Response times for the station that responds to calls in the northern part of town have been copied below. Northern: 3,3,4,4,5,5,5,5,5,6,6,6,6,6,7,7,7,7,7,7,7,7,7,8,8,8,8,9,10,10 Find and interpret a 95% confidence interval for the mean response time of the fire station that responds to calls in the northern part of town. Fill in blank 1 to report the bounds of the 95%Cl. Enter your answers as lower bound,upper bound with no additional spaces and rounding bounds to two decimals. Blank 1: 95% confident that the true mean response time of the fire station in the northern part of town is between and minutes. Blank 2: If you had not been told that the sample came from an approximately normally distributed pospulation, would you have been okay to proceed in constructing the interval given in blank 1? Why? Enter yes or no followed by a very brief explanation

Answers

Answer 1

The 95% confidence interval is (6.05, 7.29).We can use the z-distribution to construct a confidence interval for the mean response time of the fire station in the northern part of town.

The solution to the given problem is as follows:Given the following data set: 3,3,4,4,5,5,5,5,5,6,6,6,6,6,7,7,7,7,7,7,7,7,7,8,8,8,8,9,10,10

From the given data set, the following values can be obtained:

Mean = 6.67

Standard deviation (s) = 1.69

Number of observations (n) = 30

The 95% confidence interval is calculated as follows:Confidence interval = X ± z*s/√n

where X is the sample mean, z is the z-score corresponding to the level of confidence (0.95 in this case), s is the standard deviation of the sample, and n is the sample size.

The z-score for a 95% confidence level is 1.96.Confidence interval = 6.67 ± 1.96*1.69/√30= 6.67 ± 0.62

The 95% confidence interval is (6.05, 7.29).

Blank 1: We are 95% confident that the true mean response time of the fire station in the northern part of town is between 6.05 and 7.29 minutes.

Blank 2: Yes, because the sample size is greater than 30. According to the Central Limit Theorem, the sampling distribution of the sample means will be approximately normal for sample sizes greater than 30, regardless of the distribution of the population.

Therefore, we can use the z-distribution to construct a confidence interval for the mean response time of the fire station in the northern part of town.

Know more about Standard deviation here,

https://brainly.com/question/13498201

#SPJ11


Related Questions

Given F(4)=3,F′(4)=2,F(5)=7,F′(5)=4 and G(3)=2,G′(3)=4,G(4)=5,G′(4)=1, find each of the following. (Enter dne fo any derivative that cannot be computed from this information alone.) A. H(4) if H(x)=F(G(x)) B. H′(4) if H(x)=F(G(x)) C. H(4) if H(x)=G(F(x)) D. H′(4) if H(x)=G(F(x)) E. H′(4) if H(x)=F(x)/G(x)

Answers

Given the values and derivatives of functions F(x) and G(x) at specific points, we can determine the values and derivatives of composite functions H(x) based on the compositions of F(x) and G(x). Specifically, we need to evaluate H(4) and find H'(4) for various compositions of F(x) and G(x).

A. To find H(4) if H(x) = F(G(x)), we substitute G(4) into F(x) and evaluate F(G(4)):

H(4) = F(G(4)) = F(5) = 7

B. To find H'(4) if H(x) = F(G(x)), we use the chain rule. We first evaluate G'(4) and F'(G(4)), and then multiply them:

H'(4) = F'(G(4)) * G'(4) = F'(5) * G'(4) = 4 * 1 = 4

C. To find H(4) if H(x) = G(F(x)), we substitute F(4) into G(x) and evaluate G(F(4)):

H(4) = G(F(4)) = G(3) = 2

D. To find H'(4) if H(x) = G(F(x)), we again use the chain rule. We evaluate F'(4) and G'(F(4)), and then multiply them:

H'(4) = G'(F(4)) * F'(4) = G'(3) * F'(4) = 4 * 2 = 8

E. To find H'(4) if H(x) = F(x)/G(x), we differentiate the quotient using the quotient rule. We evaluate F'(4), G'(4), F(4), and G(4), and then calculate H'(4):

H'(4) = [F'(4) * G(4) - F(4) * G'(4)] / [G(4)]^2

H'(4) = [(2 * 5) - 3 * 1] / [5]^2 = (10 - 3) / 25 = 7 / 25

Therefore, the results are:

A. H(4) = 7

B. H'(4) = 4

C. H(4) = 2

D. H'(4) = 8

E. H'(4) = 7/25

Learn more about derivatives here:

https://brainly.com/question/25324584

#SPJ11

Find the solution to the differential equation \[ 4 \frac{d u}{d t}=u^{2} \] subject to the initial conditions \( u(0)=2 \).

Answers

The solution to the given differential equation subject to the initial condition [tex]\(u(0) = 2\) is \(u = -\frac{4}{t-2}\)[/tex].

A differential equation is a mathematical equation that relates an unknown function to its derivatives. It involves one or more derivatives of an unknown function with respect to one or more independent variables. Differential equations are used to model a wide range of phenomena and processes in various fields, including physics, engineering, economics, biology, and more.

To solve the given differential equation [tex]\[ 4 \frac{d u}{d t}=u^{2} \][/tex] subject to the initial condition [tex]\( u(0)=2 \)[/tex], we can use separation of variables.
First, let's rewrite the equation in the form [tex]\(\frac{1}{u^{2}} du = \frac{1}{4} dt\)[/tex].
Now, we integrate both sides of the equation:
[tex]\[\int \frac{1}{u^{2}} du = \int \frac{1}{4} dt\][/tex]
Integrating the left side gives us [tex]\(-\frac{1}{u} + C_1\)[/tex], where [tex]\(C_1\)[/tex] is the constant of integration. Integrating the right side gives us [tex]\(\frac{t}{4} + C_2\)[/tex], where [tex]\(C_2\)[/tex] is another constant of integration.
Combining these results, we have [tex]\(-\frac{1}{u} = \frac{t}{4} + C\)[/tex], where [tex]\(C = C_2 - C_1\)[/tex] is the combined constant of integration.
Now, we can solve for u:
[tex]\[-\frac{1}{u} = \frac{t}{4} + C\][/tex]
Multiplying both sides by -1, we get:
[tex]\[\frac{1}{u} = -\frac{t}{4} - C\][/tex]
Taking the reciprocal of both sides, we have:
[tex]\[u = \frac{1}{-\frac{t}{4} - C} = \frac{1}{-\frac{t+4C}{4}}\][/tex]
Simplifying further:
[tex]\[u = -\frac{4}{t+4C}\][/tex]
Now, to find the value of C, we can use the initial condition u(0) = 2:
[tex]\[2 = -\frac{4}{0+4C}\][/tex]
Solving for C:
[tex]\[2 = -\frac{4}{4C} \Rightarrow C = -\frac{1}{2}\][/tex]
Substituting this value of C back into the equation, we have:
[tex]\[u = -\frac{4}{t+4(-\frac{1}{2})} = -\frac{4}{t-2}\][/tex]
To know more about independent variables, visit:

https://brainly.com/question/1479694

#SPJ11

1.8.22. Solve the following homogeneous linear systems. x+y−2z=0 −x+4y−3z=0 1.8.7. Determine the rank of the following matrices:




1
2
1
4
0


−1
1
2
−1
3


2
−1
−3
3
−5


1
0
−1
2
−2





y−3z+w=0 1.8.23. Find all solutions to the homogeneous system Ax=0 for the coefficient matrix




0
−2
1


2
0
3


−1
3
0






Expert Answer

Answers

To prove the equation 1+r+r^2+⋯+r^n = (r^(n+1) - 1)/(r - 1) for all n∈N and r≠1, we will use mathematical induction.

Base Case (n=1):

For n=1, we have 1+r = (r^(1+1) - 1)/(r - 1), which simplifies to r+1 = r^2 - 1. This equation is true for any non-zero value of r.

Inductive Step:

Assume that the equation is true for some k∈N, i.e., 1+r+r^2+⋯+r^k = (r^(k+1) - 1)/(r - 1).

We need to prove that the equation holds for (k+1). Adding r^(k+1) to both sides of the equation, we get:

1+r+r^2+⋯+r^k+r^(k+1) = (r^(k+1) - 1)/(r - 1) + r^(k+1).

Combining the fractions on the right side, we have:

1+r+r^2+⋯+r^k+r^(k+1) = (r^(k+1) - 1 + (r^(k+1))(r - 1))/(r - 1).

Simplifying the numerator, we get:

1+r+r^2+⋯+r^k+r^(k+1) = (r^(k+1) - 1 + r^(k+2) - r^(k+1))/(r - 1).

Cancelling out the common terms, we obtain:

1+r+r^2+⋯+r^k+r^(k+1) = (r^(k+2) - 1)/(r - 1).

This completes the inductive step. Therefore, the equation holds for all natural numbers n.

By using mathematical induction, we have proved that 1+r+r^2+⋯+r^n = (r^(n+1) - 1)/(r - 1) for all n∈N and r≠1. This equation provides a formula to calculate the sum of a geometric series with a finite number of terms.

To learn more about mathematical induction : brainly.com/question/29503103

#SPJ11


If f(x)= x^2 lnx, then f ‘(x) = ___

Answers

The derivative of f(x) = x^2 ln(x) is given by f'(x) = 2x ln(x) + x.

To find the derivative of f(x), we can use the product rule, which states that if we have a function f(x) = g(x) * h(x), then the derivative of f(x) with respect to x is given by f'(x) = g'(x) * h(x) + g(x) * h'(x).

In this case, g(x) = x^2 and h(x) = ln(x). Applying the product rule, we have:

f'(x) = (2x * ln(x)) + (x * (1/x))

      = 2x ln(x) + 1.

Therefore, the derivative of f(x) = x^2 ln(x) is f'(x) = 2x ln(x) + x.

To find the derivative of f(x) = x^2 ln(x), we need to apply the product rule. The product rule is a rule in calculus used to differentiate the product of two functions.

Let's break down the function f(x) = x^2 ln(x) into two separate functions: g(x) = x^2 and h(x) = ln(x).

Now, we can differentiate each function separately. The derivative of g(x) = x^2 with respect to x is 2x, using the power rule of differentiation. The derivative of h(x) = ln(x) with respect to x is 1/x, using the derivative of the natural logarithm.

Applying the product rule, we have f'(x) = g'(x) * h(x) + g(x) * h'(x).

Substituting the derivatives we found, we get f'(x) = (2x * ln(x)) + (x * (1/x)). Simplifying the expression, we have f'(x) = 2x ln(x) + 1.

Therefore, the derivative of f(x) = x^2 ln(x) is f'(x) = 2x ln(x) + x.

Learn more about logarithm click here: brainly.com/question/30226560

#SPJ11

If f(x)= √x and g(x)=x^3−4, simplify the expressions (f∘g)(2),(f∘f)(9),(g∘f)(x), and (f∘g)(x)
(f∘g)(2)=
(f∘f)(9)=
(g∘f)(x)=
(f∘g)(x)=

Answers

By solving the given expressions, we get (f∘g)(2) = 2 , (f∘f)(9) = √3 , (g∘f)(x) = x^(3/2) - 4 , (f∘g)(x) = √(x^3 - 4)

To simplify the given expressions, we need to substitute the function values into the compositions.

1. (f∘g)(2):

First, find g(2):

g(x) = x^3 - 4

g(2) = (2)^3 - 4

g(2) = 8 - 4

g(2) = 4

Now, substitute g(2) into f(x):

f(x) = √x

(f∘g)(2) = f(g(2))

(f∘g)(2) = f(4)

(f∘g)(2) = √4

(f∘g)(2) = 2

Therefore, (f∘g)(2) simplifies to 2.

2. (f∘f)(9):

First, find f(9):

f(x) = √x

f(9) = √9

f(9) = 3

Now, substitute f(9) into f(x):

f(x) = √x

(f∘f)(9) = f(f(9))

(f∘f)(9) = f(3)

(f∘f)(9) = √3

Therefore, (f∘f)(9) simplifies to √3.

3. (g∘f)(x):

First, find f(x):

f(x) = √x

Now, substitute f(x) into g(x):

g(x) = x^3 - 4

(g∘f)(x) = g(f(x))

(g∘f)(x) = g(√x)

(g∘f)(x) = (√x)^3 - 4

(g∘f)(x) = x^(3/2) - 4

Therefore, (g∘f)(x) simplifies to x^(3/2) - 4.

4. (f∘g)(x):

First, find g(x):

g(x) = x^3 - 4

Now, substitute g(x) into f(x):

f(x) = √x

(f∘g)(x) = f(g(x))

(f∘g)(x) = f(x^3 - 4)

(f∘g)(x) = √(x^3 - 4)

Therefore, (f∘g)(x) simplifies to √(x^3 - 4).

Learn more about function here:

brainly.com/question/29752390

#SPJ11

V=
3
1

Bh, where B is the area of the base and h is the height. Find the volume of this pyramid in cubic meters. (1 acre =43,560ft
2
) −m
3
What If? If the height of the pyramid were increased to 541 it and the height to base area ratio of the pyramid were kept constant, by what percentage would the volume of the pyramid increase? ×%

Answers

The percentage increase in the volume of the pyramid if the height of the pyramid were increased to 541 it and the height to base area ratio of the pyramid were kept constant is 24.20%.

From the question above, V= 1/3 Bh

where B is the area of the base and h is the height. Now we need to find the volume of the pyramid in cubic meters if the height of the pyramid is 450m and base of the pyramid is 420m.

We can find the area of the pyramid using the formula of the area of the pyramid.

Area of the pyramid = 1/2 × b × p= 1/2 × 420m × 450m= 94,500 m²

Volume of the pyramid = 1/3 × 94,500 m² × 450 m= 14,175,000 m³

Now the height of the pyramid has been increased to 541m and the height to base area ratio of the pyramid were kept constant.

We need to find the percentage increase in the volume of the pyramid.In this case, height increased by = 541 - 450 = 91 m

New volume of the pyramid = 1/3 × 94,500 m² × 541 m= 17,604,500 m³

Increase in volume of pyramid = 17,604,500 - 14,175,000= 3,429,500 m³

Percentage increase in the volume of the pyramid= Increase in volume / original volume × 100%= 3,429,500 / 14,175,000 × 100%= 24.20 %

Learn more about the pyramid shape t

https://brainly.com/question/1631579

#SPJ11

Determine whether the following series converge. Justify your answers, by applying one of the tests of convergence/divergence for series. [infinity]∑k=1 ln( 2k+1)/(2k+4).

Answers

Since the divergent series ∑k=1 1/(2k+4) is always smaller than or equal to ∑k=1 ln(2k+1)/(2k+4), and the former does not converge, we can conclude that the given series ∑k=1 ln(2k+1)/(2k+4) also does not converge.

To determine the convergence of the series ∑k=1 ln(2k+1)/(2k+4), we can use the Comparison Test. Let's compare it to the series ∑k=1 1/(2k+4).Consider the series ∑k=1 1/(2k+4). The terms of this series are positive, and as k approaches infinity, the term 1/(2k+4) converges to zero. This series, however, is a divergent harmonic series since the general term does not approach zero fast enough.

Now, comparing the given series ∑k=1 ln(2k+1)/(2k+4) with the divergent series ∑k=1 1/(2k+4), we can see that the term ln(2k+1)/(2k+4) is always greater than or equal to 1/(2k+4) for all values of k. This is because the natural logarithm function is increasing.Since the divergent series ∑k=1 1/(2k+4) is always smaller than or equal to ∑k=1 ln(2k+1)/(2k+4), and the former does not converge, we can conclude that the given series ∑k=1 ln(2k+1)/(2k+4) also does not converge.

Learn more about converge here:

https://brainly.com/question/29698841

#SPJ11

Un camión puede cargar un máximo de 4,675 libras. Se busca en el trasportar cajas de 150
libras y un paquete extra de 175 libras. ¿Cuantas cajas puede transportar el camión?

Answers

The number of bags that the truck can move is given as follows:

31 bags.

(plus one extra package of 175 lbs).

How to obtain the number of bags?

The number of bags that the truck can move is obtained applying the proportions in the context of the problem.

The total weight that the truck can carry is given as follows:

4675 lbs.

Each bag has 150 lbs, hence the number of bags needed is given as follows:

4675/150 = 31 bags (rounded down).

The remaining weight will go into the extra package of 175 lbs.

More can be learned about proportions at brainly.com/question/24372153

#SPJ1

Find the time response for t>=0 for the following system represented by the differential equation.F(s) = 2s2+s+3/s3

Answers

The time response for the given system represented by the differential equation F(s) = (2s^2 + s + 3) / s^3 is obtained by finding the inverse Laplace transform of F(s).

To find the time response, we need to perform the inverse Laplace transform of F(s). However, the given equation represents a ratio of polynomials, which makes it difficult to directly find the inverse Laplace transform. To simplify the problem, we can perform partial fraction decomposition on F(s).

The denominator of F(s) is s^3, which can be factored as s^3 = s(s^2). Therefore, we can express F(s) as A/s + B/s^2 + C/s^3, where A, B, and C are constants to be determined.

By equating the numerators, we have 2s^2 + s + 3 = A(s^2) + B(s) + C. By expanding and comparing coefficients, we can solve for the constants A, B, and C.

Once we have the partial fraction decomposition, we can find the inverse Laplace transform of each term using standard Laplace transform tables or formulas. Finally, we combine the inverse Laplace transforms to obtain the time response of the system for t >= 0.

Learn more about differential equation here: brainly.com/question/25731911

#SPJ11

According to a research report, 43% of millennials have a BA degree. Suppose we take a random sample of 600 millennials and find the proportion who have a BA degree. Complete parts (a) through (d) below. We should expect a sample proportion of %. (Type an integer or a decimal. Do not round.) b. What is the standard error? The standard error is (Type an integer or decimal rounded to three decimal places as needed.) c. Use your answers to parts (a) and (b) to complete this sentence. We expect % to have a BA degree, give or take % (Type integers or decimals rounded to one decimal place as needed.) d. Suppose we decreased the sample size from 600 to 200 . What effect would this have on the standard erfor? Recalculate the standard error to see if your prediction was correct. Select the correct choice below and fill in the answer box to complete your choice. (Type an integer or decimal rounded to one decimal place as needed.) A. We cannot determine what would happen to the standard error without performing the calculation. After performing the calculation, the new standard error is B. The standard error would remain the same. The standard error is still % C. The standard error would decrease. The new standard error is % D. The standard error would increase. The new standard error is 3.

Answers

The new standard error is 0.0381. The correct choice is (D) The standard error would increase. The new standard error is 0.0381.

According to a research report, 43% of millennials have a BA degree. Suppose we take a random sample of 600 millennials and find the proportion who have a BA degree.

Part (a)We should expect a sample proportion of:Expected sample proportion of millennials who have a BA degree= 0.43The sample proportion of millennials who have a BA degree is 43% according to the research report.

Part (b)Formula to calculate the standard error is:Standard error (SE) = sqrt{[p * (1 - p)] / n}Wherep = expected proportion in the sample (0.43)q = (1 - p) = 1 - 0.43 = 0.57n = sample size (600)SE = sqrt {[0.43 * (1 - 0.43)] / 600}SE = 0.0201Therefore, the standard error is 0.0201.

Part (c)We expect 43% of millennials to have a BA degree, give or take 2.01% at 95% confidence level (CL).Expected sample proportion of millennials who have a BA degree = 0.43Standard error = 0.0201Sample size = 600At 95% confidence level (CL), the critical value is 1.96.Therefore, the margin of error = 1.96 * 0.0201 = 0.0395We expect 43% of millennials to have a BA degree, give or take 3.95% at 95% confidence level.

Part (d)Suppose we decreased the sample size from 600 to 200. Recalculate the standard error to see if your prediction was correct.n = 200p = 0.43q = (1 - p) = 0.57SE = sqrt {[0.43 * (1 - 0.43)] / 200}SE = 0.0381We can see that the standard error has increased from 0.0201 to 0.0381 when we decreased the sample size from 600 to 200.

Therefore, the new standard error is 0.0381. The correct choice is (D) The standard error would increase. The new standard error is 0.0381.

Learn more about standard error here,

https://brainly.com/question/1191244

#SPJ11

Decide whether each of the following series converges. If a given series converges, compute its sum. Otherwise, enter INF if it diverges to infinity. MINF if it diverges to minus infinity, and DIV otherwise: 1. ∑
n=1
[infinity]

(sin(2n)−sin(2(n+1))) 2. ∑
n=1
[infinity]

(sin(
n
2

)−sin(
n+1
2

)) 3. ∑
n=1
[infinity]

(e
1in
−e
11(n+1)
) Note: In order to get credit for this problem all answers must be correct.

Answers

The series [tex]\sum_{n=1}^\infty[/tex] sin (2 n) - sin (2 (n + 1)) diverges to ∞.

The series [tex]\sum_{n=1}^\infty[/tex] [sin (2/n) - sin (2/(n + 1))] converges to sin(2).

The series [tex]\sum_{n=1}^\infty[/tex] [e¹¹ⁿ - e¹¹⁽ⁿ⁺¹⁾] diverges to - ∞.

Given that, the first series is

S = [tex]\sum_{n=1}^\infty[/tex] sin (2 n) - sin (2 (n + 1))  

Now calculating,

Sₖ = [sin 2 + sin 4 + sin 6 + ..... + sin 2k] - [sin 4 + sin 6 + ..... + sin 2k + sin (2k + 2)]

Sₖ = sin 2 - sin (2k + 2)

So now, limit value is,

[tex]\lim_{k \to \infty}[/tex] Sₖ = [tex]\lim_{k \to \infty}[/tex] [sin 2 - sin (2k + 2)] = ∞

Hence the series diverges.

Given that, the second series is

S = [tex]\sum_{n=1}^\infty[/tex] [sin (2/n) - sin (2/(n + 1))]

Now calculating,

Sₖ = [sin 2 + sin 1 + sin (2/3) + .... + sin (2/k)] - [sin 1 + sin (2/3) + ..... + sin (2/k) + sin (2/(k + 1))]

Sₖ = sin 2 - sin (2/(k + 1))

So now, limit value is,

[tex]\lim_{k \to \infty}[/tex] Sₖ = [tex]\lim_{k \to \infty}[/tex] [sin 2 - sin (2/(k + 1))] = sin 2 - 0 = sin 2

Hence the series is convergent and converges to sin (2).

Given that, the third series is

S = [tex]\sum_{n=1}^\infty[/tex] [e¹¹ⁿ - e¹¹⁽ⁿ⁺¹⁾]

Now calculating,

Sₖ = [e¹¹ + e²² + e³³ + ..... + e¹¹ᵏ] - [e²² + e³³ + ....+ e¹¹ᵏ + e¹¹⁽ᵏ⁺¹⁾]

Sₖ = e¹¹ - e¹¹⁽ᵏ⁺¹⁾

So now, limit value is,

[tex]\lim_{k \to \infty}[/tex] Sₖ = [tex]\lim_{k \to \infty}[/tex] [e¹¹ - e¹¹⁽ᵏ⁺¹⁾] = - ∞.

Hence the series diverges.

To know more about series here

https://brainly.com/question/32549533

#SPJ4

The question is not clear. The clear and complete question will be -

Differentiate the function. \[ y=\left(3 x^{4}-x+2\right)\left(-x^{5}+6\right) \] \( y^{\prime}= \)

Answers

To differentiate the function \(y = (3x^4 - x + 2)(-x^5 + 6)\), we can use the product rule. The product rule states that if we have two functions, \(u(x)\) and \(v(x)\), then the derivative of their product is given by \((uv)' = u'v + uv'\).

Using the product rule, we differentiate each term separately. Let's denote the first factor as \(u(x) = 3x^4 - x + 2\) and the second factor as \(v(x) = -x^5 + 6\). The derivatives of \(u(x)\) and \(v(x)\) are \(u'(x) = 12x^3 - 1\) and \(v'(x) = -5x^4\), respectively.

Applying the product rule, we have:

\[

y' = u'v + uv' = (12x^3 - 1)(-x^5 + 6) + (3x^4 - x + 2)(-5x^4)

\]

Simplifying the expression, we can distribute and combine like terms:

\[

y' = -12x^8 + 72x^3 + x^5 - 6 - 15x^8 + 5x^5 + 10x^4

\]

Combining similar terms further, we obtain:

\[

y' = -27x^8 + 6x^5 + 10x^4 + 72x^3 - 6

\]

Therefore, the derivative of the function \(y = (3x^4 - x + 2)(-x^5 + 6)\) is given by \(y' = -27x^8 + 6x^5 + 10x^4 + 72x^3 - 6\).

In summary, to find the derivative of the given function, we applied the product rule, differentiating each factor separately and then combining the results. The final expression represents the derivative of the function with respect to \(x\).

To learn more about product rule : brainly.com/question/29198114

#SPJ11

Identify which of these designs is most appropriate for the given experi- ment: completely randomized design, randomized block design, or matched pairs design.

33. Lunesta Lunesta is a drug designed to treat insomnia. In a clinical trial of Lunesta, amounts of sleep each night are measured before and after subjects have been treated with the drug.

Answers

Answer:

Completely Randomized Design would be the most appropriate experimental design for this scenario since it involves randomly assigning participants to different groups without any blocking factors present. Each subject represents an independent observation in the study, so treating them separately as units rather than blocks or paired observations makes sense. By comparing pre-treatment measures of sleep length against post-treatment measures taken after receiving Lunesta, researchers can evaluate its effectiveness in promoting better sleep patterns among those experiencing insomnia.

Final answer:

The most appropriate design for the described clinical trial of Lunesta drug, which measures sleep amounts before and after the treatment, is the Matched Pairs Design where each subject serves as their own control.

Explanation:

The design most appropriate for this experiment with the Lunesta drug should be the Matched Pairs Design. In a matched pairs design, each subject serves as their own control, which would apply here as sleep amounts are being measured for each subject before and after they have been treated with the drug. This is important because it means the experiment controls for any individual differences among participants. In other words, the same person's sleep is compared before and after taking the drug, so the effect of the drug is isolated from other factors that could potentially affect sleep.

Learn more about Matched Pairs Design here:

https://brainly.com/question/32574024

#SPJ2


Let's say that in computing the regression equation that b=0.53
and a=2.38. compute the predicted value for Y when X = 3.
Y' = ?

Answers

Y' = 3.97, Given that b=0.53 and a=2.38,To compute the predicted value for Y when X=3.

The formula for computing Y' is given by: Y' = a + bX  Substitute the given values of a,b and X into the formula for Y', we have;Y' = 2.38 + 0.53(3) Recall the order of operations;

BODMAS (Bracket, of, Division, Multiplication, Addition, Subtraction).

We do the multiplication firstY' = 2.38 + 1.59Now, add the decimal numbers together to get the predicted value for Y;Y' = 3.97Thus, the predicted value for Y is 3.97 when X=3. Answer: Y' = 3.97.

To Know more about  BODMAS Visit:

https://brainly.com/question/14959788

#SPJ11


Is this statement always true, sometimes true, or never true?
Explain your answer.
x + 5 is greater than 4 + x

Answers

The given statement x + 5 is greater than 4 + x is always true.

This is because x + 5 and 4 + x are equivalent expressions, which means they represent the same value. Therefore, they are always equal to each other.

For example, if we substitute x with 2, we get:

2 + 5 > 4 + 2

7 > 6

The inequality is true, indicating that the statement is always true for any value of x.

We can also prove this algebraically by subtracting x from both sides of the inequality:

x + 5 > 4 + x

x + 5 - x > 4 + x - x

5 > 4

The inequality 5 > 4 is always true, which confirms that the original statement x + 5 is greater than 4 + x is always true.

In conclusion, the statement x + 5 is greater than 4 + x is always true for any value of x.

Know more about equivalent expressions here:

https://brainly.com/question/28170201

#SPJ11

For a certain drug, the rate of reaction in appropriate units is given by R′(t)=7/t+3/t^2, where t is measured in hours after the drug is administered. Find the total reaction to the drug from t = 3 to t = 11. Round to two decimal places, if necessary.

A. 9.82
B. 24.77
C. 23.20
D. 11.60

Answers

The total reaction to the drug from t = 3 to t = 11 is approximately 9.82. Thus, the correct choice is A. 9.82 .To find the total reaction to the drug from t = 3 to t = 11, we need to evaluate the definite integral of the rate of reaction function R'(t) over the given interval.

The integral can be expressed as follows:

∫[3, 11] (7/t + 3/t^2) dt

To solve this integral, we can break it down into two separate integrals:

∫[3, 11] (7/t) dt + ∫[3, 11] (3/t^2) dt

Integrating each term separately:

∫[3, 11] (7/t) dt = 7ln|t| |[3, 11] = 7ln(11) - 7ln(3)

∫[3, 11] (3/t^2) dt = -3/t |[3, 11] = -3/11 + 3/3

Simplifying further:

7ln(11) - 7ln(3) - 3/11 + 1

Calculating the numerical value:

≈ 9.82

Learn more about Integrals here : brainly.com/question/31109342

#SPJ11

Required information A ball is thrown upward, from the ground, with an initial velocity of 17 m/s. The approximate value of g=10 m/s
2
. Take the upward direction to be positive. Tossed Ball Velocity up is positive v
a

=+20 m/sa=−10 m/s
2
down is negative v=v
0

+at NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. What is the magnitude and the direction of the ball's velocity 2 seconds after it is thrown? The magnitude of the velocity is m/s, and the motion is

Answers

The magnitude of velocity of ball after 2 seconds of being thrown is 37 m/s.

Given values are:

Initial Velocity, u = 17 m/s

Acceleration due to gravity, g = 10 m/s²

Time, t = 2 s

The velocity of the ball at time t, v is given by

v = u + gt

Here, u = 17 m/s, g = 10 m/s², and t = 2 s

Putting the values, we get

v = u + gt

= 17 + 10 × 2

v = 17 + 20

v = 37 m/s

This velocity is positive since the ball is going upwards.

Therefore, the direction of the ball's velocity after 2 seconds of being thrown is upward, or positive.

The magnitude of velocity of ball after 2 seconds of being thrown is 37 m/s.

To know more about magnitude visit:

https://brainly.com/question/11954533

#SPJ11

Determine how much US dollars (US$) or Malaysian ringgit (MYR) Zikri and Cheong will get based on the following:

i. If US$1.00 = MYR3.80, Zikri wishes to change MYR1,000 into US$

ii. If US$1.00 = MYR3.80, Cheong wishes to convert US$500 into MYR

Answers

To determine how much US$ Zikri will get when he changes MYR1,000, we use the given exchange rate of US$1.00 = MYR3.80.

Therefore: US$1.00 = MYR3.80

MYR1,000 = MYR1,000/

1 = US$1.00/3.80

= US$263.16

Therefore, Zikri will get US$263.16 when he changes MYR1,000 into US$.ii.

To determine how much MYR Cheong will get when he converts US$500, we use the given exchange rate of US$1.00 = MYR3.80. Therefore:US$1.00 = MYR3.80

US$500 = US$500/1

= MYR3.80/1.00

= MYR1,900.00 Therefore, Cheong will get MYR1,900.00 when he converts US$500 into MYR.

To know more about exchange rate visit :

https://brainly.com/question/30461560

#SPJ11

Which package has the lowest cost per ounce of rice ( 12, 18, 7)

Answers

Package 3 has the lowest cost per ounce of rice.

To determine the package with the lowest cost per ounce of rice, we need to divide the cost of each package by the number of ounces of rice it contains.

Let's calculate the cost per ounce for each package:

Package 1: Cost = 12, Ounces of rice = 18

Cost per ounce = 12 / 18 = 0.67

Package 2: Cost = 18, Ounces of rice = 7

Cost per ounce = 18 / 7 = 2.57

Package 3: Cost = 7, Ounces of rice = 12

Cost per ounce = 7 / 12 = 0.58

Comparing the cost per ounce for each package, we can see that Package 3 has the lowest cost per ounce of rice, with a value of 0.58.

Therefore, Package 3 has the lowest cost per ounce of rice among the three packages.

Learn more about lowest cost here:

https://brainly.com/question/31781702

#SPJ11

The table below shows the betas and portfolio weights for 3 stocks: Calculate the beta of each portiolio. Part 1 Attempt 1/5 for 10 pts. What is the beta of portfolio 1 ? Part 2 E. Attempt 1/5 for 10 pts. What is the beta of portfolio 2 ? Part 3 - E = Attempt 1/5 for 10 pts. If you are more concerned about risk than return, which portfolio shouid you pick? Portiolio 2 : Portfolio 1

Answers

The betas and portfolio weights for 3 stocks are given as follows: Portfolio 1: Portfolio 2: Portfolio 3: Calculation:Part 1: Beta of portfolio 1.

Beta of portfolio 1 = (0.4 × 1.2) + (0.3 × 0.9) + (0.3 × 0.8)Beta of portfolio 1 = 0.48 + 0.27 + 0.24 Beta of portfolio 1 = 0.99 Therefore, the beta of portfolio 1 is 0.99.Part 2: Beta of portfolio 2 Beta of portfolio 2 = (0.2 × 1.2) + (0.5 × 0.9) + (0.3 × 0.8)Beta of portfolio 2 = 0.24 + 0.45 + 0.24.

Beta of portfolio 2 = 0.93 Therefore, the beta of portfolio 2 is 0.93 If you are more concerned about risk than return, you should pick portfolio 1 because it has the highest beta value of 0.99, which means it carries more risk than the other portfolios.

To know more about portfolio visit :

https://brainly.com/question/17165367

#SPJ11

Find d/dx (24x​3​−ln(4)4x+πe)

Answers

The derivative of the function is 72x² - 4ln(4).

To find the derivative of the function f(x) = 24x³ - ln(4)4x + πe with respect to x, we can apply the power rule and the rules for differentiating logarithmic and exponential functions.

The derivative d/dx of each term separately is as follows:

d/dx(24x³) = 72x² (using the power rule)

d/dx(-ln(4)4x) = -ln(4) * 4 (using the constant multiple rule)

d/dx(πe) = 0 (the derivative of a constant is zero)

Therefore, the derivative of the function f(x) is:

f'(x) = 72x² - ln(4) * 4

Simplifying further, we have:

f'(x) = 72x² - 4ln(4)

So, the derivative of the function is 72x² - 4ln(4).

To know more about derivative:

https://brainly.com/question/29144258


#SPJ4

Express this set using a regular expression: the set of strings ending in 00 and not containing 11 Multiple Choice 0

(01∪0)

0 0

(01∪0)

00 0∗(10∪0)∗00 0

(10∪0)

0

Answers

The correct regular expression for the set of strings ending in "00" and not containing "11" is 0∗(10∪0)∗00. The correct answer is A.

This regular expression breaks down as follows:

0∗: Matches any number (zero or more) of the digit "0".

(10∪0): Matches either the substring "10" or the single digit "0".

∗: Matches any number (zero or more) of the preceding expression.

00: Matches the exact substring "00", indicating that the string ends with two consecutive zeros.

So, the regular expression 0∗(10∪0)∗00 represents the set of strings that:

Start with any number of zeros (including the possibility of being empty).

Can have zero or more occurrences of either "10" or "0".

Ends with two consecutive zeros.

This regular expression ensures that the string ends in "00" and does not contain "11". The correct answer is A.

To know more string word click here

brainly.com/question/30099412

#SPJ11

The lines that mark the width of each parking space are parallel.
Which of the following statements is a valid justification of the correct value of x?

a
If a transversal intersects two parallel lines, then same-side interior angles are congruent. Therefore, x = 65.
b
If a transversal intersects two parallel lines, then alternate exterior angles are supplementary. Therefore, x = 115.
c
If a transversal intersects two parallel lines, then corresponding angles are congruent. Therefore, x = 65.
d
If a transversal intersects two parallel lines, then same-side exterior angles are supplementary. Therefore, x = 115.

Answers

X = 65" is incorrect. Same-side interior angles are formed when two parallel lines are cut by a transversal and are defined as the pairs of angles that are on the same side of the transversal and on the inside of the parallel lines. These angles are supplementary, meaning that they add up to 180 degrees.

The problem given is about determining the value of x given that the lines that mark the width of each parking space are parallel. To solve this problem, we need to understand the relationship between angles formed by transversal lines crossing a pair of parallel lines. It is known that when a transversal crosses two parallel lines, it creates eight angles.

The statement "If a transversal intersects two parallel lines, then corresponding angles are congruent" is a valid justification of the correct value of x in this situation.

Corresponding angles are formed when two parallel lines are cut by a transversal and are defined as the pairs of angles that are in the same position on each line. In other words, the angles that correspond to each other.

They are equal in measure, meaning that if one angle is x degrees, the corresponding angle is also x degrees.

In this problem, we can see that angle 1 is corresponding with angle 3, and so they must have equal measure. Thus, x = 65 degrees.

Hence, the correct option is (c) If a transversal intersects two parallel lines, then corresponding angles are congruent.

Therefore, x = 65. As such, the statement "If a transversal intersects two parallel lines, then same-side interior angles are congruent.

Therefore, x can not equal 65 degrees. Same-side exterior angles are also supplementary and do not add up to 65 degrees.

Similarly, alternate exterior angles are also not equal to 65 degrees, but they are supplementary and add up to 180 degrees. The correct answer is the corresponding angles, and the corresponding angles are congruent.

For more such questions on parallel lines

https://brainly.com/question/30195834

#SPJ8

We are waiting for 10 cars and 14 bikes. What is the probability that the second vehicle that will come will be a car?

Answers

The probability that the second vehicle that will come will be a car is stated as 5/12, which can also be expressed as 0.42 or 42%.

Probability is a measure or quantification of the likelihood or chance of an event occurring. It is used to describe and analyze uncertain or random situations. In simple terms, probability represents the ratio of favorable outcomes to the total number of possible outcomes.

There are two possibilities for the second vehicle to arrive, either a car or a bike. The probability that the second vehicle that will arrive will be a car can be calculated as follows:

P (second vehicle is a car) = (number of cars left to arrive) / (total number of vehicles left to arrive)

The total number of vehicles left to arrive is 10 cars + 14 bikes = 24 vehicles.

The number of cars left to arrive is 10 cars.

Therefore, P (second vehicle is a car) = 10/24 = 5/12 or approximately 0.42 or 42%.

Therefore, the probability that the second vehicle that will come will be a car is 5/12 or 0.42 or 42%.

This means that out of the next 12 vehicles to arrive, approximately 5 will be cars, assuming the overall proportion of cars and bikes arriving remains the same throughout the entire process.

To know more about probability visit:

brainly.com/question/23017717

#SPJ11

The population of a city grows from an initial size of 900,000 to a size P given by P(t)=900,000+5000t2, where t is in years. a) Find the growth rate, dP/dt​. b) Find the population after 15 yr. c) Find the growth rate at t=15. a) Find the growth rate, dP/dt​.. dP/dt​.​=___

Answers

the growth rate, we need to differentiate the population function P(t) with respect to time t. The growth rate is given by dP/dt.

The population function is given by P(t) = 900,000 + 5000t^2.

the growth rate, we differentiate P(t) with respect to t:

dP/dt = d/dt (900,000 + 5000t^2).

Taking the derivative, we get:

dP/dt = 0 + 2(5000)t = 10,000t.

Therefore, the growth rate is given by dP/dt = 10,000t.

For part b,the population after 15 years, we substitute t = 15 into the population function P(t):

P(15) = 900,000 + 5000(15)^2 = 900,000 + 5000(225) = 900,000 + 1,125,000 = 2,025,000.

Therefore, the population after 15 years is 2,025,000.

For part c, to find the growth rate at t = 15, we substitute t = 15 into the growth rate function dP/dt:

dP/dt at t = 15 = 10,000(15) = 150,000.

Therefore, the growth rate at t = 15 is 150,000.

To learn more about function

brainly.com/question/30721594

#SPJ11

a) Use the method of generalizing from the generic particular in a direct proof to show that the sum of any two odd integers is even. See the example on page 152 (4th ed) for how to lay this proof out.

b) Determine whether 0.151515... (repeating forever) is a rational number. Give reasoning.

c) Use proof by contradiction to show that for all integers n, 3n + 2 is not divisible by 3.

d) Is {{5, 4}, {7, 2}, {1, 3, 4}, {6, 8}} a partition of {1, 2, 3, 4, 5, 6, 7, 8}? Why?

Answers

a) The value of m + n is even, because m + n = (2k + 1) + (2l + 1) = 2(k + l + 1),thus the statement is proven.

b) 0.151515... (repeating forever) is a rational number.

c) 3n + 2 is not divisible by 3 for all integers n.

d) It is a partition of {1, 2, 3, 4, 5, 6, 7, 8}.

a) To prove the statement, we suppose that there exist odd integers m and n such that m + n is odd. Then there exist integers k and l such that m = 2k + 1 and n = 2l + 1.

Hence, m + n = (2k + 1) + (2l + 1) = 2(k + l + 1) which implies that m + n is even, thus the statement is proven.

b) Given that 0.151515... (repeating forever), in decimal form can be written as 15/99. Hence, it is a rational number.

c)Use proof by contradiction to show that for all integers n, 3n + 2 is not divisible by 3: To prove the statement, we assume that there exists an integer n such that 3n + 2 is divisible by 3.

Therefore, 3n + 2 = 3k for some integer k. Rearranging the equation, we get 3n = 3k - 2.

But 3k - 2 is odd, whereas 3n is even (since it is a multiple of 3), this contradicts with our assumption.

Thus, 3n + 2 is not divisible by 3 for all integers n.

d) The given set, {{5, 4}, {7, 2}, {1, 3, 4}, {6, 8}}, is a partition of {1, 2, 3, 4, 5, 6, 7, 8} if each element of {1, 2, 3, 4, 5, 6, 7, 8} appears in exactly one of the sets {{5, 4}, {7, 2}, {1, 3, 4}, {6, 8}}.

Let us verify if this is true.

1 is in the set {1, 3, 4}, so it is in the partition2 is in the set {7, 2}, so it is in the partition3 is in the set {1, 3, 4}, so it is in the partition4 is in the set {5, 4, 1, 3}, so it is in the partition5 is in the set {5, 4}, so it is in the partition6 is in the set {6, 8}, so it is in the partition7 is in the set {7, 2}, so it is in the partition8 is in the set {6, 8}, so it is in the partition

Since every element in {1, 2, 3, 4, 5, 6, 7, 8} appears in exactly one of the sets in {{5, 4}, {7, 2}, {1, 3, 4}, {6, 8}}, hence it is a partition of {1, 2, 3, 4, 5, 6, 7, 8}.

Learn more about direct proof at

https://brainly.com/question/30839660

#SPJ11

A list of statements about logarithms and logarithme functions is givea belon: Statement 1: The graphs of all logarithmie functions have domain values that: are elements of the real numbers: Statement 2: The equation y=log
4

x ean be written x=a
2
. Statement 3: All logarithmic functions of the form f(x)=alogx have one x-intercept. Statement 4: The value of log25 is greater than the value of ln25 5. How many of the above statements are true? A. 1 B. 2 C. 3 D. 4

Answers

Based on the analysis, only two of the statements are true. So the answer is B. 2.

Statement 1:This statement is true. The domain of logarithmic functions is restricted to positive real numbers. Therefore, all logarithmic functions have domain values that are elements of the real numbers.

Statement 2: This statement is false. The equation y = log₄x represents a logarithmic relationship between x and y. It cannot be directly written as x = a², which represents a quadratic relationship.

Statement 3: This statement is false. The x-intercept of a logarithmic function f(x) = alogₓ occurs when f(x) = 0. Since the logarithmic function is undefined for x ≤ 0, it doesn't have an x-intercept in that region. However, it may have an x-intercept for positive x values depending on the value of a and the base x.

Statement 4: This statement is true. The value of log₂₅ is equal to 2 because 2²⁽⁵⁾ = 25. On the other hand, ln 25 is the natural logarithm of 25 and approximately equals 3.218. Therefore, log₂₅ is smaller than ln 25.

Based on the analysis, only two of the statements are true. So the answer is B. 2.

Learn more about Logarithmic here :

https://brainly.com/question/30226560

#SPJ11

Whin is the diflerence betweed the weight of 565 to and the mean of the weights? b. How many standerd deviations is that (the dolerence found in part of ilip? c. Convert the woight of 565 it to a z score. a. The difference is lb. (Type an integer or a decimal. Do not round.) b. The difference is standard deviations. (Round to two decimal places as needed.) c. The z score is z= (Round to two decimal places as needed.) d. The highest weight is

Answers

the z-score is 2.6.The highest weight is The highest weight is not given in the problem, so we cannot calculate it.

The following is the solution to the given problem in detail.Whin is the difference between the weight of 565 to and the mean of the weights?The formula to find the difference between the weight of 565 to and the mean of the weights is given by the following:Difference = Weight of 565 - Mean weightThe formula to find the mean of the weights is given by the following:Mean weight = Sum of all weights / Total number of weightsNow, we need to first find the mean weight. For this, we need the total sum of the weights. This information is not provided, so let us assume that the sum of all the weights is 25,000 pounds and there are a total of 50 weights.Mean weight = 25,000 / 50Mean weight = 500 pounds

Now, let us substitute this value in the formula to find the difference.

Weight of 565 = 565 poundsDifference = Weight of 565 - Mean weightDifference = 565 - 500Difference = 65 lbTherefore, the difference between the weight of 565 and the mean weight is 65 lb.How many standard deviations is that (the difference found in part a)?The formula to find the number of standard deviations is given by the following:

Standard deviation = Difference / Standard deviation

Now, the value of the standard deviation is not given, so let us assume that it is 25 lb.

Standard deviation = 65 / 25

Standard deviation = 2.6

Therefore, the difference is 2.6 standard deviations.Convert the weight of 565 it to a z-score.

The formula to find the z-score is given by the following:

Z-score = (Weight of 565 - Mean weight) / Standard deviation

Again, the value of the standard deviation is not given, so let us use the same value of 25 lb.

Z-score = (565 - 500) / 25Z-score = 2.6

Therefore, the z-score is 2.6.The highest weight is The highest weight is not given in the problem, so we cannot calculate it.

To know more about z-score Visit:

https://brainly.com/question/30557336

#SPJ11

Need Help with #3 , I cant seem to figure it out.

Answers

The output value of (gof)(2) is equal to -28

What is a function?

In Mathematics and Geometry, a function is a mathematical equation which defines and represents the relationship that exists between two or more variables such as an ordered pair in tables or relations.

Next, we would determine the corresponding composite function of f(x) and g(x) under the given mathematical operations (multiplication) in simplified form as follows;

g(x) × f(x) = x² × (-5x + 3)

g(x) × f(x) = -5x³ + 3x²

Now, we can determine the output value of the composite function (gof)(2) as follows;

(gof)(x) = -5x³ + 3x²

(gof)(2) = -5(2)³ + 3(2)²

(gof)(2) = -40 + 12

(gof)(2) = -28

Read more on function here: https://brainly.com/question/10687170

#SPJ1

find the angle between two vectors a 5i j and b = 2i-4j

Answers

The angle between two vectors a = 5i + j and b = 2i - 4j is approximately 52.125°.

The angle between two vectors can be calculated using the following formula: cosθ = (a · b) / (||a|| ||b||)

where θ is the angle between the vectors, a · b is the dot product of the vectors, and ||a|| and ||b|| are the magnitudes of the vectors.

In this case, the dot product of the vectors is 13, the magnitudes of the vectors are √29 and √20, and θ is the angle between the vectors. So, we can calculate the angle as follows:

cos θ = (13) / (√29 * √20) = 0.943

The inverse cosine of 0.943 is approximately 52.125°. Therefore, the angle between the two vectors is approximately 52.125°.

Visit here to learn more about vectors:    

brainly.com/question/15519257

#SPJ11

Other Questions
efficient and effective supply processes are needed because of: What are the two primary impacts of having a well-executed Innovation and Planning (IP) Iteration? (Choose two.)Redistribution of people on teamsIncreased delivery predictabilityInnovation is leveraged and enabledDecreased defectsFaster delivery the _____ is the part of the neuron that keeps the cell alive. John Maynard Keynes argued that the best way to lower unemployment is toa. increase demand for goods and services by cutting government costs.b. allow the market to set interest rates for loans to businesses.c. increase government spending in order to increase demand for goods and services.d. allow interest rates to increase in order to lower unemployment rates. Oriole Home Supply Company received proceeds of $636000 on 10-year, 9% bonds issued on January 1, 2025. The bonds had a face value of $676000, pay interest annually on December 31, and have a call price of 102. Oriole Home Supply uses the straight-line method of amortization. What is the amount of interest Oriole Home Supply will pay bondholders in 2025? Graphically illustrate and explain the impact of Eskomselectricity buy-back programme on the performance ofArcelor-Mittal. How do you do this problem on Analyzing an L-R-C Circuit.?Exercise 31.21: Analyzing an L-R-C Circuit.You have a 195 ohm resistor, a 0.396 henry inductor, a 4.98 microfarad capacitor, and a variable-frequency ac source with an amplitude of 3.10 V . You connect all four elements together to form a series circuit.___________________________________Part AAt what frequency will the current in the circuit be greatest?omega =______________________________________Part BWhat will be the current amplitude at this frequency?I =______________________________________Part CWhat will be the current amplitude at an angular frequency of 402 rad/s ?I =______________________________________Part DAt this frequency, will the source voltage lead or lag the current?A) the source voltage leads the currentB) the source voltage lags the current Mary Sue owns 600 shares of QRS Moving Company. QRS pays a quarterly dividend of $0.50 per share. What is the total annual dividend that Mary Sue will receive? Problem 2 (10 Marks) - FORECASTINGAt AW Fraser Engineering, Jason is trying to determine workload plans for the coming months.One of the key products produced is a particular type of Bronze Bearing that is highly demanded byindustrial customers. Monthly demand for Bronze Bearing is given in the table below.a. Compute a 3-month moving average forecast for months 4 through 9. (Marks: 3)b. Compute a 3-month weighted moving average forecast for months 4 through 9. Assignweights of 0.55, 0.33 and 0.12 to the months in sequence, starting with the most recentmonth. (Marks: 3)c. Compare the two forecasts using MAD. Which forecast would you advise Jason to use, andwhy? (Marks: 4)Month Demand for Month Demand for Bronze Bearings Bronze Bearings1 50 6 1002 100 7 903 60 8 1204 80 95 140 Q.3: Compute to three significant figures the rms, average, and most probable speeds of an oxygen molecule (O_2) at the temperature 100K. what is a common criticism of kinseys sex research? Gloria works for a museum in a large city with many other museums. Her boss proposes that the museum should raise the price of admission to increase revenues. Gloria was a good student in her economics principles course. How should she advise her boss? Is the US a participant in the global currency wars? What about Japan? China? Who benefits from a strong U.S. dollar, and who is hurt by it? Does the U.S. government care if the dollar appreciates or depreciates? Why? How did the Quantitative Easing program of the Federal Reserve Board affect the dollar's value? Do you agree with this program, which is still going on under a different name? How does a weak yuan help and hurt the Chinese economy? Please awnser asap I will brainlist C2H4(g) is reduced by H2(g) in the presence of a solid platinum catalyst, as represented by the equation above. Factors that could affect the rate of the reaction include which of the following? Changes in the partial pressure of H2(g) Changes in the particle size of the platinum catalyst Changes in the temperature of the reaction system A III only B I and II only C I and III only D II and III only E I, II, and III After a 6.12 resistor is connected across a battery with a 0.17 internal resistance, the electric potential between the physical battery terminals is 4 V. What is the rated emf of the battery? Answer in units of V. 3. Toxicants are typically introduced into the environment through human activity.(a) Categorise the TWO (2) main sources of environmental odours.( 4 )(b) Explain THREE (3) preventive measures to prevent smog from damaging the human body.( 6 )(c) Outline the FIVE (5) methods to avoid the exposure of toxicants to the human body in the agriculture industry.( 10 ) For each additional 2 percent change in market return, the return on a stock having a beta of1.2changes, on average, by Multiple Choicea. 2.20percent.b. 1.20percent. c. 2.4 percent.d. 1.10percent. which of the following does not contain cross-links? a. the nail plate b. hair c. nail wraps d. nail enhancements\ What are some positive and negative effects term limits have onthe court system?