Revenue for a new item (in thousands of dollars) is modeled by R= √ (144t 2 +400) ​ where t is time in years. Estimate the average revenue per year for the first five years the item is in production. Use technology to evaluate the integral and give your answer rounded to the nearest dollar. 4. Find the present and future values of a contimuous income stream of $5000 per year for 12 years if money can earn 1.3% annual interest compounded continuously.

Answers

Answer 1

1. The average revenue per year for the first five years of production of the new item is $1,835. 2. The present value of a continuous income stream of $5,000 per year for 12 years is $51,116.62 and the future value is $56,273.82.

1. To calculate the average revenue per year, we need to find the integral of the revenue function R = √(144t^2 + 400) over the interval [0, 5]. Using technology to evaluate the integral, we find the result to be approximately $9,174.48. Dividing this by 5 years gives an average revenue per year of approximately $1,835.

2. To find the present and future values of a continuous income stream, we can use the formulas: Present Value (PV) = A / e^(rt) and Future Value (FV) = A * e^(rt), where A is the annual income, r is the interest rate, and t is the time in years. Plugging in the values, we find PV ≈ $51,116.62 and FV ≈ $56,273.82.

To know more about future values here: brainly.com/question/30787954

#SPJ11


Related Questions

A boy buys 9 apples for Rs.9.60 and sells them at 11 for Rs.12.Find his gain or loss percentage

Answers

The gain or loss percentage in this case is approximately 2.19%.As the gain percentage is positive, the boy made a profit.

Let the cost price of one apple be Rs. x. Then, according to the question, the cost price of 9 apples will be 9x. As the boy buys these 9 apples for Rs. 9.60, we have the equation:9x = 9.60⇒ x = 1.06The cost price of one apple is Rs. 1.06.Now, according to the question, the boy sells 11 apples for Rs. 12.

So, the selling price of one apple is 12/11.Let’s find out the selling price of 9 apples:SP of 9 apples = 9 × (12/11)= Rs. 9.81The selling price of 9 apples is Rs. 9.81.We know that Gain or Loss is calculated by the formula: Gain or Loss % = [(SP - CP) / CP] × 100To calculate the gain or loss percentage.

In this case, we need to compare the cost price of 9 apples with their selling price. The cost price of 9 apples is Rs. 9.60 and the selling price of 9 apples is Rs. 9.81.Gain or Loss % = [(SP - CP) / CP] × 100= [(9.81 - 9.60) / 9.60] × 100= (0.21 / 9.60) × 100= 2.19% (approx.)

for more question on percentage

https://brainly.com/question/843074

#SPJ8

Find the critical value(s) and rejection region(s) for the indicated t-test, level of significance α, and sample size n. Left-tailed test, α=0.10,n=10 Click the icon to view the t-distribution table. The critical value(s) is/are (Round to the nearest thousandth as needed. Use a comma to separate answers as needed.)

Answers

Therefore, the critical value is -1.383 and the rejection region is t < -1.383.

The given data is a left-tailed test with a significance level of 0.10 and a sample size of 10.

We can find the critical value by using the t-distribution table. The degrees of freedom for the given sample size are 10-1=9.

Using the t-distribution table, we can find the critical value for a left-tailed test, which is -1.383.

Hence, the critical value for the given data is -1.383.

The rejection region for a left-tailed test with a significance level of 0.10 is any t-value less than -1.383.

The rejection region for the given data is, t < -1.383.

To know more about t-distribution table visit:

https://brainly.com/question/30401218

#SPJ11

Write the standard form of an equation of an ellipse subject to the given conditions. Foci: (0,1) and (8,1); length of minor axis: 6 units The equation of the ellipse in standard form is ___

Answers

The standard form of the equation for the ellipse subject to the given conditions is: [(x - 4)^2 / 25] + [(y - 1)^2 / 9] = 1.

The standard form of an equation for an ellipse is given by: [(x - h)^2 / a^2] + [(y - k)^2 / b^2] = 1, where (h, k) represents the center of the ellipse, a represents the semi-major axis, and b represents the semi-minor axis. Given the foci (0,1) and (8,1) and the length of the minor axis (6 units), we can determine the center and the lengths of the major and minor axes. Since the foci lie on the same horizontal line (y = 1), the center of the ellipse will also lie on this line. Therefore, the center is (h, k) = (4, 1). The distance between the foci is 8 units, and the length of the minor axis is 6 units.

This means that 2ae = 8, where e is the eccentricity, and 2b = 6. Using the relationship between the semi-major axis, the semi-minor axis, and the eccentricity (c^2 = a^2 - b^2), we can solve for a: a = sqrt(b^2 + c^2) = sqrt(3^2 + 4^2) = 5. Now we have all the necessary information to write the equation in standard form: [(x - 4)^2 / 5^2] + [(y - 1)^2 / 3^2] = 1. Therefore, the standard form of the equation for the ellipse subject to the given conditions is: [(x - 4)^2 / 25] + [(y - 1)^2 / 9] = 1.

To learn more about ellipse click here: brainly.com/question/9448628

#SPJ11

I purchase a new die, and I suspect that the die is not weighted correctly. I suspect that it is rolling "fives" more often than 1/6 of the time in the long run. I decide to test the die. I roll the die 60 times, and it rolls a "five" a total of 16 times (16/60=0.267=26.7%). If the die is actually weighted correctly, so that it is a fair die, then what would be the long run proportion of times that it would roll a five?
a) 1/6=0.167=16.7%
b) 1/5=0.20=20%
c) 5/60=0.083=8.3%
d) 16/60=0.267=26.7%

Answers

If the die is actually weighted correctly, so that it is a fair die, then the long-run proportion of times that it would roll a “five” is 1/6=0.167=16.7%.Therefore, option A is the correct answer.

The concept of probability is used in calculating the likelihood of an event to occur. The concept of probability is very important for researchers, business executives, and statisticians. Probability is expressed in the form of a fraction or a decimal number between 0 and 1 inclusive.

The probability of an event can be calculated by using the following formula:Probability = (Number of favorable outcomes) / (Total number of possible outcomes)

When a die is rolled, there are six possible outcomes, each with a probability of 1/6. So, if the die is fair, each number should come up one-sixth of the time in the long run.

Given, the die is rolled 60 times and it rolls a “five” 16 times (16/60=0.267=26.7%).

If the die is actually weighted correctly, so that it is a fair die, then the long-run proportion of times that it would roll a “five” is 1/6=0.167=16.7%.

Therefore, option A is the correct answer.

Know more about probability here,

https://brainly.com/question/31828911

#SPJ11

In a certain population, 55% eat ice cream and 65% follow
soccer World Championship. The percentage who both follow the football World Cup and eat ice cream is 30%.

a) Determine the conditional probability that a person eating ice cream complies
European Championship in soccer.

b) Determine the conditional probability that a person watching the European Football Championship eats
ice cream.

c) Are the events independent?

Answers

A) The probability that a person eating ice cream complies European Championship in soccer is 6/13.B) The probability that a person who is watching the European Football Championship eats ice cream is 6/11.C) The two events are not independent.

a) The probability of a person eating ice cream follows European Championship in soccer is to be determined. Given that 30% of the people follow soccer World Cup and eat ice cream. Then, using the formula of conditional probability, we get P(A|B) = P(A and B) / P(B).

Here, A: Eating ice cream follows European Championship B: Follow soccer World Cup

P(A and B) = 30%

P(B) = 65%

P(A|B) = P(A and B) / P(B) = 30/65 = 6/13

So, the probability that a person eating ice cream complies European Championship in soccer is 6/13.

b) The probability of a person who is watching the European Football Championship eating ice cream is to be determined. Again, using the formula of conditional probability, we get P(A|B) = P(A and B) / P(B).

Here, A: Eating ice creamB: Watching European Football Championship

P(A and B) = 30%

P(B) = 55% (As 55% eat ice cream)

P(A|B) = P(A and B) / P(B) = 30/55 = 6/11.

So, the probability that a person who is watching the European Football Championship eats ice cream is 6/11.

c) To check whether two events are independent or not, we need to see if the occurrence of one event affects the occurrence of another. So, we need to check whether the occurrence of eating ice cream affects the occurrence of following soccer World Cup.

Using the formula for the probability of independent events, we get

P(A and B) = P(A) x P(B) = 55/100 x 65/100 = 3575/10000 = 0.3575

But P(A and B) = 30/100 ≠ 0.3575

Hence, the two events are not independent.

Know more about probability here,

https://brainly.com/question/31828911

#SPJ11

The ages (in years) of the 6 employees at a particular computer store are the following. 46,30,27,25,31,33 Assuming that these ages constitute an entire population, find the standard deviation of (If necessary, consult a list of formulas.)

Answers

The standard deviation of the population is approximately 6.78 years.

We can use the formula below to determine a population's standard deviation:

The Standard Deviation () is equal to (x-2)2 / N, where:

The sum of, x, each individual value in the population, the mean (average) of the population, and the total number of values in the population are all represented by

The six employees' ages are as follows: 46, 30, 27, 25, 31, 33

To start with, we compute the mean (μ) of the populace:

= (46 + 30 + 27 + 25 + 31 + 33) / 6 = 192 / 6 = 32 The values are then entered into the standard deviation formula as follows:

= (46 - 32)2 + (30 - 32)2 + (27 - 32)2 + (25 - 32)2 + (31 - 32)2 + (33 - 32)2) / 6 = (142 + (-2)2 + (-5)2 + (-1)2 + 12) / 6 = (196 + 4 + 25 + 49 + 1 + 1) / 6 = (46)  6.78, which indicates that the population's standard deviation is approximately 6.78

To know more about  Standard deviation, visit

brainly.com/question/475676

#SPJ11

Consider the standard wage equation
log( wage )=β0+β1 educ +β2 tenure +β3 exper +β4 female +β5 married +β5 nonwhite +u
1) Run the regression, report the output in equation form (including sample size, R-squared and standard errors of coefficients)
2) Interpret the coefficient in front of "female".
3) Interpret the coefficient in front of "married".
4) Interpret the coefficient in front of "nonwhite".
5) Manually test the null hypothesis that one more year education leads to 7% increase in wage at 5% level.
6) With proper Stata commands, test the null hypothesis that one more year education leads to 7% increase in wage at 5% level.
7) Manually test the null hypothesis that gender does not matter against the alternative that women are paid lower ceteris paribus at 5% level.
8) What's the estimated wage difference between female nonwhite and male white according to the regression results? Who earns more?
9) Test the hypothesis that the difference mentioned above in question 8 is zero (e.g. no wage difference between the two groups in question 8 ). State the null hypothesis and the alternative hypothesis first. Use STATA to get the p-value and state whether you reject H0 at 5% significance level

Answers

1) The regression output in equation form for the standard wage equation is:

log(wage) = β0 + β1educ + β2tenure + β3exper + β4female + β5married + β6nonwhite + u

Sample size: N

R-squared: R^2

Standard errors of coefficients: SE(β0), SE(β1), SE(β2), SE(β3), SE(β4), SE(β5), SE(β6)

2) The coefficient in front of "female" represents the average difference in log(wage) between females and males, holding other variables constant.

3) The coefficient in front of "married" represents the average difference in log(wage) between married and unmarried individuals, holding other variables constant.

4) The coefficient in front of "nonwhite" represents the average difference in log(wage) between nonwhite and white individuals, holding other variables constant.

5) To manually test the null hypothesis that one more year of education leads to a 7% increase in wage, we need to calculate the estimated coefficient for "educ" and compare it to 0.07.

6) To test the null hypothesis using Stata, the command would be:

```stata

test educ = 0.07

```

7) To manually test the null hypothesis that gender does not matter against the alternative that women are paid lower ceteris paribus, we need to examine the coefficient for "female" and its statistical significance.

8) To find the estimated wage difference between female nonwhite and male white, we need to look at the coefficients for "female" and "nonwhite" and their respective values.

9) The null hypothesis for testing the difference in wages between female nonwhite and male white is that the difference is zero (no wage difference). The alternative hypothesis is that there is a wage difference. Use the appropriate Stata command to obtain the p-value and compare it to the significance level of 0.05 to determine if the null hypothesis is rejected.

To learn more about null, click here:

brainly.com/question/32575796

#SPJ1

A book has n typographical errors. Two proofreaders, A and B independently read the book and check for errors. A catches each error with probability p1​ independently. Likewise for B, who has probability p2​ of catching any given error. Let X1​ be the number of typos caught by A,X2​ be the number caught by B, and X be the number caught by at least one of the two proofreaders. (a) Find the distribution of X. (b) Find E(X). (c) Assuming that p1​=p2​=p, find the conditional distribution of X1​ given that X1​+X2​=m.

Answers

The denominator can be calculated as the sum of the probabilities of all possible cases where X1 + X2 = m:

P(X1 + X2 = m) = Σ(P(X1 = k, X2 = m - k)), for k = 0 to m

We obtain the conditional distribution P(X1 = k | X1 + X2 = m) for k = 0 to m.

(a) To find the distribution of X, we can consider the cases where A catches k errors and B catches (X - k) errors, for k = 0 to X. The probability of A catching k errors is given by the binomial distribution:

P(X1 = k) = C(X, k) * p1^k * (1 - p1)^(X - k)

Similarly, the probability of B catching (X - k) errors is:

P(X2 = X - k) = C(X, X - k) * p2^(X - k) * (1 - p2)^(X - (X - k))

Since X is the number caught by at least one of the two proofreaders, the distribution of X is given by the sum of the

probabilities for each k:

P(X = x) = P(X1 = x) + P(X2 = x), for x = 0 to X

(b) To find E(X), we can sum the product of each possible value of X and its corresponding probability:

E(X) = Σ(x * P(X = x)), for x = 0 to X

(c) Assuming p1 = p2 = p, we can find the conditional distribution of X1 given that X1 + X2 = m using the concept of conditional probability. Let's denote X1 + X2 = m as event M.

P(X1 = k | M) = P(X1 = k and X1 + X2 = m) / P(X1 + X2 = m)

To find the numerator, we need to consider the cases where X1 = k and X1 + X2 = m:

P(X1 = k and X1 + X2 = m) = P(X1 = k, X2 = m - k)

Using the same logic as in part (a), we can calculate the probabilities P(X1 = k) and P(X2 = m - k) with p1 = p2 = p.

Finally, the denominator can be calculated as the sum of the probabilities of all possible cases where X1 + X2 = m:

P(X1 + X2 = m) = Σ(P(X1 = k, X2 = m - k)), for k = 0 to m

Thus, we obtain the conditional distribution P(X1 = k | X1 + X2 = m) for k = 0 to m.

To know more about conditional distribution, visit:

https://brainly.com/question/14310262

#SPJ11

If a rectangle has a length of x and a width that is two more then the length. What is the length of the diagonal of the rectangle if the perimeter is 20 inches?

Answers

Let's assume that the length of the rectangle is x inches. The width of the rectangle is 2 inches more than its length. Therefore, the width of the rectangle is (x + 2) inches. We are also given that the perimeter of the rectangle is 20 inches.

The length of the diagonal of the rectangle is: √(1.5² + (1.5+2)²)≈ 3.31 inches.

We know that the perimeter of the rectangle is the sum of the length of all sides of the rectangle. Perimeter of the rectangle = 2(length + width)

So, 20 = 2(x + (x + 2))

⇒ 10 = 2x + 2x + 4

⇒ 10 = 4x + 4

⇒ 4x = 10 - 4

⇒ 4x = 6

⇒ x = 6/4

⇒ x = 1.5

We can find the length of the diagonal using the length and the width of the rectangle. We can use the Pythagorean Theorem which states that the sum of the squares of the legs of a right-angled triangle is equal to the square of the hypotenuse (the longest side).Therefore, the length of the diagonal of the rectangle is the square root of the sum of the squares of its length and width.

To know more about rectangle visit:

https://brainly.com/question/15019502

#SPJ11

Compute the gradient of the following function and evaluate it at the given point P. g(x,y)=x2−4x2y−9xy2;P(−2,3) The gradient is ∇f(x,y)= The gradient at (−2,3) is

Answers

The gradient of the function g(x,y) is ∇g(x,y) = (2x - 8xy - 9y², -4x²- 18xy + 2y).

The gradient at the point P(-2,3) is ∇g(-2,3) = (-8 - 48 - 27, -16 + 108 + 6) = (-83, 98).

To compute the gradient of the function g(x,y) = x² - [tex]4x^2^y[/tex] - 9xy², we need to find the partial derivatives with respect to x and y. Taking the partial derivative of g with respect to x gives us ∂g/∂x = 2x - 8xy - 9y². Similarly, the partial derivative with respect to y is ∂g/∂y = -4x² - 18xy + 2y.

The gradient of g, denoted as ∇g, is a vector that consists of the partial derivatives of g with respect to each variable. Therefore, ∇g(x,y) = (2x - 8xy - 9y², -4x² - 18xy + 2y).

To evaluate the gradient at the given point P(-2,3), we substitute the x and y coordinates into the partial derivatives. Thus, ∇g(-2,3) = (-8 - 48 - 27, -16 + 108 + 6) = (-83, 98).

Therefore, the gradient of the function g(x,y) is ∇g(x,y) = (2x - 8xy - 9y², -4x² - 18xy + 2y), and the gradient at the point P(-2,3) is ∇g(-2,3) = (-83, 98).

Learn more about Function

brainly.com/question/31062578

#SPJ11

6) (10 points) Solve the initial walue prohlem \( y^{\prime}=2 x y^{2}, y(1)=1 / 2 \)

Answers

The solution to the initial value problem ( y^{prime}=2 x y^{2}, y(1)=1 / 2 ) is ( y=frac{1}{x} ).

The first step to solving an initial value problem is to separate the variables. In this case, we can write the differential equation as ( \frac{dy}{dx}=2 x y^{2} ). Dividing both sides of the equation by y^2, we get ( \frac{1}{y^2} , dy=2 x , dx ).

The next step is to integrate both sides of the equation. On the left-hand side, we get the natural logarithm of y. On the right-hand side, we get x^2. We can write the integral of 2x as x^2 + C, where C is an arbitrary constant.

Now we can use the initial condition y(1)=1/2 to solve for C. If we substitute x=1 and y=1/2 into the equation, we get ( In \left( \rac{1}{2} \right) = 1 + C ). Solving for C, we get C=-1.

Finally, we can write the solution to the differential equation as ( \ln y = x^2 - 1 ). Taking the exponential of both sides, we get ( y = e^{x^2-1} = \frac{1}{x} ).

Therefore, the solution to the initial value problem is ( y=\frac{1}{x} ).

Visit here to learn more about differential equation:

brainly.com/question/28099315

#SPJ11

. under the normal operating conditions, a machine produces microchips, percent of defective items equals to 8. If 100 microchips are randomly sampled
from the output, what is the probability that there are more than 10 defective chips in the sample? What is the probability that there are more than 50 defective chips in the
sample when percent of defective items equals to 982?

Answers

P(X > 50) = 1 - P(X ≤ 50) ≈ 1The probability that there are more than 50 defective chips in the sample is approximately 1 or 100%.

Under the normal operating conditions, a machine produces microchips, the percentage of defective items equal to 8. If 100 microchips are randomly sampled from the output, the probability that there are more than 10 defective chips in the sample can be calculated as follows;The number of defective chips (X) has a binomial distribution with n = 100 and p = 0.08. The probability of getting more than 10 defective chips is given by;P(X > 10) = 1 - P(X ≤ 10)We will use the binomial probability formula to calculate the probability of X ≤ 10;P(X ≤ 10) = (100 choose 0) (0.08)^0 (0.92)^100 + (100 choose 1) (0.08)^1 (0.92)^99 + (100 choose 2) (0.08)^2 (0.92)^98 + ... + (100 choose 10) (0.08)^10 (0.92)^90P(X ≤ 10) ≈ 0.4607Therefore,P(X > 10) = 1 - P(X ≤ 10) ≈ 0.5393

The probability that there are more than 10 defective chips in the sample is approximately 0.5393. On the other hand, when the percentage of defective items equals 98.2%, then the probability of getting more than 50 defective chips in the sample is;The number of defective chips (X) has a binomial distribution with n = 100 and p = 0.982. The probability of getting more than 50 defective chips is given by;P(X > 50) = 1 - P(X ≤ 50)We will use the binomial probability formula to calculate the probability of X ≤ 50;P(X ≤ 50) = (100 choose 0) (0.982)^0 (0.018)^100 + (100 choose 1) (0.982)^1 (0.018)^99 + (100 choose 2) (0.982)^2 (0.018)^98 + ... + (100 choose 50) (0.982)^50 (0.018)^50P(X ≤ 50) ≈ 1.1055 × 10^-10Therefore,P(X > 50) = 1 - P(X ≤ 50) ≈ 1The probability that there are more than 50 defective chips in the sample is approximately 1 or 100%.

Learn more about Probability here,https://brainly.com/question/13604758

#SPJ11

If A1="C", what will the formula =IF(A1="A",1,IF(A1="B",2,IF(A1= " D=,4,5))) return?
5
3
4
2

Answers

The formula will return 5, because none of the conditions in the nested IF statement are true for the value of A1 being "C".

The formula =IF(A1="A",1,IF(A1="B",2,IF(A1="D",4,5))) is a nested IF statement that checks the value of cell A1 and returns a corresponding value based on the conditions.

In this case, the value of A1 is "C". Therefore, the first condition, A1="A", is not true, so the formula moves on to the second condition, A1="B". This condition is also not true, so the formula moves on to the third condition, A1="D". However, this condition is also not true, because the third condition has a typo, where there is an extra space before the "D". Therefore, the formula evaluates the final "else" option, which is 5.

Thus, the formula will return 5, because none of the conditions in the nested IF statement are true for the value of A1 being "C".

Learn more about "Nested IF " : https://brainly.com/question/14915121

#SPJ11

Solve for the remaining sides and angles if possible (if not, answer "DNE" in all answer boxes). As in the text,
(A, a), (B, b), and (C, c) are angle-side opposite pairs. Round to two decimal places, if necessary.
A 25°, B = 41°, a = 9
A = °
B = °
C = °
a =
b =
C=

Answers

The triangle ABC has three opposite pairs, A, B, and C. The sum of angles is 180°, and the value of angle C is 114°. The law of sines states that the ratio of a side's length to the sine of the opposite angle is equal for all three sides. Substituting these values, we get b = 9/sin 25°, b = b/sin 41°, and c = c/sin 114°. Thus, the values of A, B, C, a, 9, b, and c are 25°, 41°, 114°, a, 9, b, and c.

Given that (A, a), (B, b), and (C, c) are angle-side opposite pairs, and A= 25°, B = 41°, a = 9.The sum of angles in a triangle is 180°. Using this, we can find the value of angle C as follows;

C = 180° - (A + B)C

= 180° - (25° + 41°)C

= 180° - 66°C

= 114°

Now that we have found the value of angle C, we can proceed to find the remaining sides of the triangle using the law of sines.

The Law of Sines states that in any given triangle ABC, the ratio of the length of a side to the sine of the opposite angle is equal for all three sides i.e.,

a/sinA = b/sinB = c/sinC.

Substituting the given values, we have;9/sin 25° = b/sin 41° = c/sin 114°Let us find the value of b9/sin 25° = b/sin 41°b = 9 × sin 41°/sin 25°b ≈ 11.35We can find the value of c using the value of b obtained earlier and the value of sin 114° as follows;

c/sin 114°

= 9/sin 25°c

= 9 × sin 114°/sin 25°

c ≈ 19.56

Therefore, A = 25°, B = 41°, C = 114°, a = 9, b ≈ 11.35, c ≈ 19.56Hence, the value of A is 25°, B is 41°, C is 114°, a is 9, b is ≈ 11.35, c is ≈ 19.56.

To know more about Law of Sines Visit:

https://brainly.com/question/13098194

#SPJ11

In a 9-game chess tournament, Adam won 6 games, lost 2 games and drew 1 game.

a. Based on this information, if Adam is to play 108 games next year, how many games should he expect to:
i. win?

ii. lose?

iii. draw?
b. Based on the fact that Adam won 81 of the 108 games, how many games does he expect to lose or to draw in a tournament comprising 16 games?

Answers

Adam can expect to win 72 games in the next year. He expects to lose or draw 4 games in a tournament comprising 16 games.

a. i. The percentage of wins is obtained by dividing the number of wins by the total number of games that Adam played in the 9-game chess tournament. So, percentage of wins = (6/9) x 100% = 66.67%. Number of games expected to win = Percentage of wins x Total number of games. Adam can expect to win 66.67/100 x 108 = 72 games in the next year.

b. The number of wins is 81, so the percentage of wins is: Percentage of wins = (81/108) x 100% = 75%. Next, we need to find out the number of games Adam expects to lose or draw in a tournament comprising 16 games. Number of games expected to lose or draw = Percentage of losses or draws x Total number of games. The percentage of losses or draws is 100% - the percentage of wins. Therefore, Percentage of losses or draws = 100% - 75% = 25%. Adam expects to lose or draw 25% of the 16 games, so: Number of games expected to lose or draw = 25/100 x 16 = 4.

Let's learn more about percentage:

https://brainly.com/question/24877689

#SPJ11

Consider the following: g(t)=t^5−14t^3+49t (a) Find all real zeros of the polynomial function. (Enter your answers as a comma-separated list, If there is no solution, enter NO SOLUTION.) t=
(b) Determine whether the multiolicitv of each zero is even or odd.
smaliest t-value
largest t-value
(c) Determine the maximum possible number of tuming points of the graph of the function.
turning point(s)

Answers

a. All real zeros of the polynomial function is t = 0, ±[tex]\sqrt{7}[/tex]

b. Smallest t value is -[tex]\sqrt{7}[/tex], t is 0 and Largest t value is [tex]\sqrt{7}[/tex].

c. The maximum possible number of tuning points of the graph of the function is 4.

Given that,

The function is g(t) = t⁵ − 14t³ + 49t

a. We have to find all real zeros of the polynomial function.

t(t⁴ - 14t² + 49) = 0

t(t⁴ - 2×7×t² + 7²) = 0

t(t² - 7)² = 0

t = 0, and

t² - 7 = 0

t = ±[tex]\sqrt{7}[/tex]

Therefore, All real zeros of the polynomial function is t = 0, ±[tex]\sqrt{7}[/tex]

b. We have to determine whether the multiplicity of each zero is even or odd.

Smallest t value : -[tex]\sqrt{7}[/tex](multiplicity = 2)

                       t  : 0 (multiplicity = 1)

Largest t value : [tex]\sqrt{7}[/tex](multiplicity = 2)

Therefore, Smallest t value is -[tex]\sqrt{7}[/tex], t is 0 and Largest t value is [tex]\sqrt{7}[/tex].

c. We have to determine the maximum possible number of tuning points of the graph of the function.

Number of turning points = degree of polynomial - 1

= 5 - 1

= 4

Therefore, The maximum possible number of tuning points of the graph of the function is 4.

To know more about function visit:

https://brainly.com/question/29293361

#SPJ4

You inherit RM300,000 from your parents and want to use the money to supplement your retirement. You receive the money on your 65 th birthday, the day you retire. You want to withdraw equal amounts at the end of each of the next 20 years. What constant amount can you withdraw each year and have nothing remaining at the end of 20 years if you are earning 7% interest per year?
A. RM15,000
B. RM28,318
C. RM33,574
D. RM39,113

Answers

To determine the constant amount that can be withdrawn each year for 20 years, we need to calculate the annuity payment using the present value of an annuity formula.

Inherited amount: RM300,000

Interest rate: 7% per year

Number of years: 20

Using the present value of an annuity formula:

PV = P * [(1 - (1 + r)^(-n)) / r]

Where:

PV = Present value (inherited amount)

P = Annuity payment (constant amount to be withdrawn each year)

r = Interest rate per period (7% or 0.07)

n = Number of periods (20 years)

Plugging in the values:

300,000 = P * [(1 - (1 + 0.07)^(-20)) / 0.07]

Solving this equation, we find that the constant amount that can be withdrawn each year is approximately RM15,000.

Therefore, the correct answer is A. RM15,000.

To know more about interest click here: brainly.com/question/30393144

#SPJ11

In a bid two companies are quoted the same price. When tested a random samples of 10 of items produced by company A is having mean life of
80 hours with a standard deviation of 6 hours and company B is having a mean lifetime of 75 hours with a standard deviation of 5 hours. What is
the conclusion that can be drawn from this data . Consider p - value in the discussion.

Answers

Since the calculated t-value of 2.128 is greater than the critical t-value of ±2.101, we can reject the null hypothesis. This suggests that there is evidence to conclude that the mean lifetimes of the items produced by company A and company B are significantly different.

To draw a conclusion from the given data, we can perform a hypothesis test to compare the mean lifetimes of the items produced by company A and company B.

Let's set up the null and alternative hypotheses:

Null hypothesis (H0): The mean lifetimes of the items produced by company A and company B are equal.

Alternative hypothesis (Ha): The mean lifetimes of the items produced by company A and company B are not equal.

We can perform a two-sample t-test to compare the means of two independent samples. Since the population standard deviations are not known, we will use the t-test instead of the z-test.

Given:

Sample size for both company A and company B (n) = 10

Sample mean for company A (x(bar)A) = 80 hours

Sample standard deviation for company A (sA) = 6 hours

Sample mean for company B (x(bar)B) = 75 hours

Sample standard deviation for company B (sB) = 5 hours

Using the t-test formula:

t = (x(bar)A - x(bar)B) / sqrt(([tex]sA^2 / n) + (sB^2 / n))[/tex]

Substituting the values:

t = (80 - 75) / sqrt([tex](6^2 / 10) + (5^2 / 10))[/tex]

t = 5 / sqrt(3.6 + 2.5)

t = 5 / sqrt(6.1)

t ≈ 2.128

To determine the conclusion, we need to compare the calculated t-value with the critical t-value at a specified significance level (α). The critical t-value will depend on the degrees of freedom, which is calculated as (nA + nB - 2) = (10 + 10 - 2)

= 18.

Using a significance level of α = 0.05 (commonly used), we can look up the critical t-value from a t-distribution table or use statistical software. For a two-tailed test with 18 degrees of freedom and α = 0.05, the critical t-value is approximately ±2.101.

To know more about statistical visit:

brainly.com/question/32237714

#SPJ11

.

Find the value of k if 2x^3-4x^2-3x+k is divisible by 2x-3.

Answers

2x-3 is divisible by 2x^3-4x^2-3x+k, resulting in 4x^2-6x+9-9, 2x-3(2x-3)(2x-3)-9, and -9x. Long division solves for k.

Given,2x^3-4x^2-3x+k is divisible by 2x-3.From the question,

2x-3 | 2x^3-4x^2-3x+k

⇒ 2x-3 | 2x^3-3x-4x^2+k

⇒ 2x-3 | x(2x^2-3) - 4x^2+k

⇒ 2x-3 | 2x^2-3

⇒ 2x-3 | 4x^2-6x

⇒ 2x-3 | 4x^2-6x+9-9

⇒ 2x-3 | (2x-3)(2x-3)-9

⇒ 2x-3 | 4x^2-12x+9 - 9

⇒ 2x-3 | 4x^2-12x

⇒ 2x-3 | 2x(2x-3)-9x

⇒ 2x-3 | -9x

So the value of k is 9. Here, we use long division to arrive at the above solution.

To know more about algebraic division Visit:

https://brainly.com/question/30940706

#SPJ11

Aneesha travels at a rate of 50 miles per hour.Morris is traveling 3 feet per second less than aneesha.Which is more accurate

Answers

Therefore, Morris is traveling at a rate of 70.33 feet per second, which is more accurate than 50 miles per hour.

To determine which measurement is more accurate, we need to convert both rates to the same unit. Since Aneesha's rate is given in miles per hour and Morris's rate is given in feet per second, we need to convert one of them to match the other.

First, let's convert Aneesha's rate to feet per second:

Aneesha's rate = 50 miles per hour

1 mile = 5280 feet

1 hour = 3600 seconds

50 miles per hour = (50 * 5280) feet per (1 * 3600) seconds

= 264,000 feet per 3,600 seconds

= 73.33 feet per second (rounded to two decimal places)

Now let's calculate Morris's rate, which is 3 feet per second less than Aneesha's rate:

Morris's rate = 73.33 feet per second - 3 feet per second

= 70.33 feet per second (rounded to two decimal places)

For such more question on miles

https://brainly.com/question/29806974

#SPJ8

how do historical scientists deal with falsification, and what is the mechanism they use in hopes of falsifying hypotheses?

Answers

Historical scientists deal with falsification by rigorously analyzing evidence, using peer review and scholarly discourse, and revising hypotheses based on new discoveries and interpretations.



Historical scientists deal with falsification by employing rigorous methodologies and critical analysis of evidence. They strive to gather as much relevant data as possible to test hypotheses and theories. This is done through meticulous research, including the examination of primary sources, archaeological artifacts, historical records, and other forms of evidence. Historical scientists also engage in peer review and scholarly discourse to subject their findings to scrutiny and criticism.

The mechanism used by historical scientists to falsify hypotheses involves a combination of evidence-based reasoning and the application of established principles of historical analysis. They aim to construct coherent and logical explanations that are supported by the available evidence. If a hypothesis fails to withstand scrutiny or is contradicted by new evidence, it is considered falsified or in need of revision. Historical scientists constantly reassess and refine their hypotheses based on new discoveries, reinterpretation of existing evidence, and advancements in research techniques. This iterative process helps to refine our understanding of the past and ensures that historical knowledge remains dynamic and subject to revision.

Therefore, Historical scientists deal with falsification by rigorously analyzing evidence, using peer review and scholarly discourse, and revising hypotheses based on new discoveries and interpretations.

To learn more about hypotheses click here brainly.com/question/33444525

#SPJ11

The events "subscribes to Style Bible" and "Subscribes to Runway" are mutually exclusive? Select one: True False 2.A magazine subscription service has surveyed 1462 people who subscribe to its most popular fashion magazines. It has found that the probability that a person subscribes to "Style Bible" is 0.45, the probability a person subscribes to 'Runway' is 0.25 and the probability a person has subscriptions to both magazines is 0.10. Using a contingency table or otherwise, determine the probability that a person has a subscription to "Style Bible" given that they have a subscription to "Runway".Give the answer to two decimal places, in the form

Answers

False.The events "subscribes to Style Bible" and "subscribes to Runway" are not mutually exclusive, as there is a non-zero probability that a person can subscribe to both magazines.

To determine if the events "subscribes to Style Bible" and "subscribes to Runway" are mutually exclusive, we need to check if they can occur together or not. If there is a non-zero probability that a person can subscribe to both magazines, then the events are not mutually exclusive.

Given the information provided, we know that the probability of subscribing to Style Bible is 0.45, the probability of subscribing to Runway is 0.25, and the probability of subscribing to both magazines is 0.10.

To calculate the probability that a person has a subscription to Style Bible given that they have a subscription to Runway, we can use the formula for conditional probability:

P(Style Bible|Runway) = P(Style Bible and Runway) / P(Runway)

P(Style Bible|Runway) = 0.10 / 0.25 = 0.40

Therefore, the probability that a person has a subscription to Style Bible given that they have a subscription to Runway is 0.40.

The events "subscribes to Style Bible" and "subscribes to Runway" are not mutually exclusive, as there is a non-zero probability that a person can subscribe to both magazines. The probability that a person has a subscription to Style Bible given that they have a subscription to Runway is 0.40.

To know more about  probability follow the link:

https://brainly.com/question/23417919

#SPJ11


For the geometric sequence –2, 6 , –18, .., 486 find the
specific formula of the terms then write the sum –2 + 6 –18 + .. +
486 using the summation notation and find the sum.

Answers

The sum of the geometric sequence –2, 6, –18, .., 486 is 796,676.

The specific formula for the terms of the geometric sequence –2, 6, –18, .., 486 can be found by identifying the common ratio, r. We can find r by dividing any term in the sequence by the preceding term. For example:

r = 6 / (-2) = -3

Using this value of r, we can write the general formula for the nth term of the sequence as:

an = (-2) * (-3)^(n-1)

To find the sum of the sequence, we can use the formula for the sum of a finite geometric series:

Sn = a1 * (1 - r^n) / (1 - r)

Substituting the values for a1, r, and n, we get:

S12 = (-2) * (1 - (-3)^12) / (1 - (-3))

S12 = (-2) * (1 - 531441) / 4

S12 = 796,676

Using summation notation, we can write the sum as:

∑(-2 * (-3)^(n-1)) from n = 1 to 12

Finally, we can evaluate this expression to find the sum:

-2 * (-3)^0 + (-2) * (-3)^1 + ... + (-2) * (-3)^11

= -2 * (1 - (-3)^12) / (1 - (-3))

= 796,676

Therefore, the sum of the geometric sequence –2, 6, –18, .., 486 is 796,676.

Know more about geometric sequence here:

https://brainly.com/question/27852674

#SPJ11

The distance around the edge of a circular swimming pool is 36m. Calculate the distance from the edge of the pool to the centre of the pool. Give your answer in meters (m) to 1.dp

Answers

The distance from the edge of the swimming pool to the center ( radius ) is approximately 5.7 meters.

What is the radius of the circular swimming pool?

A circle is simply a closed 2-dimensional curved shape with no corners or edges.

The circumerence or distance around a circle is expressed mathematically as;

C = 2πr

Where r is radius and π is constant pi.

Given that, the circumference of the pool is 36m.

The distance from the edge of the pool to the centre of the pool is the radius.

So we can set up the equation:

C = 2πr

36 = 2πr

Solve for r

r = 36/2π

r = 5.7 m

Therefore, the radius of the circular pool is 5.7 meters.

Learn about circles here: brainly.com/question/11952845

#SPJ1

Find the Jacobian.

∂(x,y,z) / ∂(s,t,u), where x = −(3s +t + u) , y = s − 3t − 4u , z = s − 4t u
∂(x,y,z)/∂(s,t,u) = ____

Answers

The Jacobian ∂(x,y,z) / ∂(s,t,u) for the given transformation is represented by the matrix [-3  -1  -1; 1   -3  -4; 1   -4  0]. We need to compute the partial derivatives of each variable with respect to s, t, and u.

Let's calculate each partial derivative:

∂x/∂s = -3

∂x/∂t = -1

∂x/∂u = -1

∂y/∂s = 1

∂y/∂t = -3

∂y/∂u = -4

∂z/∂s = 1

∂z/∂t = -4

∂z/∂u = 0

Now, we can arrange these partial derivatives into a matrix, which gives us the Jacobian:

J = [∂x/∂s  ∂x/∂t  ∂x/∂u]

     [∂y/∂s  ∂y/∂t  ∂y/∂u]

     [∂z/∂s  ∂z/∂t  ∂z/∂u]

Substituting the values of the partial derivatives, we have:

J = [-3  -1  -1]

     [1   -3  -4]

     [1   -4  0]

Therefore, the Jacobian matrix ∂(x,y,z) / ∂(s,t,u) is:

J = [-3  -1  -1]

     [1   -3  -4]

     [1   -4  0]

Learn more about Jacobian here : brainly.com/question/32065341

#SPJ11

87.20 20] Kelly made two investments totaling $5000. Part of the money was invested at 2% and the rest at 3%. In one year, these investments earned $129 in simple interest. How much was invested at each rate?

Answers

$2100 was invested at 2% and $2900 ($5000 - $2100) was invested at 3%.

Let x be the amount invested at 2% and y be the amount invested at 3%. We know that x + y = $5000 and the interest earned is $129. We can use the formula for simple interest, I = Prt, where I is the interest earned, P is the principal (or initial amount invested), r is the interest rate, and t is the time period.

Thus, we have:

0.02x + 0.03y = $129 (1)

x + y = $5000 (2)

We can solve for one of the variables in terms of the other from equation (2), such as y = $5000 - x. Substituting this into equation (1), we get:

0.02x + 0.03($5000 - x) = $129

Simplifying and solving for x, we get:

0.02x + $150 - 0.03x = $129

-0.01x = -$21

x = $2100

Therefore, $2100 was invested at 2% and $2900 ($5000 - $2100) was invested at 3%.

Know more about simple interest here:

https://brainly.com/question/30964674

#SPJ11

Find the area of the region outside the circle r1​ and incide the limacon r2​. Round to two decimal places. r1​=3 r2​=2+2cosθ​

Answers

We find the area to be approximately 5.50 square units (rounded to two decimal places).

To find the area of the region outside the circle with radius 3 (r1) and inside the limaçon with equation r2 = 2 + 2cosθ, we need to determine the points of intersection between the two curves and then integrate to find the enclosed area.

First, let's find the points of intersection by setting the two equations equal to each other: r1 = r2.

Substituting the values, we have 3 = 2 + 2cosθ.

Simplifying the equation, we get cosθ = 1/2, which means θ = π/3 or θ = 5π/3.

Now, to find the area, we'll integrate the difference between the squares of the two radii using polar coordinates.

The formula for finding the area enclosed by two curves in polar coordinates is A = (1/2)∫[θ1,θ2] [(r2)^2 - (r1)^2] dθ.

In this case, the area A can be calculated as A = (1/2)∫[π/3, 5π/3] [(2 + 2cosθ)^2 - 3^2] dθ.

Expanding the equation inside the integral, we have A = (1/2)∫[π/3, 5π/3] (4 + 8cosθ + 4cos^2θ - 9) dθ.

Simplifying further, we get A = (1/2)∫[π/3, 5π/3] (4cos^2θ + 8cosθ - 5) dθ.

Now, we can integrate the equation to find the area. Integrating each term separately, we get:

A = (1/2) [4/3 sin(2θ) + 8/2 sinθ - 5θ] evaluated from π/3 to 5π/3.

Evaluating the integral, we have:

A = (1/2) [(4/3 sin(10π/3) + 8/2 sin(5π/3) - 5(5π/3)) - (4/3 sin(π/3) + 8/2 sin(π/3) - 5(π/3))].

Simplifying the expression, we get:

A = (1/2) [(4/3 sin(2π/3) - 4/3 sin(π/3)) + (8/2 sin(π/3) - 8/2 sin(2π/3)) - (5(5π/3) - 5(π/3))].

Finally, evaluating the trigonometric functions and simplifying the expression, we find the area to be approximately 5.50 square units (rounded to two decimal places).

Learn more about Area here:
brainly.com/question/1631786

#SPJ11

A and B are two events such that P(A)=0.4, P(B)=0.3and
? P(AUB)=0.9. Find P(ANB)
a. 0
b. 0.2
c. 0.3
d. 0.5

Answers

The probability of the intersection of events A and B, P(A∩B), is 0.2.

To find the probability of the intersection of events A and B, P(A∩B), we can use the formula:

P(A∪B) = P(A) + P(B) - P(A∩B)

Given that P(A) = 0.4, P(B) = 0.3, and P(A∪B) = 0.9, we can substitute these values into the formula:

0.9 = 0.4 + 0.3 - P(A∩B)

Rearranging the equation, we have:

P(A∩B) = 0.4 + 0.3 - 0.9

P(A∩B) = 0.7 - 0.9

P(A∩B) = -0.2

Since probabilities cannot be negative, the value of P(A∩B) cannot be -0.2. Therefore, none of the provided answer options (a, b, c, d) is correct.

Note: The probability of an intersection between events A and B should always be between 0 and 1, inclusive.

To learn more about “probability” refer to the https://brainly.com/question/13604758

#SPJ11

Q5- If the pressure at point A is 2900lb/ft
2
in the following figure. Find the pressures at points B,C, and D if the specifie weight of air is 0.075lb/ft
3
and for water is 62.4 lb/ft
3

Answers

With the specific weight values for air and water, you can use the pressure formula to calculate the pressures at points B, C, and D based on their respective heights or depths in the fluid columns.

Pressure in fluids is the force per unit area exerted by the fluid on the walls or surfaces it comes into contact with. The pressure at a particular point in a fluid depends on various factors, including the density of the fluid and the depth or height of the fluid column above that point.

The pressure at a given point in a fluid can be calculated using the formula:

Pressure = ρ * g * h

Where:

ρ (rho) represents the density of the fluid

g represents the acceleration due to gravity

h represents the height or depth of the fluid column above the point of interest

For air, you mentioned that the specific weight is 0.075 lb/ft^3. The specific weight is the weight per unit volume, and it is equal to the density multiplied by the acceleration due to gravity. Therefore, the density of air would be 0.075 lb/ft^3 divided by the acceleration due to gravity.

For water, you mentioned that the specific weight is 62.4 lb/ft^3, which is equal to the density multiplied by the acceleration due to gravity.

With the specific weight values for air and water, you can use the pressure formula to calculate the pressures at points B, C, and D based on their respective heights or depths in the fluid columns.

To know more about pressure, visit:

https://brainly.com/question/30673967

#SPJ11


I have a homework to be
delivered in 10 minutes. I want to answer now, please i really need
it now please
[20 points] The average number of houses sold by an estate agent is 2 per week. Find the probability that in the next 4 weeks (a) Exactly 3 houses will be sold. (b) More than 2 houses will be sold.

Answers

a)  The probability that exactly 3 houses will be sold in the next 4 weeks is approximately 0.14.

(b)  The probability that more than 2 houses will be sold in the next 4 weeks is approximately 0.3233

For this question, we need to use Poisson distribution. Poisson distribution is used to find the probability of the number of events occurring within a given time interval or area.

Here, the average number of houses sold by an estate agent is 2 per week.

Let us denote λ = 2. Thus, λ is the mean and variance of the Poisson distribution.

(a) Exactly 3 houses will be sold.

In this case, we need to find the probability that x = 3, which can be given by:

P(X = 3) = e-λλx / x! = e-2(23) / 3! = (0.1353) ≈ 0.14

Therefore, the probability that exactly 3 houses will be sold in the next 4 weeks is approximately 0.14.

(b) More than 2 houses will be sold.

In this case, we need to find the probability that x > 2, which can be given by:

P(X > 2) = 1 - P(X ≤ 2)

Here, we can use the complement rule. That is, the probability of an event happening is equal to 1 minus the probability of the event not happening.

P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2)=

e-2(20) / 0! + 2(21) / 1! e-2 + 22 / 2! e-2

= (0.1353) + (0.2707) + (0.2707) = 0.6767

Therefore, P(X > 2) = 1 - P(X ≤ 2) = 1 - 0.6767 = 0.3233

Therefore, the probability that more than 2 houses will be sold in the next 4 weeks is approximately 0.3233, which is around 0.32 (rounded to two decimal places).

To learn about probability here:

https://brainly.com/question/251701

#SPJ11

Other Questions
what is the expected end result of adding insulin to the water? the number of bound receptors on a target cell depends on what two things? Identify which of the philosophical positions of the multinational environment: (Ethnocentric, polycentric, regiocentric and geocentric multinational environment) you understand provides better results and explain why you selected it. 10. When understanding individual assets; risk/return characteristics, which is more important: variance or co-variance and why? a. Variance, since it shows how individual securities' total risk contributes to overall portfolio risk b. Covariance, since it shows how individual securities' total risk contributes to overall portfolio risk c. Variance, since it measures total risk, and covariance only reflects systematic portion d. Covariance, since it only reflects systematic portion, the risk that is priced (as in CAPM model). All the following have insurable interest except: Select one: a. Children/Grandchildren b. Siblings c. Husband/Wife d. Employee The organization culture and style influence how an organization conducts its projects. This statement is: a. True, but only when the project teams are located in different countries b. False, because the projects are fully conducted by newly created teams c. False d. True Who is responsible for identifying stakeholders? a. The project management team b. Project sponsor c. Project Initiator d. Performing organization managerYou are managing a large project with 20 key internal stakeholders, eight contractors, and six team leaders. You must devote attention to Not yet effective integrated change control. This means you are concerned primarily with: answered Marked out of a. Integrating deliverables from different functional specialties on the project 2.00 b. Maintaining baseline integrity, integrating product and project scope and coordinating change across knowledge areas Flag question c. Establishing a change control board that oversees the overall project changes d. Reviewing, approving and managing changes Sasha Company produced 50 defective units last month at a unit manufacturing cost of $40. The defective units were discovered before leaving the plant. Sasha can sell them "as is" for $30 or can rework them at a cost of $25 and sellthem at the regular price of $60. Which of the following is NOT relevant to the sell-or-rework decision? A. 25 for reworkB) $60 regular selling priceC) $40 manufacturing costD) $30 selling price of defective units Write a technical report on how Walmart can improve onlineshopping in your own words How do you describe the end behavior of the function f(z)--2(2-4)2 +3?Enter your answer by filling in the boxes.As 0, f (x) As o, f(x)Please helllp what part of earth receives the most solar radiation in a year? why? what types of signals are carried over a dsl cable Watch the film "Miwok Indians of Northern California" using the link provided and discuss how this film's ideas are both similar to Chapter 2 "The Original Californians" of California: An Interpretive History 9th edition by James J. Rawls and Walton Bean and how it differs in terms of how California Indians are portrayed. Write approximately 200 words. A Carnot engine takes 15,000 J from a heat reservoir at a high temperature and rejects 8500 J to a heat reservoir at a cooler temperature. Determine the efficiency of the motor. a. 0.57 b. 0.30 c. 0.43 d. 0.23 Discuss the importance of market research in developing a newproduct. Use real world examples in your answer.(400-460 words count, no plagiarism and write in own words, docite the reference if any) Required information [The following information applies to the questions displayed below.] At the beginning of the year, Mitt Corporation bought machinery, shelving, and a forklift. The machinery initially cost $27,600 but had to be overhauled (at a cost of $1,600 ) before it could be installed (at a cost of $800 ) and finally put into use. The machinery's total life was estimated as 40,000 hours, with an estimated residual value of $1,000. The machinery was actually used 5,000 hours in year 1 and 7,000 hours in year 2 . Repair costs were $400 in each year. The shelving cost $9,550 and was expected to last 5 years, with a residual value of $650. The forklift cost $13,050 and was expected to last six years, with a residual value of $2,100. Required: Compute the amount to be capitalized for the machinery. Find the z-scores that separate the middle 60% of the distribution from the area in the tails of the standard normal distribution. The z-scores are (Use a comma to separate answers as needed. Round to two decimal places as needed.)Previous question The concept of surface area of a3d-surface in space is relatable to which Calculus II topic? Arc Length. Integration by Parts. Shell Method. The Integral Test for testing series for convergence. For the integral below, select the correct order in which one would integrate.f(x,y,z)dxdzdyFirst integrate with respect to the variable Second integrate with respect to the variable Third integrate with respect to the variable True or false? For two non-overlapping subregionsQ1andQ2of a continuous and bounded solid regionQ, the following can be used to calculate the volume:Qf(x,y,z)dV=Q1f(x,y,z)dV+Q2f(x,y,z)dVTrue False Ryan manages inventory an apparel store. He planning to buy swimsuits for upcoming summer season. The demand for swimsuits is normally distributed with a mean of 500 and a standard deviation of 200. Ryan purchases each swimsuit for $50 and sells each for $180. Leftover inventory at the end of the season is salvaged for $35 per unit. What is the optimal number of swimsuits Ryan should purchase? Group of answer choices 1)752 2)735 3)6864)714 the blood brain barrier is the protective mechanism that helps after the civil war, a new immigrant was most likely to be from