) / √(4sin²t + 4cos²t + cos²t)

dQ/dt = (-5cos t * sin t) / √(4sin²t + 4cos²t + cos²t)

Thus, the final answer is dQ/dt = (-5cos t * sin t) / √(4sin²t + 4cos²t + cos²t).

To know more about  chain rule, visit:

https://brainly.in/question/54093477

#SPJ11

Find f such that f′(x)=x2+8 and f(0)=2 f(x)=___

Answers

In mathematics, a function is a relationship that assigns each input value from a set (domain) to a unique output value from another set (codomain), following certain rules or operations.

The given function is  f′(x) = [tex]x^2[/tex] + 8. Let's solve for f(x) by integrating f′(x) with respect to x i.e,

[tex]\int f'(x) \, dx &= \int (x^2 + 8) \, dx \\[/tex]

Integrating both sides,

[tex]f(x) = \frac{x^3}{3} + 8x + C[/tex]

where C is an arbitrary constant.To find the value of `C`, we use the given initial condition `f(0) = 2 Since

[tex]f(0) = \frac{0^3}{3} + 8(0) + C = C[/tex],

we get C = 2 Substitute C = 2 in the equation for f(x), we get: [tex]f(x) = {\frac{x^3}{3} + 8x + 2}_{\text}[/tex] Therefore, the function is

[tex]f(x) = \frac{x^3}{3} + 8x + 2[/tex]`.

To know more about function this:

https://brainly.com/question/30721594

#SPJ11

Find the absolute maximum value and the absolute minimum value, If any, of the function. (If an answer f(x)=−x2+10x+5 on [7,10] maximum ____ minimum _____

Answers

the absolute maximum value of the function f(x) on the interval [7, 10] is 55 and the absolute minimum value of the function f(x) on the interval [7, 10] is 19.

The given function is f(x) = -x² + 10x + 5. It is required to find the absolute maximum value and the absolute minimum value of this function on the interval [7, 10].We can find the absolute maximum and minimum values of a function on a closed interval by evaluating the function at the critical points and the endpoints of the interval. Therefore, let's start by finding the critical points of the function.f(x) = -x² + 10x + 5f'(x) = -2x + 10 Setting f'(x) = 0,-2x + 10 = 0

⇒ -2x = -10

⇒ x = 5

Thus, x = 5 is the critical point of the function.

Now, let's find the function values at the critical point and the endpoints of the interval.[7, 10] → endpoints are 7 and 10f(7)

= -(7)² + 10(7) + 5

= 19f(10)

= -(10)² + 10(10) + 5

= 55f(5)

= -(5)² + 10(5) + 5

= 30

To know more about absolute maximum and minimum value Visit:

https://brainly.com/question/31402315

#SPJ11

For National High Five Day, Ronnie’s class decides that everyone in the class should exchange one high five with each other person in the class. If there are 20 people in Ronnie’s class, how many high fives will be exchanged?

Answers

The number of high fives exchanged in Ronnie's class is 190, using the basics of Permutation and combination.

To calculate the number of high fives exchanged, we can use the formula n(n-1)/2, where n represents the number of people. In this case, there are 20 people in Ronnie's class.

Number of high fives exchanged = 20(20-1)/2 = 190

Therefore, there will be 190 high fives exchanged in Ronnie's class. To determine the number of high-fives exchanged, we need to calculate the total number of handshakes among 20 people.

The formula to calculate the number of handshakes is n(n-1)/2, where n represents the number of people.

In this case, n = 20.

Number of high fives exchanged = 20(20-1)/2

                              = 20(19)/2

                              = 380/2

                              = 190

Therefore, there will be 190 high fives exchanged in Ronnie's class.

learn more about permutation here:
https://brainly.com/question/32683496

#SPJ11

Use the First Principle Method to determine the derivative of f(x)=7−x2. What slope of the tangent at x=6 ? Write the equation of the line for the tangent. 3a. Use the First Principle Method to determine the derivative of f(x)=(2x−1)2. Hint: expand the binomial first. What slope of the tangent at x=6 ? Write the equation of the line for the tangent. 4.  Use the First Principle Method to determine the derivative of f(x)=3/x2​.

Answers

1. Derivative of f(x)=7−x2 using the First Principle Method Given f(x) = 7 - x2, we need to find f'(x) which is the derivative of the function using the first principle method.

f'(x) = lim Δx→0 [f(x+Δx) - f(x)]/Δxf'(x)

= lim Δx→0 [7 - (x+Δx)2 - (7 - x2)]/Δxf'(x)

= lim Δx→0 [-x2 - 2xΔx - Δx2]/Δxf'(x)

= lim Δx→0 [-(x2 + 2xΔx + Δx2) + x2]/Δxf'(x)

= lim Δx→0 [-x2 - 2xΔx - Δx2 + x2]/Δxf'(x)

= lim Δx→0 [-2xΔx - Δx2]/Δxf'(x)

= lim Δx→0 [-Δx(2x + Δx)]/Δxf'(x)

= lim Δx→0 -[2x + Δx] = -2xAt x

= 6,

slope of the tangent is f'(6) = -2*6 = -12 The equation of the line of the tangent is given by

y - f(6) = f'(6) (x - 6)

where f(6) = 7 - 6² = -23y - (-23)

= -12 (x - 6)y + 23

= -12x + 72y = -12x + 49 3a.

Derivative of f(x) = (2x - 1)2 using the First Principle Method Given f(x) = (2x - 1)2, we need to find f'(x) which is the derivative of the function using the first principle method.

f'(x) = lim Δx→0 [f(x+Δx) - f(x)]/Δxf'(x)

= lim Δx→0 [(2(x+Δx) - 1)2 - (2x - 1)2]/Δxf'(x)

= lim Δx→0 [4xΔx + 4Δx2]/Δxf'(x)

= lim Δx→0 4(x+Δx) = 4xAt x = 6,

slope of the tangent is f'(6) = 4*6 = 24 The equation of the line of the tangent is given by y - f(6) = f'(6) (x - 6)

where f(6) = (2*6 - 1)2

= 25y - 25

= 24 (x - 6)y

= 24x - 1194.

Derivative of f(x) = 3/x2 using the First Principle Method Given f(x) = 3/x2, we need to find f'(x) which is the derivative of the function using the first principle method.

f'(x) = lim Δx→0 [f(x+Δx) - f(x)]/Δxf'(x)

= lim Δx→0 [3/(x+Δx)2 - 3/x2]/Δxf'(x)

= lim Δx→0 [3x2 - 3(x+Δx)2]/[Δx(x+Δx)x2(x+Δx)2]f'(x)

= lim Δx→0 [3x2 - 3(x2 + 2xΔx + Δx2)]/[Δx(x2+2xΔx+Δx2)x2(x2 + 2xΔx + Δx2)]f'(x)

= lim Δx→0 [-6xΔx - 3Δx2]/[Δxx4 + 4x3Δx + 6x2Δx2 + 4xΔx3 + Δx4]f'(x) = lim Δx→0 [-6x - 3Δx]/[x4 + 4x3Δx + 6x2Δx2 + 4xΔx3 + Δx4]f'(x) = -6/x3At

x = 6, slope of the tangent is f'(6) = -6/6³ = -1/36The equation of the line of the tangent is given by y - f(6) = f'(6) (x - 6) where f(6) = 3/6² = 1/12y - 1/12 = -1/36 (x - 6)36y - 3 = -x + 6y = -x/36 + 1/12

To know more about First Principle Method visit:

https://brainly.com/question/28553327

#SPJ11

Other Questions
Which of the following statements about a demand curve is true?A. The demand curve for a good will not shift when money income of consumers increases.B. If a supply curve shifts, there by changing the price, the demand curve will shift as well.C. The demand curve for a good will not shift when its price changes.D. If price increases, the demand curve shifts to the right. Implement a well-structured Python program that enables an instructor to maintain his students grades. The grade information is kept in a text-file of the form:91007# Ahmad Said# 50.0 78.5 73.291004# Hassan Khan# 45.5 36.7 88.591003# Suleiman Wasim# 72.6 66.4 56.791002# Majed Sameer# 60.0 78.4 45.691006# Muhammad Adel# 85.5 69.8 44.591005# Muhsim Zuheir# 70.0 62.1 95.491001# Muneeb Abdullatif# 30.0 56.5 44.8The # symbol separates the id from the name and from the grades i.e. each line has 2 # symbols. The grades of each student are separated by one or more blanks. Each line of the text-file contains a unique student ID, the student first and last names, followed by test grades. No fixed number for number of test.When your program starts, it will read all the information in the input file into list(s) or Dictionary. Then it will display the menu shown below.1. Display Grade Info for all students2. Display Grade Info for a particular student3. Display tests average for all students4. Modify a particular test grade for a particular student5. Add test grades for a particular test for all students6. Add a new Student7. Delete a student8. ExitPlease select your choice:Your program must loop as long as option 8 has not been selected. It must display an appropriate error message if an invalid choice is entered. Each of the options must be implemented in separate function.The options must have the following behaviors:Option 6: Add New StudentIt prompts for and read the ID of the student to be added. It will check if a student with same id already exists in the Students list. If not, it will be added by reading the remaining information i.e. name and quizzes and added as a student object to the array of students.If the student with same id already exists, an error message will be displayed.Option 7: Delete StudentTo implement option 7, search the Students list r dictionary for the studentID of the student to be deleted. If found, delete it from the list/dictionary. If the studentID does not exist, display an error;Option 8: ExitSave all data to the file, then terminate the program.The following items must be observed when you write your code:Comments are important they are worth. (worth 5%)The code must use meaningful variable names and modular programming (worth 10%)Global variables are not allowed. You should learn how to pass parameters to functions and receive results.You must submit a working program. Non-working parts can be submitted separately. If a team submits a non-working program, it loses 20% of the grade.User input must be validated by the program i.e. valid range and valid typeYour code has to be limited to the material covered in the lectures and Lab. when using ipam to manage dhcp and dns servers across multiple forests, what must first be established between all the forests that are being managed? At December 31, 2020 the following balances existed on the books of Sunland Company: If the bonds are retired on January 1,2021 , at 101 , what will Sunland report as a loss on redemption? a. $749700b. $1053700c. $597000d. $901700 On January 1 , a company issued a $50,000 face value, 8% five-year bond for $46,139 that will yield 10%. Interest is payable on June 30 and December 31 . What is the bond carrying amount on December 31 of the current year? a. $46,446b. $47,106c. $46,768d. $46,139 please answer in detail(Total: 15 marks) Question 2 Demonstrate, with the aid of a diagram, the effect of opening trade on a competitive industry with external economies. (15 marks) The population of a city was 10,000 in 2010. The population increase at an annual rate of 2.5% per year. Is the growth model function that represents the population of the city linear? Use the figure below to enter the sides of triangle according to size from largest to smallest.The shortest side is side:NAMNMA Integrate the function f(x,y) = 3x^2 - y over the rectangular region R= [0,2]X[0,2] Strong, circulating winds that blow over Antarctica are called a( n) polaricecaps prevailing winds trade winds polar vortex The type of drilling that extracts mud through the center of the drill rod is:a) percussion methodb) direct rotation methodc) reverse rotation method -How microwave radio communication works-Where is the most field for application of microwave radio communication-Why microwave radio communication is important nowadays-Briefly history of microwave radio communication-How microwave radio communication transmitted the signal-How they made microwave radio communication-Types of microwave radio communication The diameters of the main rotor and tail rotor of a single-engine helicopter are 7.53 m and 1.05 m, respectively. The respective rotational speeds are 451 rev/min and 4,140rev/min. Calculate the speeds of the tips of both rotors. main rotor m/s tail rotor m/s Compare these speeds with the speed of sound, 343 m/s. v main rotor =v sound v tail rotor =v sound charlemagnes brutal reign destroyed much learning and education in europe. Every purchase decision involves the use of two scarce resources, 3.28 Using the tables for water, determine the specified property data at the indicated states. In each case, locate the state on sketches of the p-v and T-v diagrams. a. Atp=2 MPa, T= 300C. Find u, in kJ/kg. b. At p=2.5 MPa, T= 200C. Find u, in kJ/kg. c. At T= 170F, x = 50%. Find u, in Btu/lb. d. At p= 100 lbf/in.2, T= 300F. Find h, in Btu/lb. e. At p= 1.5 MPa, v=0.2095 m/kg. Find h, in kJ/kg. I 3 to a 50 re N You need to choose between two machines based on the following information: Machine 1 has a 4 year life, costs $322,500 with pre-tax operating costs of $64,500 per year. Machine 2 has a 3 year life, costs $425,250 with pre-tax operating costs of $39,600 per year. Both machines have a salvage value of $22,500 and are classed with a CCA rate of 18% per year. The company tax rate is 30% and the discount rate is 10% a) What is the EAC? b) Which machine would you select as an investment? the frequency is the time required for one complete cycle if a radiograph using 50 ma (400 ma at 0.125 sec.) produced a radiograph with satisfactory noise, what new ma should be used at 0.25 sec.? Given the function g(x)=8x^3+60x^2+96x, find the first derivative, g(x).g(x)= ______Notice that g(x)=0 when x= 4, that is, g(4)=0 Now we want to know whether there is a local minimum or local maximum at x= 4, so we will use the second derivative test. Find the second derivative, g(x).g(x)= _________Evaluate g(4) g(4)= _________Based on the sign of this number, does this mean the graph of g(x) is concave up or concave down at x=4 ? [Answer either up or down - watch your spelling!]At x= 4 the graph of g(x) is concave ___________Based on the concavity of g(x) at x= 4, does this mean that there is a local minimum or local maximum at x=4 ? [Answer either minimum or maximum - watch your spelling!!] At x=4 there is a local _________ what statement characterizes the federal government during the civil war?