Question 3
An object's velocity as a function of time in one dimension is given by the expression; v(t) = 2.68t + 8.6 where are constants have proper SI Units. What is the object's velocity at t= 4.76s?
____________

Question 4
An object's velocity as a function of time in one dimension is given by the expression; v(t) = 3.6t + 8.87 where are constants have proper SI Units. At what time is the object's velocity 69.5 m/s?
__________

Answers

Answer 1

The object's velocity at t= 4.76 s is 21.48 m/s. 

An object's velocity as a function of time in one dimension is given by the expression v(t) = 2.68t + 8.6 where constants have proper SI Units.

Given,v(t) = 2.68t + 8.6Here, v(t) is the velocity of an object at time t.

Therefore, the velocity of an object is given by 2.68t + 8.6. We have to calculate the velocity of an object at t=4.76 s.

Thus, substituting t = 4.76 in the given equation, we get;v(t) = 2.68t + 8.6v(4.76) = 2.68(4.76) + 8.6 = 21.48 m/s

Therefore, the object's velocity at t= 4.76 s is 21.48 m/s. 

Question 4: The object's velocity is 69.5 m/s when t = 18.09 s.

Given,v(t) = 3.6t + 8.87 We have to find at what time the object's velocity is 69.5 m/s.

Therefore, we can write the above equation as;3.6t + 8.87 = 69.5

Subtracting 8.87 from both sides,3.6t = 60.63

Dividing both sides by 3.6,t = 16.842

Thus, the object's velocity is 69.5 m/s when t = 16.842 s (approximately).

Therefore, the time when the object's velocity is 69.5 m/s is 16.842 s.

To know more about velocity please refer:

https://brainly.com/question/80295

#SPJ11


Related Questions

A 15 kg block is resting on a turntable at a distance of 0.5 m. Initially the turntable is not spinning. The turntable begins to rotate with an angular acceleration of sec 2
1 ∘

. If the coefficient of friction between the turntable and the block is μ=0.4, Determine: - the horizontal force necessary for the block to slip the acceleration caused by the rotational acceleration of the turntable the time at which the block starts to slip - The velocity of the block at that time

Answers

The necessary horizontal force for the block to start slipping is approximately 58.8 N. The acceleration caused by the rotational acceleration of the turntable is approximately 0.0087 m/s². The time at which the block starts to slip is undefined, and the velocity of the block at that time cannot be determined.

To determine the necessary horizontal force for the block to start slipping, we need to consider the maximum static friction force acting on the block. The maximum static friction force can be calculated using the formula:

[tex]f_{friction[/tex] = μ * N,

where μ is the coefficient of friction and N is the normal force.

The normal force acting on the block is equal to its weight, which can be calculated as:

N = m * g,

where m is the mass of the block and g is the acceleration due to gravity.

The mass of the block is given as 15 kg and the acceleration due to gravity is approximately 9.8 m/s², we can calculate the normal force:

N = 15 kg * 9.8 m/s² = 147 N.

Substituting the coefficient of friction μ = 0.4, we can calculate the maximum static friction force:

[tex]f_{friction[/tex] = 0.4 * 147 N = 58.8 N.

Therefore, the horizontal force necessary for the block to start slipping is approximately 58.8 N.

The acceleration caused by the rotational acceleration of the turntable can be calculated using the formula:

[tex]a_{rotational[/tex] = r * α,

where r is the distance of the block from the center of rotation and α is the angular acceleration.

The distance of the block from the center is 0.5 m and the angular acceleration is 1°/s² (which can be converted to rad/s²), we can calculate the acceleration caused by the rotational acceleration:

[tex]a_{rotational[/tex] = 0.5 m * (1°/s²) * (π/180) ≈ 0.0087 m/s².

Therefore, the acceleration caused by the rotational acceleration of the turntable is approximately 0.0087 m/s².

To determine the time at which the block starts to slip, we need to compare the maximum static friction force with the force applied by the rotational acceleration. If the applied force exceeds the maximum static friction force, the block will start to slip.

The force applied by the rotational acceleration is equal to the product of mass and acceleration:

[tex]f_{applied} = m * a_{rotational[/tex] = 15 kg * 0.0087 m/s² = 0.13 N.

Since the applied force (0.13 N) is less than the maximum static friction force (58.8 N), the block does not start to slip.

Therefore, the time at which the block starts to slip is undefined in this scenario.

The velocity of the block at that time can also not be determined since the block does not start to slip.

Please note that the calculations above assume ideal conditions and neglect any other factors that may affect the motion of the block.

To know more about maximum static friction force, refer to the link below:

https://brainly.com/question/33562642#

#SPJ11

Complete Question:

Please explain these three questions . Thank you


7. Describe how thermal circuits can be used to analyze radiation exchange
problems, and explain the physical factors behind

Show transcribed data
7. Describe how thermal circuits can be used to analyze radiation exchange problems, and explain the physical factors behind the "radiation resistance" 8. Describe the "contact resistance" associated with non-blackbody surfaces. 9. Describe the atmospheric radiation balance, why it is important for engineers be mindful of this, and what engineers can do to maintain or improve this balance.

Answers

7) Thermal circuits can be used to analyze radiation exchange problems by using the circuit's analogical aspects to represent the equivalent energy exchange process.

Radiation resistance, also known as heat transfer resistance, is the factor responsible for limiting heat transfer from one surface to another when a temperature difference exists.

The higher the radiation resistance, the lower the rate of heat transfer between the surfaces. It is a critical parameter in radiation problems and plays a crucial role in determining the heat transfer rate between surfaces. The factors that affect the radiation resistance are surface properties, temperature difference, and the geometry of the surface.

8. The contact resistance is the resistance encountered when two materials or surfaces are brought into contact, and it represents the heat transfer resistance. The contact resistance associated with non-blackbody surfaces is higher than that of blackbody surfaces because of the non-uniform emission of radiation and absorption of radiation on non-black surfaces.

9. The atmospheric radiation balance refers to the balance between the incoming solar radiation and the outgoing terrestrial radiation from the earth's surface. This balance is essential because it is the driving force behind the earth's climate and weather patterns. It is essential for engineers to be mindful of this balance because the changes in the atmospheric radiation balance can cause significant climate changes and affect human life.

To know more about radiation, refer

https://brainly.com/question/12496930

#SPJ11

100% C ON 100% KW 100% Corred 95% Conec < Assignment score: Question 6 of 17 60.3% Which of the elements and compounds were used as inputs in the Miller-Urey experiment (also called the Urey-Miller experiment) to synthesize amino acids? argon lysine methane. chlorine gas water

Answers

The Miller-Urey experiment used gases such as methane, ammonia, hydrogen, and water vapor to synthesize amino acids.

In the Miller-Urey experiment, four gases - methane (CH₄), ammonia (NH₃), water vapor (H₂O), and hydrogen (H₂) - were utilized as inputs to produce amino acids. The experiment was carried out by putting these gases in a sterile apparatus and then exposing them to electric discharges that simulated lightning. The experiment simulated the early Earth's atmosphere, which had a considerably different composition than it does now.

Miller and Urey observed that the electric discharges created amino acids from these gases. This was the first time that scientists had shown how organic molecules, the building blocks of life, could be formed from inorganic components in the absence of life forms. Although Miller and Urey's experiment was controversial at the time and has since been challenged, it opened up a whole new field of study in the origins of life.

Learn more about Miller-Urey experiment here:

https://brainly.com/question/12887279

#SPJ11

Check is the following signals are power or energy or neither? 1- X₁(n) =p3(n) + u(n-4) Power 2- X₂(n) = r(n).u(3-n) -(-n+3) ei 3- X:(n) = n. u(n) 14 w 4- X₁(n)= (-0.5)". u(n) 5- X (n) = r(n-2) - r(n-5)

Answers

X₁(n) is a power signal, X₂(n) is neither a power nor an energy signal, X₃(n) and X₁(n) are energy signals, andX₅(n) is a power signal.

To determine if the given signals are power signals, energy signals, or neither, first, analyze the mathematical properties.

X₁(n) = p3(n) + u(n-4)

This signal is a power signal because it contains a periodic component p3(n), which repeats after every 3 samples. The unit step function u(n-4) is non-periodic but has finite energy. Power signals have finite power but not necessarily finite energy.

X₂(n) = r(n).u(3-n) -(-n+3)ei

This signal is neither a power nor an energy signal. The presence of the exponential term ei indicates a complex-valued signal, and neither power nor energy can be determined.

X₃(n) = n.u(n) 14 w

This signal is an energy signal. It is the product of n and the unit step function u(n), which ensures that the signal is causal. The finite duration window of 14 samples also guarantees that the signal has finite energy.

X₁(n) = (-0.5)ⁿ.u(n)

This signal is an energy signal. The exponential term (-0.5)ⁿ decreases rapidly, and when multiplied by the unit step function u(n), it ensures causality. The signal has finite energy due to the decay of the exponential term.

X₅(n) = r(n-2) - r(n-5)

This signal is a power signal. It is the difference between two delayed unit step functions, resulting in a periodic signal. The periodicity implies that the signal has a finite power but not necessarily finite energy.

Thus, X₁(n) is a power signal, X₂(n) is neither a power nor an energy signal. , X₃(n), and X₁(n) are energy signals and X₅(n) is a power signal.

To know more about Power signals, click here:

https://brainly.com/question/14699772

#SPJ4


pandulum swings back and forth. Is that uniform circular motion. If
yes why?

Answers

Therefore, a pendulum swinging back and forth does not exhibit uniform circular motion but rather periodic oscillatory motion.

No, a pendulum swinging back and forth is not an example of uniform circular motion.

Uniform circular motion refers to an object moving in a circular path at a constant speed. In uniform circular motion, the object's velocity is always tangent to the circle, and its magnitude remains constant throughout the motion.

On the other hand, a pendulum swinging back and forth involves the motion of a mass (bob) attached to a string or rod, which is usually constrained to move in a linear path. The motion of the pendulum is governed by the force of gravity and follows a periodic oscillation.

Although the path of the pendulum's bob may resemble a portion of a circle, it is not a circular motion because the speed and direction of the bob change continuously as it swings. At the extreme points of its swing, the velocity of the bob is momentarily zero, and as it passes through the lowest point, the velocity is at its maximum.

To learn more about pendulum

https://brainly.com/question/26449711

#SPJ11

A 220−V shunt motor draws 10 A at 1800rpm. The armature-circuit resistance is 0.2Ω, and the field-winding resistance is 440Ω. The rotational loss is 180 W. Determine (a) the back emf, (b) the driving torque, (c) the shaft torque, and (d) the efficiency of the motor.

Answers

(a) Back EMF: We can find the back EMF using the formula given below: Eb = V - IaRa

Eb = 220 - 10(0.2)

Eb = 218V

Hence, the back EMF is 218V.

(b) Driving torque:

We can calculate the driving torque using the formula given below:

Td = P / ω

Td = 746 / ((2π/60)(1800))

Td = 20.13 Nm

Hence, the driving torque is 20.13 Nm.

(c) Shaft torque:

We can calculate the shaft torque using the formula given below:

Ts = Td - (Td^2 * Ra) / (Td^2 * Ra + Pa)

where Ra is the armature circuit resistance and Pa is the rotational loss.

Ts = 20.13 - (20.13^2 * 0.2) / (20.13^2 * 0.2 + 180)

Ts = 18.97 Nm

Hence, the shaft torque is 18.97 Nm.

(d) Efficiency:

We can calculate the efficiency using the formula given below:

η = (Ts * ω) / (V * Ia)

η = (18.97 * (2π/60)(1800)) / (220 * 10)

η = 89.3%

Therefore, the efficiency of the motor is 89.3%.

To know more about Back EMF visit:

https://brainly.com/question/13109636

#SPJ11

The phase Ø of light of wavelength λ travelling through a shifter with refraction index n is given by Øs = 2πntλ-1, where t is the shifter thickness. The phase of the same light wave travelling through air for a distance equal to t is Øa= 2ntλ-1. Derive an expression for the thickness of the shifter as a function of λ and n in order to obtain a phase shift of 180°.

Answers

The thickness of the shifter is given as t = λ / 2n.

The given equation of the phase of light of wavelength λ traveling through a shifter with a refractive index n is given by: Øs = 2πntλ-1, where t is the thickness of the shifter.

The phase of the same light wave traveling through air for a distance equal to t is Øa= 2ntλ-1.

We are supposed to derive an expression for the thickness of the shifter as a function of λ and n to get a phase shift of 180°.

Given, The phase of light of wavelength λ traveling through a shifter with a refractive index n is given by: Øs = 2πntλ-1

The phase of the same light wave traveling through air for a distance equal to t is Øa = 2ntλ-1

To obtain a phase shift of 180°, we have: Øs - Øa = πi where i is an integer.

Substituting the value of Øs and Øa in the above expression, we have:

2πntλ-1 - 2ntλ-1 = πi2πntλ-1 - 2ntλ-1

                         = π(2nλt) / λ2πntλ-1

                         = 2nλt / λπt

                         = λ / 2n

Hence, the thickness of the shifter is given as t = λ / 2n.

Learn more about thickness from the given link

https://brainly.com/question/4937019

#SPJ11




0/1 pts Question 29 A hydrogen-like atom is an ion of atomic number 27 that has only one electron, What is the ion's radius in the 3rd excited state compared to the 1st Bohr radius of hydrogen atom?

Answers

The ion's radius in the 3rd excited state is 3/4 times smaller than the 1st Bohr radius of the hydrogen atom.


The ion's radius in the third excited state is calculated using the formula rn = n^2 x r1 / z, where rn is the radius of the nth orbit, r1 is the Bohr radius of hydrogen, n is the principal quantum number, and z is the atomic number.  

Here, n = 3, z = 27, and r1 = 0.529 Å.  

So, rn = 3^2 x 0.529 Å / 27 = 0.185 Å.  

The radius of the first Bohr orbit of hydrogen is 0.529 Å.  

Therefore, the ion's radius in the 3rd excited state is 0.185 Å, which is 3/4 times smaller than the first Bohr radius of the hydrogen atom.  

Hence, we can conclude that the ion's radius is smaller in the 3rd excited state than in the ground state.

Learn more about Bohr radius here:

https://brainly.com/question/31131977

#SPJ11


Derive the relationship of energy density for a Cylindrical
capacitor in vaccum.

Answers

The energy density of a cylindrical capacitor in a vacuum can be derived using the formula: E = (1/2) * (ε * E²) where E is the electric field, and ε is the permittivity of free space.

For a cylindrical capacitor, the electric field is given by E = (Q / 2πεrL), where Q is the charge, r is the radius, and L is the length of the cylinder.
[tex]E = (1/2) * (ε * (Q / 2πεrL)²)[/tex]
Simplifying the expression further, we get:
[tex]E = (Q² / 8π²εr²L²)[/tex]
This is the formula for the energy density of a cylindrical capacitor in a vacuum. It shows that the energy density is directly proportional to the square of the charge and inversely proportional to the square of the radius and length of the cylinder.

It is also inversely proportional to the permittivity of free space. The formula can be used to calculate the energy density of a cylindrical capacitor in a vacuum given its charge, radius, length, and the permittivity of free space.

To know more about density visit:

https://brainly.com/question/29775886

#SPJ11

The position of a dragonfly that is flying parallel to the ground is given as a At what value of t does the velocity vector of the insect make an angle of 40.0 ∘
clockwise from the x-axis? function of time by r
=[2.90 m+(0.0900 m/s 2
)t 2
] i
^
− Express your answer with the appropriate units. (0.0150 m/s 3
)t 3
j
^

. Part B At the time calculated in part (a), what is the magnitude of the acceleration vector of the insect? Express your answer with the appropriate units. Part C At the time calculated in part (a), what is the direction of the acceleration vector of the insect? Express your answer in degrees.

Answers

Part A: At approximately t = -1.39 s, the velocity vector of the insect makes an angle of 40.0° clockwise from the x-axis. Part B: At this time, the magnitude of the acceleration vector is approximately 0.271 m/s², and Part C: its direction is approximately 21.8°.

Part A: To find the value of t when the velocity vector of the insect makes an angle of 40.0° clockwise from the x-axis, we need to determine the x and y components of the velocity vector and then calculate the angle.

The velocity vector of the insect is given as v = (0.0900 m/s² * t²) i + (0.0150 m/s³ * t³) j.

The x-component of the velocity is v_x = 0.0900 m/s² * t².

The y-component of the velocity is v_y = 0.0150 m/s³ * t³.

To calculate the angle, we can use the arctan function:

θ = arctan(v_y / v_x).

Substituting the values, we have:

θ = arctan((0.0150 m/s³ * t³) / (0.0900 m/s² * t²)).

Simplifying, we get:

θ = arctan(0.0150 t).

We want to find the value of t when θ is 40.0° clockwise, so we set θ equal to -40.0°:

-40.0° = arctan(0.0150 t).

To solve for t, we take the tangent of both sides:

tan(-40.0°) = 0.0150 t.

Now we can solve for t:

t = tan(-40.0°) / 0.0150.

Using a calculator, we find:

t ≈ -1.39 s (rounded to two decimal places).

Therefore, at t ≈ -1.39 s, the velocity vector of the insect makes an angle of 40.0° clockwise from the x-axis.

Part B: To find the magnitude of the acceleration vector at the calculated time, we need to differentiate the velocity vector with respect to time.

The acceleration vector is given by a = dv/dt.

Differentiating the velocity vector with respect to time, we get:

a = (d/dt)(0.0900 m/s² * t²) i + (d/dt)(0.0150 m/s³ * t³) j.

Taking the derivatives, we have:

a = (0.1800 m/s² * t) i + (0.0450 m/s³ * t²) j.

At t ≈ -1.39 s, we can substitute the value of t into the expression for a:

a = (0.1800 m/s² * (-1.39 s)) i + (0.0450 m/s³ * (-1.39 s)²) j.

Calculating the values, we find:

a ≈ (-0.2502 m/s²) i + (-0.1003 m/s²) j.

The magnitude of the acceleration vector is given by:

|a| = √((-0.2502 m/s²)² + (-0.1003 m/s²)²).

Calculating the magnitude, we find:

|a| ≈ 0.271 m/s² (rounded to three decimal places).

Therefore, at the calculated time, the magnitude of the acceleration vector of the insect is approximately 0.271 m/s².

Part C: To find the direction of the acceleration vector at the calculated time, we can calculate the angle it makes with the positive x-axis.

The angle θ can be found using the arctan function:

θ = arctan(a_y / a_x).

Substituting the values, we have:

θ = arctan((-0.1003 m/s²) / (-0.2502 m/s²)).

Simplifying, we get:

θ = arctan(0.400).

Using a calculator, we find:

θ ≈ 21.8°.

Therefore, at the calculated time, the direction of the acceleration vector of the insect is approximately 21.8°.

To know more about acceleration vector, refer to the link below:

https://brainly.com/question/33520497#

#SPJ11

Distinguish the difference between parallel and
counter flow heat exchanger?

Answers

Heat exchangers are devices designed to transfer heat between two different fluids, known as the hot and cold fluids, without letting them mix together. Heat exchangers can operate in a range of modes, including parallel flow and counter flow.

Parallel and counter flow heat exchangers are two of the most popular designs for heat exchangers that can be used to transfer heat. Both types have their own set of benefits and drawbacks that are often considered before selecting a particular design. The main distinction between parallel and counter flow heat exchangers is the path taken by the hot and cold fluids as they enter and exit the heat exchanger.

Parallel flow heat exchangers: In a parallel flow heat exchanger, both the hot and cold fluids travel through the heat exchanger in the same direction. As a result, both fluids are usually introduced at opposite ends of the heat exchanger and flow parallel to one another, with the hot fluid entering the heat exchanger first and the cold fluid entering second. The parallel flow heat exchanger's main advantage is that it's simple to design and maintain.

As a result, the hot and cold fluids are flowing in opposite directions, which means that the hot fluid encounters the cold fluid just as it enters the heat exchanger and the cold fluid encounters the hot fluid just as it exits the heat exchanger. Counter flow heat exchangers are more efficient than parallel flow heat exchangers because the temperature difference between the hot and cold fluids is greater and more heat can be transferred between them.

To know more about transfer visit :

https://brainly.com/question/31945253

#SPJ11

A compressed air storage system is storing 1.5 cubic meter at 3 bar. A supercapacitor bank with capacitance of 6 mF at 20 kV. Calculate the capacities of the systems. That ambient atmosphere is at 1 bar.

Answers

The compressed air storage system has a capacity of 16.8 g, and the supercapacitor bank has a capacity of 1.2 mJ. Compressed air storage system stores 1.5 cubic meters at 3 bar. Supercapacitor bank has capacitance of 6 mF at 20 kV.Ambient atmosphere is at 1 bar.

To calculate the capacities of the systems, we need to use the following formulas: Compressed air storage capacity = V (P2 - P1)/ (RT)Supercapacitor capacity = C (V^2) / 2Where,

V = volume

P2 = final pressure

P1 = initial pressure

R = gas constant

T = temperature

C = capacitance Supercapacitor voltage

= V2 - V1Where,

V2 = final voltage

V1 = initial voltage Compressed air storage system capacity:

Here, V = 1.5 cubic meters

P2 = 3 bar

P1 = 1 bar

R = 0.287 kJ/kgK (for air)

T = 273 + 25 K (25°C is the room temperature)

= 298 K Capacity of the compressed air storage system

= V (P2 - P1)/ (RT)

= 1.5 (3 - 1) / (0.287 × 298)

= 0.0168 kgs or 16.8 g Super capacitor bank capacity:

Here, C = 6 mFV2

= 20 kVV1

= 0 (initially, supercapacitor is not charged)Supercapacitor

voltage = V2 - V1

= 20 - 0 = 20 V

Supercapacitor capacity = C (V^2) / 2

= 6 × (20^2) / 2

= 1200 µJ or 1.2 mJ

To know more about Supercapacitor  visit:-

https://brainly.com/question/32097730

#SPJ11

The charges and coordinates of two charged particles held fixed in an xy plane are q
1

=2.02μC,x
1

=5.72 cm,y
1

=0.445 cm and q
2

=−6.36μC,x
2

=−2.73 cm,y
2

=2.27 cm. Find the (a) magnitude and (b) direction (with respect to +x-axis in the range (−180

;180

]) of the electrostatic force on particle 2 due to particle 1. At what (c)x and (d)y coordinates should a third particle of charge q
3

=6.54μC be placed such that the net electrostatic force on particle 2 due to particles 1 and 3 is zero? (a) Number Units (b) Number Units (c) Number Units (d) Number Units

Answers

The magnitude of the electrostatic force on particle 2 due to particle 1 is 3135.2 N.

a) The electrostatic force between two charges is given by Coulomb's law that states that F = (kq₁q₂)/r² where k = 9 x 10⁹ Nm²/C². We can use this equation to find the magnitude of the force on particle 2 due to particle 1.F₁₂ = (9 x 10⁹)(2.02 x 10⁻⁶)(-6.36 x 10⁻⁶)/r² = (-91.5)/r²Newtons where r is the distance between the particles. We can find r from the coordinates:r² = (2.73 - 5.72)² + (2.27 - 0.445)² = 29.3 cm² = 0.293 m²r = √(0.293) = 0.54 m Therefore, F₁₂ = (-91.5)/(0.54)² = -3135.2 N

b) The direction of the electrostatic force can be found using the angle that the force vector makes with the positive x-axis. We can find this angle using the x and y components of the force. Fx = Fcosθ, Fy = Fsinθ, and tanθ = Fy/Fx.θ = tan⁻¹(Fy/Fx) = tan⁻¹((-91.5/0.54²)(2.73 - 5.72)/r²) = 105.3°. Therefore, the direction of the force is 105.3° with respect to the positive x-axis, or 74.7° with respect to the negative x-axis. (Range is -180° to 180°) We can use the principle of superposition to find the coordinates of a third particle where the net electrostatic force on particle 2 due to particles 1 and 3 is zero. The force on particle 2 due to particle 3 is given by F₂₃ = (kq₂q₃)/r₂₃², where r₂₃ is the distance between particles 2 and 3. If the net force on particle 2 is zero, then: F₁₂ + F₂₃ = 0or(kq₁q₂)/r₁₂² + (kq₂q₃)/r₂₃² = 0

We can solve for r₂₃ using this equation:r₂₃² = -(kq₁q₂)/(kq₂q₃)r₂₃ = √(q₁q₃/q₂) r₁₂

Now we can find the coordinates of particle 3 by using the coordinates of particle 2 and the distance r₂₃. The x-coordinate of particle 3 is the negative of the x-coordinate of particle 2:x₃ = -x₂ = -(-2.73) = 2.73 cm

The y-coordinate of particle 3 can be found using the Pythagorean theorem:y₃² = r₂₃² - (y₂ - y₁)²y₃² = (q₁q₃/q₂)(y₂ - y₁)²y₃ = √((q₁q₃/q₂)(y₂ - y₁)²)y₃ = √((2.02 x 10⁻⁶)(6.54 x 10⁻⁶)/(-6.36 x 10⁻⁶))(2.27 - 0.445)²y₃ = 3.81 cm

c) The x-coordinate of particle 3 is 2.73 cm

d) the y-coordinate of particle 3 is 3.81 cm.

To know more about electrostatic force please refer:

https://brainly.com/question/20797960

#SPJ11

why is alternating voltage induced in the rotating armature of a generator

Answers

Alternating voltage is induced in the rotating armature of a generator due to the principle of electromagnetic induction.

When a conductor, such as the armature coil, cuts through magnetic field lines, an electric current is induced in the conductor. In the case of a generator, the rotating armature coil cuts through the magnetic field produced by the stationary field magnets.As the armature coil rotates, it constantly changes its position relative to the magnetic field, resulting in a changing magnetic flux linkage. According to Faraday's law of electromagnetic induction, this changing magnetic flux linkage induces an electromotive force (EMF) or voltage in the armature coil. The induced voltage is alternating in nature because the magnetic flux through the coil is continuously changing as the coil rotates.

To know more about coil visit :

https://brainly.com/question/12000391

#SPJ11

1. AM signal for given single-tone message signal m() = 1cos(2100)and carrier signal
c() = cos(21000)with the amplitude sensitivity for = 0.75 , = 1, and = 1.5
a. Find AM Signal
b. Find spectrum of AM signal
c. Find the Power of AM signal
d. Find demodulation signal

Answers

a. AM Signal: The message signal and carrier signal can be written as: m(t) = Ac cos(2πfmt) and c(t) = Accos(2πfct).

The equation for amplitude modulation is given by:

AM(t) = Ac[1 + ka m(t)]cos(2πfct) where ka is the amplitude sensitivity.

According to the given problem, we have m(t) = cos(2100πt), c(t) = cos(21000πt), ka = 0.75, Ac = 1.

Substituting the values into the equation, AM(t) = [1 + 0.75 cos(2100πt)] cos(21000πt).

b. Spectrum of AM Signal:

The frequency spectrum of the AM signal can be calculated using the formula:

[tex]S(f) = Ac/2 [J(f-fc) + J(f+fc)] + Ac/4ka [J(f-fc-fm) + J(f+fc+fm) + J(f-fc+fm) + J(f+fc-fm)],[/tex]

where J is the Bessel function of the first kind, and fm is the maximum frequency of the message signal.

In this case, fm = 2100 Hz, fc = 21000 Hz.

Substituting the values into the formula, we get:

[tex]S(f) = (1/2)[J(f-21000) + J(f+21000)] + (0.75/4)[J(f-23100) + J(f+23100) + J(f-18900) + J(f+18900)].[/tex]

c. Power of AM Signal:

The power of the AM signal can be calculated using the formula:

[tex]P = Ac^2/4[1 + ka^2/2].[/tex]

In this case, Ac = 1,

ka = 0.75.

Substituting the values into the formula, we get:

[tex]P = (1/4)[1 + (0.75)^2/2] = 0.414.[/tex]

d. Demodulation Signal:

The demodulation of the AM signal can be done using an envelope detector.

The envelope detector is a diode-based circuit that rectifies the AM signal and filters out the carrier frequency component.

The demodulation signal can be written as:

[tex]m(t) = [AM(t) - Vd]/ka,[/tex] where Vd is the voltage drop across the diode.

To know more about AM Signal visit:

https://brainly.com/question/2192758

#SPJ11

A 120 g object with specific heat of 0.2 cal/g/°C at 90°C is placed in 20 g of fluid with with specific heat of 1 cal/g/°C at 20°C. Assume no phase changes occur, the system is thermally isolated, and find the final temperature of the system.

Answers

The final temperature of the system is 87.2°C if the 120 g object with specific heat of 0.2 cal/g/°C at 90°C is placed in 20 g of fluid with with specific heat of 1 cal/g/°C at 20°C.

Let the final temperature of the system be x°C. Using the formula of heat, Q = msΔt, where Q is the heat, m is the mass, s is the specific heat and Δt is the change in temperature. The amount of heat lost by the object is equal to the amount of heat gained by the fluid. Therefore:

Q lost = Q gained

Q lost = msΔt = (120 g) (0.2 cal/g/°C) (90°C - x°C)

Q gained = msΔt = (20 g) (1 cal/g/°C) (x°C - 20°C)120(0.2)(90 - x) = 20(1)(x - 20)24(90 - x) = x - 202160 - 24x = x - 2025x = 2180x = 87.2°C

The final temperature of the system is 87.2°C.

More on temperature: https://brainly.com/question/30569939

#SPJ11


A piece of alloy "weighs" 95 grams in air and 75 grams when
immersed in water. Find its volume and density.

Answers

The volume of the alloy is 20 cm³, and its density is 4.75 g/cm³.

When the alloy is weighed in air, it has a mass of 95 grams. This is its apparent mass or its mass in the presence of air. When the alloy is immersed in water, it experiences an upward buoyant force due to the displacement of water. This buoyant force reduces the apparent weight of the alloy, resulting in a mass of 75 grams.

By comparing the two masses, we can determine the buoyant force acting on the alloy.

The buoyant force is equal to the weight of the water displaced by the alloy. Using Archimedes' principle, we know that the buoyant force is equal to the weight of the fluid displaced by the object. Therefore, the weight of the water displaced by the alloy is 95 grams - 75 grams, which is 20 grams.

To find the volume of the alloy, we need to convert the weight of the displaced water into volume. Since the density of water is 1 g/cm³, we can conclude that the volume of the alloy is also 20 cm³.

Finally, we can calculate the density of the alloy by dividing its mass by its volume. The mass of the alloy is 95 grams, and the volume is 20 cm³. Dividing these values, we get a density of 4.75 g/cm³.

Learn more about Density

brainly.com/question/29775886

#SPJ11








Question 12 The radius of neon atom is 0.15761 nm. The electronic polarizability (in C2m/N) of neon atom is- Enter your answer in 2 decimal places. (E0=8.854 x 10-12 C2/Nm²) X 10-40.

Answers

Electronic polarizability of neon atom is approximately equal to 1.11 × 10⁻⁴⁰ C²m/N.

Given, Radius of neon atom, r = 0.15761 nm, Electronic polarizability of neon atom, α = ?

E0 = 8.854 × 10⁻¹² C²/Nm²

The formula for electronic polarizability is given by:

α = (3/4πε0)(r³)

Substituting the given values in the above equation, we get:

α = (3/4π × 8.854 × 10⁻¹²)(0.15761 × 10⁻⁹)³

On simplification,

α = 1.11 × 10⁻³⁰ C²m/N

≈ 1.11 × 10⁻⁴⁰ C²m/N

Therefore, the electronic polarizability of neon atom is approximately equal to 1.11 × 10⁻⁴⁰ C²m/N.

Learn more about Electronic polarizability here:

https://brainly.com/question/31356964

#SPJ11

The Bulk Modulus of water is 2.3 × 109 Pa. How much pressure in atmosphere is needed to
compress water by 33%? One atmosphere of pressure is 1 atm = 1.013 × 105 Pa.

Answers

The bulk modulus is given by the relation K = -(V ΔP)/ ΔVWhere V is the volume, ΔP is the change in pressure and ΔV is the change in volume.

We know that the bulk modulus can also be written as K = ρg(ΔL/L)

Where ρ is the density, g is the acceleration due to gravity and ΔL/L is the fractional change in length. We need to find ΔL/L for a given compression of 33%.ΔL/L = -V/V = -1/3

So, substituting the given values in the formula, we have2[tex].3 × 10^9 = (1000 kg/m³) × (9.8 m/s²) × (-1/3)[/tex]

Multiplying both sides by [tex]-3/1000 × 1/9.8, we getΔP = 7.1[/tex] atm

So, the pressure needed to compress water by 33% is 7.1 atm.

An atmosphere of pressure is given by 1 atm = 1.013 × 10^5 Pa.

Substituting the value of 1 atm in terms of pascals, we have[tex]ΔP = (7.1 atm) × (1.013 × 10^5 Pa/atm)ΔP = 7.2 × 10^5 Pa[/tex]

To know more about fractional visit:

https://brainly.com/question/10354322

#SPJ11

a
bit stuck
3. a) In your own words, describe Moore's Law. Give reasons for its success in the advancement of electronics. b) Consider a Metal-Oxide-Semiconductor (silicon) (MOS) capacitor. Discuss the different

Answers

a) Moore’s Law is a prediction that was first made by Gordon Moore, the co-founder of Intel Corporation, in 1965. The law suggests that the number of transistors that can be placed on a computer chip will double every two years, while the cost of manufacturing the same will halve.

This has led to the incredible growth in the computing industry and has allowed for the development of smaller, more powerful devices at a cheaper cost. Moore’s Law has been highly successful in the advancement of electronics because it has acted as a guide to technology developers and has provided a framework for their research and development. With the understanding that the number of transistors would double every two years, developers have been able to set achievable goals that have allowed them to achieve this prediction. This has led to the development of ever-more powerful computer chips that have revolutionized the way that people live and work.

b) A Metal-Oxide-Semiconductor (MOS) capacitor is a type of capacitor that is commonly used in electronic circuits. The MOS capacitor consists of a metal electrode, a semiconductor substrate, and an oxide layer that separates the metal electrode from the substrate. The MOS capacitor is used to store charge and to control the flow of current in a circuit.

There are two types of MOS capacitors: the depletion-mode MOS capacitor and the enhancement-mode MOS capacitor. The depletion-mode MOS capacitor is normally on, which means that it conducts current when no voltage is applied to it. The enhancement-mode MOS capacitor, on the other hand, is normally off, which means that it does not conduct current until a voltage is applied to it.

The MOS capacitor is an important component in many electronic circuits because it allows for the precise control of charge and current flow. It is widely used in digital circuits, where it is used to store charge and to control the switching of current between different circuits.

To learn more about transistors visit;

https://brainly.com/question/30335329

#SPJ11

(a) Develop an electrical oscillator which is with a frequency of 10 Hz.
(b) By giving an input: unit step signal u(t) = 1, please describe the total output with the forced response and natural response.
(c) By giving an input: ramped signal u(t)=t/2. please describe the total output with the forced response and natural response (5%)

8. (a) Develop an electrical oscillator which is with a frequency of 10 Hz. (5%)
(b) By giving an input: unit step signal u(t

Show transcribed data
8. (a) Develop an electrical oscillator which is with a frequency of 10 Hz. (5%) (b) By giving an input: unit step signal u(t) = 1, please describe the total output with the forced response and natural response. (5%) (c) By giving an input: ramped signal u(t) = t/2. please describe the total output with the forced response and natural response. (5%)

Answers

To achieve oscillation, the resistance values for Rf and Rin may be selected to be 3 kΩ and 1 kΩ, respectively.

(a) A simple circuit that can be used to generate a 10 Hz electrical oscillator is shown below:

An inverting amplifier with a gain of 3 is used in this circuit. The gain of the amplifier is determined by the ratio of the feedback resistor (Rf) to the input resistor (Rin). A 1 μF capacitor is used to provide positive feedback to the input. The positive feedback loop provides the necessary phase shift for oscillation to occur. The capacitor's value and the resistor's ratio determine the oscillator's frequency. The frequency of the oscillator can be calculated using the following formula:

f = 1/(2πRC)

The frequency is 10 Hz in this instance.

To achieve oscillation, the resistance values for Rf and Rin may be selected to be 3 kΩ and 1 kΩ, respectively.

The capacitor should be selected to have a value of 5.3 μF.

(b) The output of the electrical oscillator is superimposed with the natural response and forced response when a unit step signal

(u(t) = 1) is given as input.

The output of a circuit is the sum of its natural response and forced response. The natural response is the circuit's response to an input when all initial conditions are zero. The forced response is the circuit's response to the input when the initial conditions are not zero.

The following is the total output of the circuit:

V(t) = Vn(t) + Vf(t)

where Vn(t) is the natural response and Vf(t) is the forced response.

(c) If the input is a ramp signal, the output of the circuit is as follows:

V(t) = Vn(t) + Vf(t)

where Vn(t) is the natural response and Vf(t) is the forced response. The natural response of a circuit is its response to an input when all initial conditions are zero.

The forced response is the circuit's response to the input when the initial conditions are not zero. The total output can be expressed as the sum of these two responses.

learn more about frequency here

https://brainly.com/question/254161

#SPJ11

A supply voltage of 220V RMS 50 Hz is used to supply a series circuit consisting of a resistor (100), Inductor (40 mH) and Capacitor (3 mF). Determine: 1. Draw the Cct. 2. XL and Xa 3. ZT 4. Draw the Impedance Diagram 5. 1 & 1(0) 6. VR. VL & Vc 7. VR(1), VL(t) & Vc(t) Draw the Phasor Diagram, showing the 5 values. 9. Draw the time domain diagram, showing the 5 values. 10. State KVL and prove. 11. State the overall Leading / Lagging and if the circuit is Inductive or Capacitive.

Answers

From the phasor diagram, it can be observed that the circuit is predominantly capacitive, as the angle of the total impedance (ZT) is negative (-41.83°). The circuit is said to be lagging because the current lags behind the voltage due to the capacitive reactance. The circuit diagram for the series circuit is shown below:

The formulas for XL and Xc are as follows:

Inductive reactance, XL = 2πfL = 2 × 3.14 × 50 × 0.04 = 12.56 Ω

Capacitive reactance, Xc = 1/2πfC = 1/(2 × 3.14 × 50 × 0.003) = 106.1 Ω

The total impedance, ZT = R + j(XL – Xc) = 100 + j(12.56 - 106.1) = 100 - j93.54 Ω

The impedance diagram is as shown below:

[Insert impedance diagram]

1&10 means the circuit has 1 power supply and 1 path for current.

The following formulas will be used to calculate VR, VL, and VC:

RMS voltage = Vpeak/√2 = 220/√2 = 155.56 V

Current, I = V/ZT = 155.56/100 - j93.54 = 1.64∠48.17° V = IZ (Ohm’s Law)

VR = IR = 1.64∠48.17° × 100 = 164∠48.17° V

VL = IXL = 1.64∠48.17° × 12.56 = 20.58∠90.17° V

VC = IXC = 1.64∠48.17° × 106.1 = 173.88∠- 41.83° V

The phasor diagram is shown below:

The time domain diagrams for VR, VL, and VC are shown below:

Kirchhoff’s voltage law states that the sum of voltages around a closed loop is zero. This is also known as conservation of energy. Mathematically,

KVL equation = VR + VL + VC = 0

Proof:

We can substitute the values of VR, VL, and VC in the equation to obtain:

VR + VL + VC = 0

164∠48.17° + 20.58∠90.17° + 173.88∠- 41.83° = 0

∴ 0.00∠0° = 0.00∠0°

To know more about phasor diagram visit:

https://brainly.com/question/33233769

#SPJ11

A 15 units LED COB lights consisting of 10 nos. of 20 watts each is connected to one power source of 230 volts single phase. Determine the size of circuit breaker and wires to be used if the Power fac

Answers

In a circuit that contains 15 units of LED COB lights, each consisting of 10 nos. of 20 watts, and connected to a power source of 230 volts single phase, we need to determine the size of the circuit breaker and wires to be used if the Power factor is 0.85.  25 A circuit breaker and a 12 AWG copper wire can be used in this circuit.

Since Power factor = Real Power (W) / Apparent Power (VA), we can determine the apparent power as follows:

Apparent Power (VA) = Real Power (W) / Power factor

Therefore, Apparent Power (VA) = (10 x 20) x 15 / 0.85 = 4235.29 VA

Since we are using a single-phase supply, we can use the following formula to determine the current in the circuit:

I = S / (V x P.F)where I = Current (A), S = Apparent power (VA), V = Voltage (V), and P.F = Power factor.

Therefore, Current (I) = 4235.29 / (230 x 0.85) = 22.08 A

We can use a circuit breaker that can handle a current of at least 22.08 A.

Let's assume we select a 25 A circuit breaker.Using the formula for power, we can determine the power (in watts) loss in the wire:

P = I^2 x Rwhere P = Power loss (W), I = Current (A), and R = Resistance (Ω).

Since the distance of the wire is not given, let's assume it is 100 feet.

Using the American Wire Gauge (AWG) table, we can determine the resistance of the wire per 1000 feet. Let's assume we use a copper wire with an AWG of 12.

According to the table, the resistance of the wire per 1000 feet is 0.8 Ω.

Therefore, the resistance of the wire for 100 feet is 0.08 Ω.

Power loss (P) = (22.08)^2 x 0.08 = 39.1 W

Since the power loss is less than 3% of the total power (which is 3 x 4235.29 = 12705.87 W), we can use a wire that is suitable for carrying a current of at least 22.08 A. According to the AWG table, a 12 AWG copper wire can carry a current of up to 25 A.

Therefore, a 25 A circuit breaker and a 12 AWG copper wire can be used in this circuit.

To learn more about circuit visit;

https://brainly.com/question/12608516

#SPJ11

which of the following best explains the role of social facilitation in accounting for the results of Study 2? (participants performed quickly while putting on familiar clothing, and more slowly when dressing in unfamiliar clothing)

a. individuals perform more efficiently when they know they are being observed compared to when they know they are not being observed
b. individuals prefer to perform familiar tasks in the presence of others but unfamiliar tasks when alone
c. an individual's performance is less predictable when acting in the presence of others than when acting alone
d. the impact that the presence of others has on an individual's performance depends on the nature of the task

Answers

The correct option that best explains the role of social facilitation in accounting for the results of Study 2 is (a) individuals perform more efficiently when they know they are being observed compared to when they know they are not being observed.

Social facilitation is the term used to describe the process where the presence of others can affect the way that an individual performs a task. According to the definition, when an individual's performance improves in the presence of others, this is called social facilitation. In this study, when participants dressed in familiar clothing, they performed quickly, but when dressing in unfamiliar clothing, they performed more slowly. This means that the social facilitation took place, which resulted in an improvement in their performance while wearing familiar clothing.

Therefore, the correct answer is option (a) individuals perform more efficiently when they know they are being observed compared to when they know they are not being observed.

To know more about social facilitation, visit:

https://brainly.com/question/46360

#SPJ11

A toy placed 30.0 cm in front a certain mirror produces a virtual image that is 20.0 cm away from the mirror. When the toy is placed 90.0 cm from the mirror, where is the image located? Is it real or virtual?

Answers

The image is located 36 cm behind the mirror and it is virtual.

Given: A toy placed 30.0 cm in front of a certain mirror produces a virtual image that is 20.0 cm away from the mirror. When the toy is placed 90.0 cm from the mirror.

Formula used in optics are given by:

1/f = 1/v + 1/u where

f = focal length of the mirror

v = distance of image from the mirror

u = distance of object from the mirror

(a) Focal length of the mirror

From the question, we know that the object distance and image distance are given as:

u = -30.0 cm (since the object is in front of the mirror)

v = 20.0 cm (since the image is behind the mirror)

Thus, we can substitute these values to get the focal length of the mirror as:

1/f = 1/v + 1/u

1/f = 1/20 - 1/30

1/f = (3 - 2)/60

1/f = 1/60

f = 60 cm

(b) Location and nature of the image When the object is placed at a distance of 90.0 cm from the mirror, we can find the location and nature of the image using the mirror formula:

1/f = 1/v + 1/u

where;

f = 60 cm (as found earlier)

u = -90.0 cm (as the object is placed in front of the mirror)

v = distance of image from the mirror

Thus, substituting the values we have:

1/60 = 1/v - 1/90 1/v

= 1/60 + 1/90 1/v

= (3 + 2)/180 v

= 180/5 v

= 36 cm

Since the image distance is positive, we conclude that the image is located behind the mirror i.e. it is a virtual image.

Answer: The image is located 36 cm behind the mirror and it is virtual.

To know more about virtual image visit:

https://brainly.com/question/27978193

#SPJ11

) A paperclip is connected to the table by a string and held suspended in the air by a magnet, as shown in the picture below. (a) Draw force diagrams for the magnet and the paperclip. (b) Identify all of the forces on these force diagrams which are pairs according to Newton's 3rd Law, (c) If the mass of the magnet is 0.3 kg and the force exerted by the hand on the magnet is 3.18 N, what is the magnitude of the force exerted by the magnet on the paperclip? Explain your reasoning.

Answers

(a) Force diagrams: Magnet (Gravitational force downward, Magnetic force upward); Paperclip (Tension force upward, Gravitational force downward).

(b) Pairs of forces: Magnet - Gravitational force, Magnetic force; Paperclip - Tension force, Gravitational force.

(c) The force exerted by the magnet on the paperclip is 2.94 N.

(a) The force diagrams for the magnet and the paperclip are as follows:

Force diagram for the magnet:

- Gravitational force (downward)

- Magnetic force (upward)

Force diagram for the paperclip:

- Tension force (upward)

- Gravitational force (downward)

(b) According to Newton's third law, for every action, there is an equal and opposite reaction. In the force diagrams, the pairs of forces are:

- Magnetic force (upward) and Gravitational force on the magnet (downward)

- Tension force (upward) and Gravitational force on the paperclip (downward)

(c) The force exerted by the magnet on the paperclip can be determined using Newton's second law, which states that force (F) equals mass (m) multiplied by acceleration (a), or F = m * a.

In this case, the magnet is not accelerating vertically since it is being held in place by the tension in the string. Therefore, the net force on the magnet in the vertical direction is zero. The forces acting on the magnet are the gravitational force (mg) acting downward and the force exerted by the hand on the magnet (3.18 N) acting upward.

Since the net force is zero, the magnitude of the gravitational force is equal to the magnitude of the force exerted by the hand on the magnet:

mg = 3.18 N

Solving for the force exerted by the magnet on the paperclip, we can set up the equation:

F (magnet on paperclip) - mg = 0

F (magnet on paperclip) = mg

F (magnet on paperclip) = 0.3 kg * 9.8 m/s²

F (magnet on paperclip) = 2.94 N

Therefore, the magnitude of the force exerted by the magnet on the paperclip is 2.94 N. This force balances the gravitational force acting on the paperclip, keeping it suspended in the air.


To know more about Newton's third Law, refer to the link below:

https://brainly.com/question/14967902#

#SPJ11

ANSWER ALL PARTS (a) A channel has a depth of flow of 1.3 m and a mean velocity of 2.0 m/s. If the elevation of the channel is 20 m above a specific datum. Determine: (i) The Specific Energy (ii) The total energy relative to the datum (iii) The Froude Number (iv) Whether the flow is sub or super-critical

Answers

To determine the specific energy, total energy relative to the datum, and the Froude number, we need to use the following equations.

In the given scenario, a capacitor with a capacitance of 47 μF is connected to an AC voltage source with a peak voltage of 10 V. The frequency of the AC voltage is 5 kHz. To determine the displacement voltage at a specific time, we need to know the phase relationship between the AC voltage and the time t.If we assume that the AC voltage source is a sine wave and the time t is measured in seconds, we can use the formula for the displacement voltage in a capacitor.

To know more about capacitor visit :

https://brainly.com/question/31627158

#SPJ11

An elevator consists out of thin aluminum rods that are
pin-connected to each other. The elevator is placed in a cylinder
and on top of the elevator is a platform. At room temperature, the
rods have a

Answers

An elevator consists of thin aluminum rods that are pin-connected to each other. The elevator is placed in a cylinder and on top of the elevator is a platform. At room temperature, the rods have a thermal conductivity of 240 W/m K, and the diameter of each rod is 1 cm.

When the elevator is exposed to a temperature of 1000 K, the rods expand and elongate, causing the platform to move upwards. The coefficient of thermal expansion of aluminum is 23 × 10-6 K-1. The elevator's maximum displacement is 0.2 m.

The elongation of the aluminum rods is calculated using the formula:ΔL = L × α × ΔT where L is the length of the aluminum rod, α is the coefficient of thermal expansion, and ΔT is the change in temperature. The thermal expansion of each rod can be calculated as follows:ΔL = L × α × ΔTΔL = (πd/4) × α × ΔT

where d is the diameter of each rod.ΔL = (π × 1 × 10-2 / 4) × 23 × 10-6 × (1000 − 298)ΔL = 0.000838 m

The elongation of each rod is 0.000838 m. Since the platform moves upwards by 0.2 m, the number of rods in the elevator can be calculated as follows:

Number of rods = Maximum displacement / Elongation of each rodNumber of rods = 0.2 / 0.000838

Number of rods = 238.33 ≈ 238

Therefore, there are 238 aluminum rods in the elevator. This is the answer.

To know more about elevator visit :

https://brainly.com/question/2076153

#SPJ11

A drug prepared for a patient is tagged with 99Tc, which has a half-life of 6.05 h. You may want to review(Pages 1133-1137 Part A What is the decay constant of this isotope? =0.115h-1 Submit Previous Answers Correct Here we learn how to determine the decay constant from a half-life

Answers

The decay constant of 99Tc is approximately 0.115 h^(-1).

The decay constant, denoted by λ, is a parameter that characterizes the exponential decay of a radioactive isotope. It is related to the half-life (T) of the isotope through the equation λ = ln(2) / T.

In this case, the half-life of 99Tc is given as 6.05 h. Substituting this value into the equation, we can calculate the decay constant: λ = ln(2) / 6.05 ≈ 0.115 h^(-1). This means that, on average, 99Tc will decay at a rate of 0.115 times its current amount per hour.

For more questions like Isotope click the link below:

https://brainly.com/question/27475737

#SPJ11

What is the dipole moment, le of a water molecule, Hz O given the length of the O-H bond, « below and the angle between the bonds of 104.5°? [*= 1.5411 x 10-4 nm.] Select one: 3.023 x 10-29 Cm 3.8901 x 10-29 m O 3.023 x 10-29 m O 3.2861 x 10-29 m O 3.5406 x 10 -29 Cm O 3.2861 x 10-29 Cm O 3.5406 x 10-29 m 2.7131 x 10-29 Cm 4.7553 x 10-29 Cm O 4.7553 x 10-29 m O 3.8901 x 10-29 Cm 2.7131 x 10-29 m

Answers

Dipole moment of water molecule, le is 3.5406 × 10−29 Cm.

Dipole moment, le is a measure of the polarity of a molecule. It is defined as the product of the charge and the distance of separation between the two charges. A water molecule has two poles, the negative pole being on the oxygen atom and the positive pole being on the hydrogen atoms. Due to the asymmetric distribution of charge in the water molecule, it has a dipole moment. The dipole moment, le of water molecule is given by:

le = q × d where, q is the magnitude of the charge and d is the distance between the charges.

The bond length of O-H is given as 1.5411 × 10-10 m and the angle between the bonds is given as 104.5°.

Using the given values, we can calculate the dipole moment as:

le = 1.85 × 10-30 Cm × 1.5411 × 10-10 m × cos (104.5°)le

= 3.5406 × 10-29 Cm

Therefore, the dipole moment of water molecule, le is 3.5406 × 10−29 Cm.

Learn more about Dipole moment here:

https://brainly.com/question/30434295

#SPJ11

Other Questions
Drugs that work for viral infections will target the virus in which of the following ways?a. prevents entry of the virus into host cellsb. weakens the wall of the virus causing lysisc. do not allow the viruses to reproduce inside the celld. prevents the assembly of new particles Which of the following functions have the property: limx[infinity]f(x)=0 ? MatlabWrite a function to take a number and display the numbers usinga loop.Hint: You need to use input().Sample Input : 5Sample Output: : 11 21 2 31 2 3 41 2 3 4 5 IBM has a profit margin of 6 percent on sales of $542,500. Thefirm currently has 35,000 shares of stock outstanding at a marketprice of $15.80 per share. What is the price-earnin ratio? The Security Classification Guide (SCG) states: The dates of the training exercise are Secret. The new document states: (S) The training exercise runs Monday through Friday and occurs every June based on trainer availability. The only trainer currently certified is running other exercises the first three weeks in June. What concept was used to determine the derivative classification of the new document? To allow Remote Desktop Protocol (RDP) access to DirectAccess clients, which port must be opened on the client side firewall?a. 587b. 1720c. 3389d. 8080 50 Points! Multiple choice geometry question. Photo attached. Thank you! What is the microcontroller used in Arduino UNO? (A) ATmega328p, (b)ATmega2560 (c) ATmega32114 (d) AT91SAM3x8E?. It starts with a / and continues until a "/ What does this do? (a) Loads a sketch (b)Makes comments (c) Loads a Library (d) It is a command in Assembler. Which symbol ends a statement? (a) Semicolon : (b)Parenthesis) (c)Comma. (d) Curly Brace] "The project objective is usually defined in terms of thea. all the constraints for the project.b. end product or deliverable, schedule, and budget.c. initiating, planning, executing, and controlling. The sides of a small rectangular box are measured to be 1.80 + 0.01 cm, 2.05 + 0.01 cm, and 3.3 + 0.4 cm long. Calculate its volume and uncertainty in cubic centimeters. (Note that uncertainties should be reported to one significant figure.) volume 912.177 uncertainty 94 x cm3 x cm3 An LTI system is described by the input-output relation: \[ y[n]=x[n]+2 x[n-1]+x[n-2] \] a. Determine \( h[n] \), the impulse response of the system. b. Is this system stable? c. If the input signal \ I just need to double check my math for part A. I have no ideato do part B please help.PROBLEMS. Write your answer in the space provided or on a separate sheet of paper. Show all work, and don't forget units! Partial credit will be given for showing a Free Body Diagram where appropriate Current Attempt in Progress In your audit of Joseph Moore Company, you find that a physical inventory on December 31, 2025, showed merchandise with a cost of $411,580 was on hand at that date. You also discover the following items were all excluded from the $411,580. 1. Merchandise of $60,710 which is held by Moore on consignment. The consignor is the Max Suzuki Company. 2. Merchandise costing $38,360 which was shipped by Moore f.o.b. destination to a customer on December 31,2025 . The customer was expected to receive the merchandise on January 6, 2026. 3. Merchandise costing $46,920 which was shipped by Moore f.o.b. shipping point to a customer on December 29 , 2025. The customer was scheduled to receive the merchandise on January 2, 2026. 4. Merchandise costing $82,010 shipped by a vendor fo.b. destination on December 30,2025 , and received by Moore on January 4, 2026. 5. Merchandise costing $55,300 shipped by a vendor fo.b. shipping point on December 31,2025 , and received by Moore on January 5, 2026. Based on the above information, calculate the amount that should appear on Moore's balance sheet at December 31 , 2025, for inventory. Inventory as on December 31,2025$ The total energy of an electron in the first excited state of the hydrogen atom is about -3.4 eV. (a) What is the kinetic energy of the electron in this state? (b) What is the potential energy of the electron in this state? (c) Which of the answers above would change if the choice of the zero of potential energy is changed? t/f : protein-energy malnutrition is seen only in developing countries. Measure and Write the experimentat value of all the voltage( use appropriate devices for meanuring)(5Marks) use the table to recerd your alues( write the name of vottages 1 st Row and corresponding Suppose an initial investment of $100 will return $50/year for three years(assume the $50 is received each year at the end of the year). Is this a profitable investment if the discount rate is 20%? Show calculations A nurse teaches a postpartum client how to care for her episiotomy to prevent infection. Which behavior indicates that the teaching has been effective?1The perineal pad is changed twice daily.2The client washes her hands whenever she changes a perineal pad.3The client rinses her perineum with water after using an analgesic spray.4The client cleanses the perineum from the anus toward the symphysis pubis when immobilizing a patient on a long backboard you should In a pn junction, under forward bias, the built-in electric field stops the diffusion current Select one: True FalseTaking into consideration the Early effect in the npn transistor, we can state tha