Question Completion Status QUESTION 3 1 points In the Wheatstone Bridge experiment, three students try to find the unknow resistance Rx by studying the variation of L2 versus R9"l1 as shown in the following graph: L 1 N R*L, Question Completion Status: • RL, where I RER Use the given graph and the relation to decide which student has lowest value of Rx? *L

Answers

Answer 1

In the Wheatstone Bridge experiment, three students try to find the unknown resistance Rx by studying the variation of L2 versus R9"l1, as shown in the following graph: L 1 N R*L, Question Completion Status:

• RL, where I RER. The three students are represented in different colors on the graph, and they obtained different values of R9 and L2. From the graph, the student who has the lowest value of Rx is the one whose line passes through the origin, since this means that R9 is equal to zero.

The equation of the line that passes through the origin is L2 = m * R9, where m is the slope of the line. For the blue line, m = 4, which means that Rx = L1/4 = 20/4 = 5 ohms. For the green line, m = 2, which means that Rx = L1/2 = 20/2 = 10 ohms. For the red line, m = 3, which means that Rx = L1/3 = 20/3  6.67 ohms. Therefore, the student who has the lowest value of Rx is the one whose line passes through the origin, which is the blue line, and the value of Rx for this student is 5 ohms.

To know more about resistance, visit:

https://brainly.com/question/29427458

#SPJ11


Related Questions

A ball of mass m= 75.0 grams is dropped from a height of 2.00 m. The ball stays in contact with the ground 25.0 ms. How high did it bounce back up if the ground exerts a force of 30.0 N on it

Answers

The ball of mass m=75.0 g is dropped from a height of 2.00 m. It bounces back with a height of 0.5 m.

To determine the height to which the ball bounced back up, use the conservation of energy principle. The total mechanical energy of a system remains constant if no non-conservative forces do any work on the system. The kinetic energy and the potential energy of the ball at the top and bottom of the bounce need to be calculated. The force of the ground is considered a non-conservative force, and it does work on the ball during the impact. Therefore, its work is equal to the loss of mechanical energy of the ball.

The potential energy of the ball before the impact is equal to its kinetic energy after the impact because the ball comes to a halt at the top of its trajectory.

Hence, mgh = 1/2mv²v = sqrt(2gh) v = sqrt(2 x 9.81 m/s² x 2.00 m) v = 6.26 m/s.

The force applied by the ground on the ball is given by the equation

F = m x a where F = 30 N and m = 75.0 g = 0.075 kg.

So, a = F/m a = 30 N / 0.075 kg a = 400 m/s²

Finally, h = v²/2a h = (6.26 m/s)² / (2 x 400 m/s²) h = 0.5 m.

Thus, the ball bounced back to a height of 0.5 meters.

Learn more about potential energy:

https://brainly.com/question/9349250

#SPJ11

A hammer thrower (athlete, not mad carpenter) can hold on with a
maximum force of 1550 N.
How fast can she swing the 4.0 kg, 1.9 m radius hammer (including
her arms) around herself and
not lose her gr

Answers

The hammer thrower can swing the 4.0 kg hammer around herself at a maximum speed of approximately 42.99 m/s without losing her grip, given her maximum force of 1550 N.

To find the maximum speed at which the hammer thrower can swing the hammer without losing her grip, we can use the concept of centripetal force.

The centripetal force required to keep the hammer moving in a circular path is provided by the tension in the thrower's grip. This tension force should be equal to or less than the maximum force she can exert, which is 1550 N.

The centripetal force is given by the equation:

F = (m * v²) / r

Where:

F is the centripetal force

m is the mass of the hammer (4.0 kg)

v is the linear velocity of the hammer

r is the radius of the circular path (1.9 m)

We can rearrange the equation to solve for the velocity:

v = √((F * r) / m)

Substituting the values:

v = √((1550 N * 1.9 m) / 4.0 kg)

v = √(7395 Nm / 4.0 kg)

v = √(1848.75 (Nm) / kg)

v ≈ 42.99 m/s

Therefore, the hammer thrower can swing the 4.0 kg hammer around herself at a maximum speed of approximately 42.99 m/s without losing her grip, given her maximum force of 1550 N.

Learn more about Centripetal Force. at

brainly.com/question/14021112

#SPJ4

An air-filled parallel-plate capacitor is connected to a battery and allowed to charge material is placed between the plates of the capacitor while the capacitor is still connected in the artis done, we find that
a. the energy stored in the capacitor had decreased b. the voltage across the capacitor had increased c. the charge on the capacitor had decreased
d. the charge on the capacitor had increased e. the charge on the capacitor had not changed

Answers

Since the voltage across the capacitor has decreased, the energy stored in the capacitor has also decreased, so option A is not the correct answer.Since the charge on the capacitor remains the same, options D and E are not the correct answers.So, option C is the correct answer: the charge on the capacitor had decreased.

An air-filled parallel-plate capacitor is connected to a battery and allowed to charge material is placed between the plates of the capacitor while the capacitor is still connected. When this is done, we find that the charge on the capacitor had decreased.The correct option is C. the charge on the capacitor had decreased.What happens to the energy stored in a capacitor when a material is placed between its plates while the capacitor is still connected?As the capacitance increases with the introduction of a dielectric material, the charge on the capacitor stays constant since it is connected to a battery. When a dielectric is added to a capacitor that is connected to a voltage source, the capacitance increases while the charge remains the same. Therefore, the voltage across the capacitor decreases. So, option B is not the correct answer.Now the energy stored in the capacitor can be calculated using the formula: Energy stored

= ½ CV². Since the voltage across the capacitor has decreased, the energy stored in the capacitor has also decreased, so option A is not the correct answer.Since the charge on the capacitor remains the same, options D and E are not the correct answers.So, option C is the correct answer: the charge on the capacitor had decreased.

To know more about capacitor visit:

https://brainly.com/question/31627158

#SPJ11

Q4 4. A disk of radius 2.5cm has a surface charge density of 7.0MC/m2 on its upper face. What is the magnitude of the electric field produced by the disk at a point on its central axis at distance z =12cm from the disk?

Answers

The magnitude of the electric field produced by the disk at a point on its central axis at a distance z = 12cm from the disk is 4.36 x 10⁴ N/C.

The electric field produced by a disk of radius r and surface charge density σ at a point on its central axis at a distance z from the disk is given by:

E=σ/2ε₀(1-(z/(√r²+z²)))

Here, the disk has a radius of 2.5cm and a surface charge density of 7.0MC/m² on its upper face. The distance of the point on the central axis from the disk is 12cm, i.e., z = 12cm = 0.12m.

The value of ε₀ (the permittivity of free space) is 8.85 x 10⁻¹² F/m.

The electric field is given by:

E = (7.0 x 10⁶ C/m²)/(2 x 8.85 x 10⁻¹² F/m)(1 - 0.12/(√(0.025)² + (0.12)²))E = 4.36 x 10⁴ N/C

To know more about magnitude:

https://brainly.com/question/31022175


#SPJ11

What is the final equilibrium temperature when 12 g of milk at 7°C is added to 111 g of coffee at 99°C?

Answers

The final equilibrium temperature when 12 g of milk at 7°C is added to 111 g of coffee at 99°C:

111g * c(coffee) * (final temperature - 99°C) = 12g * c(milk) * (final temperature - 7°C)

To find the final equilibrium temperature, we can use the principle of conservation of energy. The heat lost by the hot coffee will be equal to the heat gained by the cold milk.

The amount of heat lost by the coffee can be calculated using the formula:

Q = m * c * ΔT

where:

Q = heat lost/gained

m = mass

c = specific heat capacity

ΔT = change in temperature

For the coffee:

m = 111 g

c = specific heat capacity of coffee

ΔT = (final temperature - initial temperature)

Similarly, the amount of heat gained by the milk can be calculated using the same formula:

For the milk:

m = 12 g

c = specific heat capacity of milk

ΔT = (final temperature - initial temperature)

Since the final temperature will be the same for both substances (at equilibrium), we can set up the equation:

m(coffee) * c(coffee) * ΔT(coffee) = m(milk) * c(milk) * ΔT(milk)

Plugging in the values and solving for the final temperature:

111g * c(coffee) * (final temperature - 99°C) = 12g * c(milk) * (final temperature - 7°C)

Simplifying the equation and solving for the final temperature will give us the answer. However, without the specific heat capacities of coffee and milk, it is not possible to provide an exact numerical value for the final equilibrium temperature.

Learn more about equilibrium:

https://brainly.com/question/517289

#SPJ11

The index of refraction of a transparent material is 1.5. If the
thickness of a film made out of this material is 1 mm, how long
would it take a photon to travel through the film?

Answers

The time taken by a photon to travel through the film is 5 × 10^-12 s.

The index of refraction of a transparent material is 1.5. If the thickness of a film made out of this material is 1 mm, the time taken by a photon to travel through the film can be calculated as follows:

Formula used in the calculation is: `t = d/v` Where:

t is the time taken by photon to travel through the film

d is the distance traveled by photon through the film

v is the speed of light in the medium, which can be calculated as `v = c/n` Where:

c is the speed of light in vacuum

n is the refractive index of the medium

Refractive index of the transparent material, n = 1.5

Thickness of the film, d = 1 mm = 0.001 m

Speed of light in vacuum, c = 3 × 108 m/s

Substituting the values in the above expression for v:`

v = c/n = (3 × 10^8)/(1.5) = 2 × 10^8 m/s

`Now, substituting the values in the formula for t:`

t = d/v = (0.001)/(2 × 10^8) = 5 × 10^-12 s

`Therefore, the time taken by a photon to travel through the film is 5 × 10^-12 s.

Learn more about photon https://brainly.com/question/10080428

#SPJ11

QUESTION 3 What is the mutual inductance in nk of these two loops of wire? Loop 1 Leop 44 20 Both loops are rectangles, but the length of the horizontal components of loop 1 are infinite compared to the size of loop 2 The distance d-5 cm and the system is in vacuum

Answers

Mutual inductance is an electromagnetic quantity that describes the induction of one coil in response to a variation of current in another nearby coil.

Mutual inductance is denoted by M and is measured in units of Henrys (H).Given that both loops are rectangles, the length of the horizontal components of loop 1 are infinite compared to the size of loop 2. The distance d-5 cm and the system is in vacuum, we are to calculate the mutual inductance of both loops.

The formula for calculating mutual inductance is given as:

[tex]M = (µ₀ N₁N₂A)/L, whereµ₀ = 4π × 10−7 H/m[/tex] (permeability of vacuum)

N₁ = number of turns of coil

1N₂ = number of turns of coil 2A = area of overlap between the two coilsL = length of the coilLoop 1,Leop 44,20 has a rectangular shape with dimensions 44 cm and 20 cm, thus its area

[tex]A1 is: A1 = 44 x 20 = 880 cm² = 0.088 m²[/tex].

Loop 2, on the other hand, has a rectangular shape with dimensions 5 cm and 20 cm, thus its area A2 is:

[tex]A2 = 5 x 20 = 100 cm² = 0.01 m².[/tex]

To know more about electromagnetic visit:

https://brainly.com/question/23727978

#SPJ11

An object of mass 4.20 kg is projected into the air at a 55.0° angle. It hits the ground 3.40 s later. Set "up" to be the positive y direction. What is the y-component of the object's change in momentum while it is in the air? Ignore air resistance.

Answers

The y-component of the object's change in momentum while it is in the air is -139.944 Kg.m/s

How do i determine the y-component of change in momentum?

First, we shall obtain the initial velocity. Details below:

Angle of projection (θ) = 55 ° Acceleration due to gravity (g) = 9.8 m/s²Time of flight (T) = 3.40Initial velocity (u) = ?

T = 2uSineθ / g

3.40 = (2 × u × Sine 55) / 9.8

Cross multiply

2 × u × Sine 55 = 3.4 × 9.8

Divide both sides  by (2 × Sine 55)

u = (3.4 × 9.8) / (2 × Sine 55)

= 20.34 m/s

Next, we shall obtain the initial and final velocity in the y-component direction. Details below:

For initial y-component:

Initial velocity (u) = 20.34 m/sAngle of projection (θ) = 55 °Initial y-component of velocity (uᵧ) =?

uᵧ = u × Sine θ

= 20.34 × Sine 55

= 16.66 m/s

For final y-component:

Initial y-component of velocity (uᵧ) = 16.66 m/sAcceleration due to gravity (g) = 9.8 m/s²Time (t) = 3.4 sFinal y-component of velocity (vᵧ) =?

vᵧ = uᵧ - gt

= 16.66 - (9.8 × 3.4)

= -16.66 m/s

Finally, we shall obtain the change in momentum. This is shown below:

Mass of object (m) = 4.20 KgInitial velocity (uᵧ) = 16.66 m/sFinal velocity (vᵧ) = -16.66Change in momentum =?

Change in momentum = m(vᵧ - uᵧ)

= 4.2 × (-16.66 - 6.66)

= 4.2 × -33.32

= -139.944 Kg.m/s

Learn more about change in momentum:

https://brainly.com/question/21297884

#SPJ4

ii). Hence, what is the length of a meterstick measured by an observer travelling at α). 1610km/hr and β). 0.9c [c =3.0 x10 8m/s]
ii). Hence, a clock on a space rocket ticks off at a time interval of 1hour.what is the time elapse on earth if the space rocket is travelling at a speed α). 1610km/hr ? and β). 0.9c ? [c =3.0 x10 8m/s]

Answers

Length of a meterstick when measured by an observer at α). 1610km/hr is 0.9997 times its length at rest. Length of a meterstick when measured by an observer at β). 0.9c is 0.4359 times its length at rest.

i) The length of an object at rest can change depending on how fast it is moving. This phenomenon is known as length contraction. An observer travelling at a speed of 1610 km/hr would measure a meterstick to be slightly shorter than its actual length, that is, 0.9997 times its length at rest. Similarly, an observer travelling at a speed of 0.9c would measure the meterstick to be much shorter, only 0.4359 times its length at rest.

ii) Time dilation is another phenomenon associated with moving objects. As an object moves faster, time appears to slow down relative to a stationary observer. Thus, a clock on a space rocket travelling at 1610 km/hr would appear to tick off at a slower rate than a clock on earth. Therefore, if the space rocket travels for 1 hour, the time elapsed on earth would be slightly longer. If the space rocket is travelling at 0.9c, then time dilation is much more pronounced. The time elapsed on earth would be much longer than 1 hour due to the extreme time dilation.

Learn more about time dilation here:

https://brainly.com/question/30493090

#SPJ11

A roller coaster car is at the top of a huge hill and is at rest briefly. Then it rolls down the track and accelerates as its passengers scream. By the time it is 20 m down the track, it is moving at 3 m/s. If the hill is at 9°, what is the coefficient of friction between the car and the track?

Answers

The coefficient of friction between the car and the track is approximately -0.158. To determine the coefficient of friction between the roller coaster car and the track, we need to consider the forces acting on the car and apply the principles of Newtonian mechanics.

Distance down the track (d) = 20 m

Velocity of the car (v) = 3 m/s

Angle of the hill (θ) = 9°

First, let's calculate the acceleration of the car using the kinematic equation:

v^2 = u^2 + 2ad

where:

v is the final velocity (3 m/s),

u is the initial velocity (0 m/s, as the car is at rest),

a is the acceleration, and

d is the distance (20 m).

Solving for a:

a = (v^2 - u^2) / (2d)

= (3^2 - 0) / (2 * 20)

= 0.225 m/s^2

The force acting on the car down the hill is the component of the gravitational force parallel to the incline. It can be calculated using:

F = m * g * sin(θ)

where:

m is the mass of the car, and

g is the acceleration due to gravity (approximately 9.8 m/s^2).

Now, we can calculate the normal force (N) acting on the car perpendicular to the incline. It is equal to the weight of the car, given by:

N = m * g * cos(θ)

The frictional force (f) between the car and the track opposes the motion and is given by:

f = μ * N

where:

μ is the coefficient of friction.

Since the car is accelerating down the track, the frictional force is directed opposite to the motion and can be written as:

f = -μ * N

Now, equating the frictional force to the force down the hill:

-μ * N = m * g * sin(θ)

Substituting the expressions for N and f:

-μ * (m * g * cos(θ)) = m * g * sin(θ)

Canceling out the mass and acceleration due to gravity:

-μ * cos(θ) = sin(θ)

Simplifying:

μ = -tan(θ)

Substituting the value of θ (9°):

μ = -tan(9°)

Calculating:

μ ≈ -0.158

The negative sign indicates that the coefficient of friction is acting in the direction opposite to the motion of the car. Therefore, the coefficient of friction between the car and the track is approximately -0.158.

Learn more about friction here:

https://brainly.com/question/13000653

#SPJ11

2. Two closeby speakers produce sound waves. One of the speakers vibrates at 400 Hz. What would be the frequency of the other speaker, which produces 10 Hz of beats? A. 10 Hz B. 390 Hz C. 410 Hz

Answers

Summary:

The frequency of the other speaker would be 390 Hz. When two closeby speakers produce sound waves, a phenomenon known as beats can occur. Beats are the periodic variations in the intensity or loudness of sound that result from the interference of two waves with slightly different frequencies.

Explanation:

In this case, if one speaker vibrates at 400 Hz and the beats have a frequency of 10 Hz, it means that the frequency of the other speaker is slightly different. The beat frequency is the difference between the frequencies of the two speakers. So, by subtracting the beat frequency of 10 Hz from the frequency of one speaker (400 Hz), we find that the frequency of the other speaker is 390 Hz.

To understand this concept further, let's delve into the explanation. When two sound waves with slightly different frequencies interact, they undergo constructive and destructive interference, resulting in a periodic variation in the amplitude of the resulting wave. This variation is what we perceive as beats. The beat frequency is equal to the absolute difference between the frequencies of the two sound waves. In this case, the given speaker has a frequency of 400 Hz, and the beat frequency is 10 Hz. By subtracting the beat frequency from the frequency of the given speaker (400 Hz - 10 Hz), we find that the frequency of the other speaker is 390 Hz. This frequency creates the interference pattern that produces the 10 Hz beat frequency when combined with the 400 Hz wave. Therefore, the correct answer is B. 390 Hz.

Learn more about Periodic Variations here brainly.com/question/15295474

#SPJ11

A very long right circular cylinder of uniform permittivity €, radius a, is placed into a vacuum containing a previously uniform electric field E = E, oriented perpendicular to the axis of the cylinder. a. Ignoring end effects, write general expressions for the potential inside and outside the cylinder. b. Determine the potential inside and outside the cylinder. c. Determine D, and P inside the cylinder.

Answers

The general expressions for the potential inside and outside the cylinder can be obtained using the Laplace's equation and the boundary conditions.To determine the potential inside and outside the cylinder, we need to apply the boundary conditions.

a. Ignoring end effects, the general expressions for the potential inside and outside the cylinder can be written as:

Inside the cylinder (r < a):

ϕ_inside = ϕ0 + E * r

Outside the cylinder (r > a):

ϕ_outside = ϕ0 + E * a^2 / r

Here, ϕ_inside and ϕ_outside are the potentials inside and outside the cylinder, respectively. ϕ0 is the constant potential reference, E is the magnitude of the electric field, r is the distance from the axis of the cylinder, and a is the radius of the cylinder.

b. To determine the potential inside and outside the cylinder, substitute the given values into the general expressions:

Inside the cylinder (r < a):

ϕ_inside = ϕ0 + E * r

Outside the cylinder (r > a):

ϕ_outside = ϕ0 + E * a^2 / r

c. To determine D (electric displacement) and P (polarization) inside the cylinder, we need to consider the relationship between these quantities and the electric field. In a linear dielectric material, the electric displacement D is related to the electric field E and the polarization P through the equation:

D = εE + P

where ε is the permittivity of the material. Since the cylinder is in a vacuum, ε = ε0, the permittivity of free space. Therefore, inside the cylinder, we have:

D_inside = ε0E + P_inside

where D_inside and P_inside are the electric displacement and polarization inside the cylinder, respectively.

To learn more about potential,   click here: https://brainly.com/question/4305583

#SPJ11

Imagine two parallel wires of equal current, with the currents both heading along the x-axis. Suppose that the current in each wire is I, and that the wires are separated by a distance of one meter. The magnitude of the magnetic force per unit length between the two wires is given by E = a × 10-N/m x /m What is the value of a , if I = 4 amps? L

Answers

The magnitude of the magnetic force per unit length between the two wires is given by E = a × 10-N/m & the value of 'a' from the calculation we can get is 8.

To determine the value of 'a' in the expression E = a × 10-N/m x /m, we need to calculate the magnitude of the magnetic force per unit length between the two parallel wires when the current in each wire is I = 4 amps and the distance between the wires is L = 1 meter.

The magnetic force per unit length between two parallel wires carrying current can be calculated using the formula:

E = (μ₀ * I₁ * I₂) / (2πd)

where μ₀ is the permeability of free space (μ₀ ≈ [tex]4 \pi * 10^{-7[/tex] T·m/A), I₁ and I₂ are the currents in the wires, and d is the distance between the wires.

Plugging in the given values:

E = ([tex]4 \pi * 10^{-7[/tex]T·m/A * 4 A * 4 A) / (2π * 1 m)

E = ([tex]16 \pi * 10^{-7[/tex]T·m/A²) / (2π * 1 m)

E = [tex]8 * 10^{-7[/tex] T/m

Comparing this with the given expression E = a * 10-N/m x /m, we can see that 'a' must be equal to 8 to match the calculated value of E.

To know more about magnetic force refer here

https://brainly.com/question/10353944#

#SPJ11

Three resistors of 100 Ω, 75 Ω and 87.2 Ω are connected (a) in parallel and (b) in series, to a
20.34 V battery
a. What is the current through each resistor? and
b. What is the equivalent resistance of each circuit?

Answers

The current through each resistor when connected in parallel is approximately are I1 ≈ 0.2034 A, I2 ≈ 0.2712 A,I3 ≈ 0.2334 A. The equivalent resistance of each circuit is Parallel circuit: Rp ≈ 0.00728 Ω. and Series circuit: Rs = 262.2 Ω.

(a) When the resistors are connected in parallel:

To find the current through each resistor, we need to apply Ohm's Law, which states that current (I) is equal to the voltage (V) divided by the resistance (R).

Calculate the total resistance (Rp) of the parallel circuit:

The formula for calculating the total resistance of resistors connected in parallel is: 1/Rp = 1/R1 + 1/R2 + 1/R3.

Using the values, we have: 1/Rp = 1/100 Ω + 1/75 Ω + 1/87.2 Ω.

Solve for Rp: 1/Rp = (87.2 + 100 + 75) / (100 * 75 * 87.2).

Rp ≈ 0.00728 Ω.

Calculate the current flowing through each resistor (I):

The current through each resistor connected in parallel is the same.

Using Ohm's Law, I = V / R, where V is the battery voltage (20.34 V) and R is the resistance of each resistor.

For the 100 Ω resistor: I1 = 20.34 V / 100 Ω = 0.2034 A.

For the 75 Ω resistor: I2 = 20.34 V / 75 Ω = 0.2712 A.

For the 87.2 Ω resistor: I3 = 20.34 V / 87.2 Ω = 0.2334 A.

Therefore, the current through each resistor when connected in parallel is approximately:

I1 ≈ 0.2034 A,

I2 ≈ 0.2712 A,

I3 ≈ 0.2334 A.

(b) When the resistors are connected in series:

To find the current through each resistor, we can apply Ohm's Law again.

Calculate the total resistance (Rs) of the series circuit:

The total resistance of resistors connected in series is the sum of their individual resistances.

Rs = R1 + R2 + R3 = 100 Ω + 75 Ω + 87.2 Ω = 262.2 Ω.

Calculate the current flowing through each resistor (I):

In a series circuit, the current is the same throughout.

Using Ohm's Law, I = V / R, where V is the battery voltage (20.34 V) and R is the total resistance of the circuit.

I = 20.34 V / 262.2 Ω ≈ 0.0777 A.

Therefore, the current through each resistor when connected in series is approximately:

I1 ≈ 0.0777 A,

I2 ≈ 0.0777 A,

I3 ≈ 0.0777 A.

The equivalent resistance of each circuit is:

(a) Parallel circuit: Rp ≈ 0.00728 Ω.

(b) Series circuit: Rs = 262.2 Ω.

Learn more about resistor from the given link

https://brainly.com/question/28135236

#SPJ11

candle (h, - 0.24 m) is placed to the left of a diverging lens (f=-0.071 m). The candle is d, = 0.48 m to the left of the lens.
Write an expression for the image distance, d;

Answers

The expression for the image distance, d is;d' = 0.00093 m

Given that: Height of candle, h = 0.24 m

Distance of candle from the left of the lens, d= 0.48 m

Focal length of the diverging lens, f = -0.071 m

Image distance, d' is given by the lens formula as;1/f = 1/d - 1/d'

Taking the absolute magnitude of f, we have f = 0.071 m

Substituting the values in the above equation, we have; 1/0.071 = 1/0.48 - 1/d'14.0845

= (0.048 - d')/d'

Simplifying the equation above by cross multiplying, we have;

14.0845d' = 0.048d' - 0.048d' + 0.071 * 0.48d'

= 0.013125d'

= 0.013125/14.0845

= 0.00093 m (correct to 3 significant figures).

Therefore, the expression for the image distance, d is;d' = 0.00093 m

To learn more about image visit;

https://brainly.com/question/30725545

#SPJ11

If we put resistors in parallel, what will be true in this connection? the current is the same in each of them this is the simplest of all the connections one can be removed and the others will still work independently the new equivalent resistance will be closest to the larger value all of the answers provided Which circuit component will store the magnetic field? resistor diode capacitor inductor If we put resistors in parallel, what will be true in this connection? the new equivalent resistance will be closest to the smaller value all of the answers provided they have to be connect to the same two points only the voltage drop will be the same in each this is the more complex connection A circuit is an enclosed system. That means that it will obey the conservation laws. That means we cannot create nor destroy anything. If this circuit has a resistor, a capacitor, and an inductor... the energy within it will? depend on the value of the circuit components be the same get changed to heat via friction and vibrate depend on the power source (ac/dc) be invariant

Answers

When resistors are connected in parallel, it means that they are arranged in such a way that the ends of all the resistors are connected to the same two points in the circuit.  If we put resistors in parallel, the following statement will be true: the voltage drop will be the same in each.

In this configuration, the voltage drop across each resistor is the same. To understand why this is the case, consider the flow of current in a parallel circuit. When a current enters the parallel branch, it splits and flows through each resistor independently. Each resistor provides a pathway for the current to pass through, and the amount of current flowing through each resistor is determined by its resistance value.

When resistors are connected in parallel, they share the same voltage across their terminals. This means that the voltage drop experienced by each resistor is equal. In other words, the potential difference across each resistor connected in parallel is the same.

Therefore, the correct statement for resistors in parallel is that the voltage drop will be the same in each.

For more details regarding resistors, visit:

https://brainly.com/question/32613410

#SPJ4

Consider a cube whose volume is 125 cm? Inside are . two point charges q = -24 picoC and q2 = 9 picoC. The flux of the electric field through the surface of the cube is:

Answers

The flux of an electric field through a surface is a measure of the total number of electric field lines passing through that surface. It is a fundamental concept in electrostatics and plays a crucial role in Gauss's Law.

Given that, Volume of the cube = 125 cm³q₁ = -24 pCq₂ = 9 pC. We know that, the flux of the electric field through the surface of the cube is given byΦ = E₁S₁ + E₂S₂ + E₃S₃ + E₄S₄ + E₅S₅ + E₆S₆ Where, Ei = Ei(qi/ε₀) = Ei(k × qi) / r² (∵ qi/ε₀ = qi × k, where k is Coulomb's constant)where i = 1 to 6 (the six faces of the cube), Si = surface area of the i-th face. For the given cube, S₁ = S₂ = S₃ = S₄ = S₅ = S₆ = a² = (125)^2 cm² = 625 cm².

For the electric field on each face, the distance r between the point charge and the surface of the cube is given by:r = a/2 = (125/2) cm For q₁,E₁ = k(q₁/r²) = (9 × 10⁹ × 24 × 10⁻¹²) / (125/2)² = 8.64 × 10⁵ NC⁻¹ For q₂,E₂ = k(q₂/r²) = (9 × 10⁹ × 9 × 10⁻¹²) / (125/2)² = 3.24 × 10⁵ NC⁻¹Therefore,Φ = E₁S₁ + E₂S₂ + E₃S₃ + E₄S₄ + E₅S₅ + E₆S₆Φ = (8.64 × 10⁵) × (625) + (3.24 × 10⁵) × (625) + (8.64 × 10⁵) × (625) + (3.24 × 10⁵) × (625) + (8.64 × 10⁵) × (625) + (3.24 × 10⁵) × (625)Φ = 4.05 × 10⁸ NC⁻¹cm² = 4.05 × 10⁻¹¹ Nm²So, the flux of the electric field through the surface of the cube is 4.05 × 10⁻¹¹ Nm².

For similar problems on flux of the electric field visit:

https://brainly.com/question/29898551

#SPJ11

What is the pooled variance for the following two samples? sample 1: n = 8 and ss = 168; sample 2: n = 6 and ss = 120

Answers

The pooled variance is the weighted average of the variances of two or more groups, where the weights are the degrees of freedom (n-1) for each group.

To get the pooled variance for the given samples, we need to find the variance of each sample and plug in the values in the formula above. Sample 1 has n = 8

and ss = 168.

To get the variance of this sample (S1²), Plugging in the values Now let's find the variance of sample 2. It has n = 6 and ss = 120.

Therefore, the pooled variance for the given two samples is 24. The pooled variance for the given two samples is 24. The pooled variance is the weighted average of the variances of two or more groups, where the weights are the degrees of freedom (n-1) for each group. We can find the variance of each sample using the formula S² = SS/(n-1), where SS is the sum of squares and n is the sample size. Plugging in the values, we find that the variance of both samples is 24. Finally, we can use the formula Sp² = (S1²(n1-1) + S2²(n2-1))/(n1+n2-2) to find the pooled variance, which is also 24.

To know more about variances visit:

https://brainly.com/question/31432390

#SPJ11

When resting, a person has a metabolic rate of about 3.250 x 105 joules per hour. The person is submerged neck-deep into a tub containing 1.700 x 103 kg of water at 25.00 °C. If the heat from the person goes only into the water, find the water temperature in degrees Celsius after half an hour.

Answers

A person has a metabolic rate of about 3.250 x 105 joules per hour. The person is submerged neck-deep into a tub containing 1.700 x 103 kg of water at 25.00 °C. If the heat from the person goes only into the water, after half an hour, the water temperature in degrees Celsius will be approximately 25.02 °C.

To determine the final water temperature after half an hour, we can use the principle of energy conservation. The heat gained by the water will be equal to the heat lost by the person.

Given:

Metabolic rate of the person = 3.250 x 10^5 J/h

Mass of water = 1.700 x 10^3 kg

Initial water temperature = 25.00 °C

Time = 0.5 hour

First, let's calculate the heat lost by the person in half an hour:

Heat lost by the person = Metabolic rate × time

Heat lost = (3.250 x 10^5 J/h) × (0.5 h)

Heat lost = 1.625 x 10^5 J

According to the principle of energy conservation, this heat lost by the person will be gained by the water.

Next, let's calculate the change in temperature of the water.

Heat gained by the water = Heat lost by the person

Mass of water ×Specific heat of water × Change in temperature = Heat lost

(1.700 x 10^3 kg) × (4186 J/kg°C) × ΔT = 1.625 x 10^5 J

Now, solve for ΔT (change in temperature):

ΔT = (1.625 x 10^5 J) / [(1.700 x 10^3 kg) × (4186 J/kg°C)]

ΔT ≈ 0.0239 °C

Finally, calculate the final water temperature:

Final water temperature = Initial water temperature + ΔT

Final water temperature = 25.00 °C + 0.0239 °C

Final water temperature ≈ 25.02 °C

Therefore, after half an hour, the water temperature in degrees Celsius will be approximately 25.02 °C.

To learn more about energy conservation visit: https://brainly.com/question/166559

#SPJ11

Energy is conserved in the collision. Write an expression in
terms of photon wavelength to represent the electron’s increase in
energy as a result of the collision.

Answers

In the collision, the energy is conserved. The expression in terms of photon wavelength that represents the electron's increase in energy as a result of the collision can be given by:E=hc/λwhere, E is energy,h is the Planck constant,c is the speed of light, andλ is the wavelength of the photon.

To understand the relationship between energy and wavelength, you can consider the equation: E = hf, where, E is energy,h is Planck's constant, and f is frequency.We can relate frequency with wavelength as follows:f = c/λwhere,f is frequency,λ is wavelength,c is the speed of light. Substitute the value of frequency in the equation E = hf, we get:E = hc/λTherefore, energy can also be written as E = hc/λ, whereλ is the wavelength of the photon.

Learn more about energy:

brainly.com/question/2003548

#SPJ11

In a minimum of 1-2 pages, briefly discuss, identify and
describe the nine major decision points in the juvenile justice
process.

Answers

The nine major decision points in the juvenile justice process are arrest, intake, detention, prosecution, adjudication, disposition, transfer, reentry, and aftercare, each playing a crucial role in the handling of juvenile cases.

In the juvenile justice process, there are nine major decision points that play a crucial role in the handling of cases involving juveniles. Each decision point involves important considerations and has significant implications for the juvenile and the overall justice system. The following is a brief overview and description of these nine decision points:

Arrest: The first decision point occurs when law enforcement encounters a juvenile suspected of committing a delinquent act. Law enforcement must assess the situation and determine whether to arrest the juvenile or pursue an alternative resolution, such as diversion or warning.Intake: After an arrest, the intake decision involves assessing the case's appropriateness for formal processing within the juvenile justice system. Factors such as the seriousness of the offense, the juvenile's prior record, and the availability of community-based interventions are considered.Detention: When a juvenile is taken into custody, the decision to detain or release them is made. Detention is typically reserved for cases involving serious offenses, flight risk, or concerns about public safety. Alternatives to detention, such as supervised release or electronic monitoring, may be considered.Prosecution: At this stage, the decision is made whether to proceed with formal charges against the juvenile. Prosecutors consider the evidence, the seriousness of the offense, and the potential for rehabilitation when determining the appropriate course of action.Adjudication: Adjudication involves the determination of guilt or innocence through a formal hearing or trial. The decision to adjudicate a case rests on factors such as the strength of the evidence and the likelihood of successful rehabilitation through the juvenile justice system.Disposition: After adjudication, the court determines an appropriate disposition or sentence for the juvenile. Options include probation, community service, counseling, placement in a residential facility, or a combination of these interventions. The goal is to provide appropriate consequences while promoting rehabilitation.Transfer: In cases involving serious offenses or repeat offenders, the decision may be made to transfer the juvenile to the adult criminal justice system. Transfer decisions are based on criteria such as age, offense severity, and the juvenile's history of delinquency.Reentry: When a juvenile completes their sentence or intervention program, the decision is made regarding their reentry into the community. Reentry planning involves preparing the juvenile for successful reintegration through educational support, vocational training, and community support services.Aftercare: The final decision point involves providing ongoing support and supervision for the juvenile during the aftercare phase. This may include continued counseling, monitoring of compliance with court orders, and access to community resources to reduce the risk of recidivism.

These nine decision points are critical in determining the outcomes and trajectories of juveniles within the justice system. They reflect the delicate balance between public safety, accountability, and the rehabilitation of young offenders. It is essential for stakeholders in the juvenile justice system to carefully consider each decision point to ensure fair and effective handling of cases involving juveniles.

To learn more about Law enforcement, Visit:

https://brainly.com/question/21082629

#SPJ11

Consider a cube of gold 1.68 mm on an edge. Calculate the approximate number of conduction electrons in this cube whose energies lie in the range 4.000 to 4.017 eV.

Answers

The energy range is 0.017 eV

To calculate the approximate number of conduction electrons in a cube of gold with an edge length of 1.68 mm and energies in the range of 4.000 to 4.017 eV, we can use the concept of density of states (DOS) and make some assumptions.

Assuming a three-dimensional system, the DOS describes the number of electronic states per unit energy range available in a material.

For this calculation, we will consider only the conduction electrons and neglect other energy bands.

First, we need to calculate the volume of the cube.

The volume (V) is given by the formula

V = (edge length)^3. Therefore, V = (1.68 mm)^3 = 4.488192 mm^3.

Next, we require the DOS at the lower energy limit (E1 = 4.000 eV) and upper energy limit (E2 = 4.017 eV). The DOS is a constant within the given energy range.

To calculate the DOS, we need to know the effective mass of electrons in gold, which can vary depending on factors like crystal orientation and temperature.

For simplicity, let's assume a typical effective mass of 9.1 x 10^(-31) kg.

Using the formula for the DOS in a three-dimensional system:

DOS(E) = (8 * π * m * V) / (h^3),

where m is the effective mass and h is Planck's constant, we can compute the DOS at the lower and upper energy limits.

N = DOS(E1) * ∆E = DOS(E2) * ∆E,

where ∆E is the energy range (4.017 eV - 4.000 eV = 0.017 eV).

With the DOS values and the energy range, we can calculate the approximate number of conduction electrons.

Please note that this calculation is an approximation due to the assumption of a constant DOS within the given energy range and the use of a typical effective mass.

Additionally, factors such as temperature and impurities can affect the actual number of conduction electrons.

Learn more about energy from the given link

https://brainly.com/question/13881533

#SPJ11

A uniform 10kg, 2m, horizontal tree branch is attached to a tree on the left side. At the far right end, a vine is wrapped around the branch and is pulling on it at an angle of 20° above the positive z-axis. Two birds are perched on the branch: a .02kg bird. Im from the left end of the branch and a .05kg bird .3m from the right end of the branch. The birds and branch are completely motionless. (a) What's the tension in the vine? (b) What are the z and y components of the support force exerted by the tree on the branch?

Answers

(a) The tension in the vine is equal to the weight of the branch plus the weights of the birds on the branch. (b) The z-component of the support force exerted by the tree on the branch is equal to the tension in the vine, while the y-component is the sum of the weights of the branch and the birds.

(a) The tension in the vine can be determined by considering the equilibrium of forces acting on the branch. Since the birds and the branch are motionless, the net force in the vertical direction must be zero. First, let's find the vertical components of the weights of the birds:

Weight of the first bird = m1 * g = 0.02 kg * 9.8 m/s^2 = 0.196 N

Weight of the second bird = m2 * g = 0.05 kg * 9.8 m/s^2 = 0.49 N

The total vertical force acting on the branch is the sum of the weights of the birds and the tension in the vine:

Total vertical force = Weight of first bird + Weight of second bird + Tension in the vine

Since the branch is in equilibrium, the total vertical force must be zero:

0.196 N + 0.49 N + Tension in the vine = 0

Solving for the tension in the vine:

Tension in the vine = -(0.196 N + 0.49 N) = -0.686 N

Therefore, the tension in the vine is approximately 0.686 N.

(b) The support force exerted by the tree on the branch has both z and y components.

The z-component of the support force can be determined by considering the equilibrium of torques about the left end of the branch. Since the branch and birds are motionless, the net torque about the left end must be zero.

The torque due to the tension in the vine is given by:Torque due to tension = Tension in the vine * Distance from the left end of the branch to the point of application of tension

Since the branch is in equilibrium, the torque due to the tension must be balanced by the torque due to the support force exerted by the tree. Therefore:

Torque due to support force = -Torque due to tension

The y-component of the support force can be found by considering the vertical equilibrium of forces. Since the branch and birds are motionless, the net force in the vertical direction must be zero.

The z and y components of the support force exerted by the tree on the branch can be determined by solving these equations simultaneously.

Given the values and distances provided, the specific magnitudes of the z and y components of the support force cannot be determined without additional information or equations of equilibrium.

To learn more about tension in the vine, Click here:

https://brainly.com/question/13339690

#SPJ11

You have an inclined surface whose angle of inclination is 30°, if you have a coefficient of kinetic friction of 0.2. What will be the acceleration of an object on this surface?

Answers

The acceleration of the object on the inclined surface with an angle of inclination of 30° and a coefficient of kinetic friction of 0.2 is approximately 0.75 m/s^2.

To calculate the acceleration of an object on an inclined surface, we can use the following equation:

a = g * sin(theta) - mu * g * cos(theta)

where:

a is the acceleration of the object,

g is the acceleration due to gravity (which is approximately equal to 9.8 m/s^2),

theta is the inclination angle of the surface,

mu is the coefficient of kinetic friction.

theta = 30°,

mu = 0.2.

Substituting these values in the given equation, we have:

a = 9.8 m/s^2 * sin(30°) - 0.2 * 9.8 m/s^2 * cos(30°)

Simplifying this expression, we get:

a ≈ 4.9 m/s^2 * 0.5 - 0.2 * 9.8 m/s^2 * 0.866

a ≈ 2.45 m/s^2 - 1.7 m/s^2

a ≈ 0.75 m/s^2

Therefore, the acceleration of the object on the inclined surface will be approximately 0.75 m/s^2.

To learn more about acceleration visit : https://brainly.com/question/460763

#SPJ11

For the following questions, you may use any resources you wish to answer them. You must write your solutions by hand, cite all your references, and show all your calculations [a] Write a calculation-based question appropriate for this study guide about the deformation in tension of a biological substance whose Young's modulus is given in the OpenStax College Physics textbook, if its length changes by X percent. Then answer it. Your solution should be significant to three figures. Y = 3.301 W=1301 [b] In Example 5.5 (Calculating Force Required to Deform) of Chapter 5.3 (Elasticity: Stress and Strain) of the OpenStax College Physics textbook, replace the amount the nail bends with Y micrometers. Then solve the example, showing your work [c] In Example 5.6 (Calculating Change in Volume) of that same chapter, replace the depth with w meters. Find out the force per unit area at that depth, and then solve the example. Cite any sources you use and show your work. Your answer should be significant to three figures.

Answers

Answer:

a.) A biological substance with Young's modulus of 3.301 GPa has a tensile strain of 1.301 if its length is increased by 1301%.

b.) The force required to bend a nail by 100 micrometers is 20 N.

c.) The stress at a depth of 1000 meters is 10^8 Pa, which is equivalent to a pressure of 100 MPa.

Explanation:

a.) The tensile strain in the substance is given by the equation:

strain = (change in length)/(original length)

In this case, the change in length is X = 1301% of the original length.

Therefore, the strain is:

strain = (1301/100) = 1.301

The Young's modulus is a measure of how much stress a material can withstand before it deforms. In this case, the Young's modulus is Y = 3.301 GPa. Therefore, the stress in the substance is:

stress = (strain)(Young's modulus) = (1.301)(3.301 GPa) = 4.294 GPa

The stress is the force per unit area. Therefore, the force required to deform the substance is:

force = (stress)(area) = (4.294 GPa)(area)

The area is not given in the problem, so the force cannot be calculated. However, the strain and stress can be calculated, which can be used to determine the amount of deformation that has occurred.

b.) The force required to bend the nail is given by the equation:

force = (Young's modulus)(length)(strain)

In this case, the Young's modulus is Y = 200 GPa, the length of the nail is L = 10 cm, and the strain is ε = 0.001.

Therefore, the force is:

force = (200 GPa)(10 cm)(0.001) = 20 N

The force of 20 N is required to bend the nail by 100 micrometers.

c.) The force per unit area at a depth of w = 1000 meters is given by the equation:

stress = (weight density)(depth)

In this case, the weight density of water is ρ = 1000 kg/m^3, and the depth is w = 1000 meters.

Therefore, the stress is:

stress = (1000 kg/m^3)(1000 m) = 10^8 Pa

The stress of 10^8 Pa is equivalent to a pressure of 100 MPa.

Learn more about Elasticity: Stress and Strain.

https://brainly.com/question/33261312

#SPJ11

main rotor m/s Compare these speeds with the speed of sound, 343 m/s. SERCP11GE 7.P.011. In a recent test of its braking system, a Volkswagen Passat traveling at 28.7 m/s came to a full stop after an average negative acceleration of 1.60 m/s2. (a) How many revolutions did each tire make before the car comes to a stop, assuming the car did not skid and the tires had radil 0.315 m? rev (b) What was the angular speed of the wheels (in rad/s) when the car had traveled half the total stopping distance? rad/s 4. [-/1 Points] SERCP11GE 7.P.012. (a) At t=2.48 s, find the angular speed of the wheel. rad/s (b) At t=2.48 s, find the magnitude of the linear velocity and tangential acceleration of P. linear velocity m/s tangential acceleration (c) At t=2.48 s, find the position of P (in degrees, with respect to the positive x-axis). - counterclockwise from the +x-axis

Answers

The angular speed of the wheel at a given time, the magnitude of the linear velocity and tangential acceleration of a point on the wheel at the same time.

In order to address the given questions, let's break down the calculations step-by-step.

Firstly, to compare the speeds of the main rotor with the speed of sound, we need to obtain the values for both speeds and compare them.

Next, to determine the number of revolutions made by each tire before the car comes to a stop, we utilize the formula for linear distance traveled. This formula involves multiplying the circumference of the tire by the number of revolutions.

Moving on, to calculate the angular speed of the wheels when the car has traveled half the total stopping distance, we employ the formula for angular speed, which is obtained by dividing the linear speed by the radius of the tire.

Now, focusing on the second problem, at a given time of t=2.48 s, we aim to find the angular speed of the wheel. To do this, we divide the angular displacement by the given time.

Additionally, at the same time t=2.48 s, we determine the magnitude of the linear velocity and tangential acceleration of point P. For this, we rely on formulas that involve the angular speed and the radius.

Lastly, at the specific time t=2.48 s, we need to find the position of point P with respect to the positive x-axis, in degrees. To achieve this, we calculate the angular displacement and convert it to degrees.

Please note that the detailed calculations are not provided in this response.

To learn more about angular acceleration -

brainly.com/question/33229358

#SPJ11

vector b~ has x, y, and z components of 7.6, 5.3, and 7.2 units, respectively. calculate the magnitude of b~ .

Answers

The magnitude of vector b~ is approximately 11.12 units.

The magnitude of a vector can be calculated using the formula:

|b~| = √(x^2 + y^2 + z^2)

where x, y, and z are the components of the vector.

Given that the x-component of vector b~ is 7.6 units, the y-component is 5.3 units, and the z-component is 7.2 units, we can substitute these values into the formula:

|b~| = √(7.6^2 + 5.3^2 + 7.2^2)

|b~| = √(57.76 + 28.09 + 51.84)

|b~| = √137.69

|b~| ≈ 11.12 units

Therefore, the magnitude of vector b~ is approximately 11.12 units.

The magnitude of vector b~, with x, y, and z components of 7.6, 5.3, and 7.2 units respectively, is approximately 11.12 units. This value is obtained by using the formula for calculating the magnitude of a vector based on its components.

To know more about vector, visit;
https://brainly.com/question/27854247
#SPJ11

A 401 b boy on a skateboard moving at 12 m/s collides with a girl. Her mass is 60lbs. She falls on the skateboard t they continue to getler what is the final speed

Answers

The final speed of the boy and girl after collision is 4.8 m/s.

Given: Mass of the girl= 60lbs

Mass of the boy=401b

Speed of the boy= 12 m/s

The initial speed of the system = 12 m/s

The final velocity of the system after the collision is unknown.

Let v be the final velocity after the collision.

The final speed of the system = v

The final momentum of the system = m1 * v1 + m2 * v2 where m1 is the mass of the boy, m2 is the mass of the girl, v1 is the velocity of the boy before the collision and v2 is the velocity of the girl before the collision.

Final momentum of the system = m1v1 + m2v2

The initial momentum of the system = m1u1 + m2u2 where u1 is the velocity of the boy before the collision and u2 is the velocity of the girl before the collision.

Initial momentum of the system = m1u1 + m2u2m1u1 + m2u2

                                                     = m1v1 + m2v2=> 40 * 12 + 60 * 0

                                                     = 40 * v1 + 60 * v240v1 + 60v2

                                                     = 480...[1]

Momentum is conserved before and after the collision as the net external force is zero.

That is initial momentum = final momentum.

The girl falls on the skateboard, so they continue together as one system.

The combined mass of the girl and skateboard is 401 + 60 = 461 lbs.

The final velocity is given by: mv = mu + MU

Final velocity, v = (m1u1 + m2u2) / (m1 + m2)

                          = (40 * 12 + 60 * 0) / (40 + 60)

                          = 4.8 m/s

Therefore, the final speed of the boy and girl after collision is 4.8 m/s.

Learn more about final speed from the given link;

https://brainly.com/question/13943409

#SPJ11

Fluids Consider a piece of block whose density is 0.88 g/cm. a. if the volume of the block is 45 cm, what is the mass of the block? b. If it is placed in an oil of density 0.92 g/cm3, explain why it floats partially submerged. c. Draw a FBD of block. d. Is the buoyant force acting on the block greater than, less than or equal to the weight of the block? Explain. e. what is the source of the buoyant force? f. Is the volume of the fluid displaced by the block greater than, less than or equal to the volume of the block? Explain

Answers

(a) The mass of the block is 39.6 g.

(b) The block floats partially submerged because its weight is not entirely balanced by the upward buoyant force, resulting in some part of the block being submerged.

(c) Forces acting on the block:

- Weight of the block acting downward (mg)

- Buoyant force acting upward

(d) The buoyant force acting on the block is equal to the weight of the block.

(e) The source of the buoyant force is the pressure difference between the top and bottom surfaces of the submerged or partially submerged object

(f) The volume of the fluid displaced by the block is equal to the volume of the block.

a. To find the mass of the block, we can use the formula:

mass = density * volume.

Given the density of the block is 0.88 g/cm³ and the volume is 45 cm³:

mass = 0.88 g/cm³ * 45 cm³.

Calculating the mass:

mass = 39.6 g.

Therefore, the mass of the block is 39.6 g.

b. When the block is placed in the oil of density 0.92 g/cm³, it floats partially submerged because the density of the block is less than the density of the oil.

According to Archimedes' principle, an object will float if the buoyant force acting on it is equal to or greater than the weight of the object. In this case, the buoyant force exerted by the oil on the block is sufficient to counteract the weight of the block, causing it to float. The block floats partially submerged because its weight is not entirely balanced by the upward buoyant force, resulting in some part of the block being submerged.

c. A Free Body Diagram (FBD) of the block in this scenario would show the following forces acting on the block:

- Weight of the block acting downward (mg)

- Buoyant force acting upward

d. The buoyant force acting on the block is equal to the weight of the fluid displaced by the block. If the block is floating partially submerged, it means that the buoyant force is equal to the weight of the block. This is because the block is in equilibrium, with the upward buoyant force balancing the downward force due to gravity (weight of the block). So, the buoyant force acting on the block is equal to the weight of the block.

e. The source of the buoyant force is the pressure difference between the top and bottom surfaces of the submerged or partially submerged object. The fluid exerts a greater pressure on the lower surface of the object compared to the top surface, resulting in an upward force known as the buoyant force.

f. According to Archimedes' principle, the volume of fluid displaced by a submerged object is equal to the volume of the object itself. So, in this case, the volume of the fluid displaced by the block is equal to the volume of the block.

Learn more about buoyant force

https://brainly.com/question/20165763

#SPJ11

We have a rare sample of Unobtainium which has a half life of 54
hours and is currently measuring 1440 uCi. How radioactive will it
be in 18 days?

Answers

The given sample of Unobtainium has a half-life of 54 hours and is currently measuring 1440 uCi. The problem is asking us to determine how radioactive the sample will be in 18 days.

To solve the given problem, we will first find the decay constant using the half-life formula, which is given as follows:Half-life (t1/2) = 0.693/λWhere λ is the decay constant.To find λ, we will rearrange the above formula as follows:

λ = 0.693/t1/2λ = 0.693/54λ

= 0.01283 per hourThe decay constant of the given Unobtainium sample is 0.01283 per hour.

Now, we will use the exponential decay formula to find the radioactive decay of the sample in 18 days. The formula is given as:A = A0 e-λtWhere A is the current activity of the sample, A0 is the initial activity of the sample, e is the mathematical constant, t is the time elapsed, and λ is the decay constant.We know that the current activity of the sample (A) is 1440 uCi and that we need to find its activity after 18 days. We can convert 18 days into hours by multiplying it by 24 as follows:

18 days × 24 hours/day =

432 hours

Now, we will substitute the given values into the exponential decay formula and solve for A

:A = A0 e-λtA =

1440 e-0.01283(432)A ≈

43.85 uCi

Therefore, the sample of Unobtainium will be radioactive at a rate of approximately 43.85 uCi after 18 days.

To know more about radioactive visit:

https://brainly.com/question/1770619

#SPJ11

Other Questions
Portion sizes, ingredients, safety-all of these areas demand consistent attention and should not be compromised for any reason which refers to what industry standard? A. Never break the law. B. Never make it personal C.Never accept risks D. Never cut corners As viewed from the Earth, the Moon subtends an angle of approximately 0.50. What is the diameter of the Moon's image that is produced by the objective of the Lick Observatory refracting telescope which has a focal length of 18 m? Bronson Building Inc. is considering a possible investment project, consisting of constructing an office building and then renting it out for use to various local businesses. The initial cost of acquiring the land and constructing the building (first cost) is $21,000,000. The building is expected to be sold for $2,000,000 in 23 years, at the end of the last year of the project. Annual revenue from collecting rents is expected to be $4,000,000, while annual maintenance and operating expenses are projected to equal $2,000,000. Using MARR of 10%, compute the present worth of the project. Note: if the present worth is negative you must include the negative sign with your answer If tax on food is 4%, how much tax is paid on a grocery bill of$147.56? Suppose a 373 cm long, 8.5 cm diameter solenoid has 1000 loops. #33% Part (a) Calculate the self-inductance of it in mil * Attempts Remain 33% Part (b) How much energy is stored in this inductor when 79,5 A of'current flows through it? Give your answer in J. 11. BIKO is a bike retailer located in the outskirts of Paris. BIKO purchases bikes from PMX in orders of 252 bikes which is the current economic order quantity. PMX is now offering the following bulk discounts to its customers:2% discount on orders above 200 units4% discount on orders above 500 units6% discount on orders above 600 units Which topics would be important to include in discharge teaching for Baby Girl R.? Select althat apply.a. Positioningb. Skin care and wound carec. Specialized feeding techniqued. Maintenance of the Foley cathetere. Comfort measures and pain controlf. Importance of multidisciplinary follow-upg. Signs and symptoms of when to call the physicianh. Range-of-motion (ROM) exercises as appropriate per PTi. Appropriate stimulation such as sitting in an infant seat or swing Explain John Harris' proposal in "The Survival Lottery." What isHarris trying to show with this? 1. Why does a follicle not progress to the pre-ovulatory stage of development / ovulate during the luteal phase of the estrous cycle? 2. What is a CIDR and why is it used during synchronization procedures? For the following three measurements trials L1 L2 L3 Length (cm) 8.0 8.2 8.9 Calculate the absolute error (AL)? O 1.0.36 02.0.37 03.0.4 04.0.366 O 5.0.0 Problem 21 Early in 2022, Inez Marcus, the chief financial officer (CFO) for Suarez Manufacturing, was given the task of assessing the impact of a proposed risky investment on the firm's stock value. To perform the necessary analysis, Inez gathered the following information on the firm's stock. During the immediate past 5 years (2017-2021), the annual dividends paid on the firm's common stock were as follows: Year Dividend 2021 $1. 90 2020 $1. 70 2019 $ 1. 55 2018 $ 1. 40 $1. 30 2017 The firm expects that without the proposed investment, the dividend in 2022 will be $2. 09 per share and the historical annual rate of growth (rounded to the nearest whole percent) will continue in the future. Currently, the required return on the common stock is 14%. Inez's research indicates that if the proposed investment is undertaken, the 2022 dividend will rise to $2. 15/share. The annual rate of dividend growth will be 13% until 2024, and then at the beginning of 2025 onwards, would return to the rate that was experienced between 2017 and 2021. As a result of the increased risk associated with the proposed risky investment, the required return on the common stock is expected to increase by 2% to an annual rate of 16%, regardless of which dividend growth outcome occurs. Armed with the preceding information, Inez must now assess the impact of the proposed risky investment on the market value of Suarez's stock. To simplify her calculations, she plans to round the historical growth rate in common stock dividends to the nearest whole percent. FIN3201 Practice problems Investment Analysis TO DO a. Find the current value per share of Suarez Manufacturing's common stock. B. Find the value of Suarez's common stock in the event that it undertakes the proposed risky investment What effect would the proposed investment have on the firm's stockholders? Explain. C. On the basis of your findings in part b, do the stockholders win or lose because of undertaking the proposed risky investment? Should the firm do it? Why? Starting with 0. 3500 mol CO(g) and 0. 05500 mol COCl2(g) in a 3. 050 L flask at 668 K, how many moles of CI2(g) will be present at equilibrium? CO(g) + Cl2(8)COCl2(g)Kc= 1. 2 x 10^3 at 668 K People on the autism spectrum appear to be less likely to fall for the illusions of magicians because they show deficits in which of the following: O language O long-term memory O joint attention O causal inference Dream house builders, inc. applies overhead by linking it to direct labor. at the start of the current period, management predicts total direct labor costs of $100,000 and total overhead costs of $20,000. on january 31, the direct labor for this job equals $2,700. During early adulthood ____a. individuals are too old to seek formal education.b. everyone takes on the same adult roles at the same exact time.c. some individuals are married, having children, and learning to maintain their own households.d. there are not many developmental tasks to keep individuals busy. Problem 2. Decibel scale in acoustic equipment. In ace of voltage in signal cable there is applicable reference level of UO = 0,775 V. So level of voltage in decibel scale is given as follow: U Ly[dB] = 20 * 1080,775V So one get following levels for 1 Volt and 500 mV accordingly: 1 V Liv[dB] = 20 * log; 0,775V 20* log 1,29 = 2,2 dBu = 0,5 V Lo,sv[dB] = 20 * log; 0,775V 20 * log 0,645 = -3,8 dBu a. Compute level value in dB for U=1 mV, U = 5 mv, U=20 UV. b. Compute the voltage, which level is equal 12 dB. Simplify each radical expression. Use absolute value symbols when needed. 64a how would you describe the main differences between the twointeractions?What is a question about communicating emotion and meaningonline that you have? Firm 1 and Firm 2 are the only two firms in a market where price is determined by the inverse demand function: P = 135 - Q.Q is the sum of Firm 1 and Firm 2's output, so Q = q1 + q2Firm 1's total cost function is given by TC1(q1) = 3q1Firm 2's total cost function is given by TC2(q2) = 7q2If these firms Cournot compete (simultaneously setting quantities), what will market price be when both firms are maximizing profits in equilibrium? Each of the statments below may or may not be true. Enter the letters corresponding to all the true statements. (Give ALL correct answers, i.e., B, AC, BCD...) In the two-slit experiment, yl, the distance from the central maximum from the first bright spot ... A) decreases if the screen is moved away from the slits. B) doesn't depend on the slit separation. C) is always an integer multiple of the wavelength of the light. D) does not depend on the frequency of the light. E) is larger for blue light than for violet light.